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SUMMARY

It is important to design robust and reliable systems by accounting for uncertainty and variability in
the design process. However, performing optimization in this setting can be computationally expensive,
requiring many evaluations of the numerical model to compute statistics of the system performance at
every optimization iteration. This paper proposes a multifidelity approach to optimization under uncer-
tainty that makes use of inexpensive, low-fidelity models to provide approximate information about the
expensive, high-fidelity model. The multifidelity estimator is developed based on the control variate method
to reduce the computational cost of achieving a specified mean square error in the statistic estimate.
The method optimally allocates the computational load between the two models based on their relative
evaluation cost and the strength of the correlation between them. This paper also develops an information
reuse estimator that exploits the autocorrelation structure of the high-fidelity model in the design space to
reduce the cost of repeatedly estimating statistics during the course of optimization. Finally, a combined
estimator incorporates the features of both the multifidelity estimator and the information reuse estimator.
The methods demonstrate 90% computational savings in an acoustic horn robust optimization example and
practical design turnaround time in a robust wing optimization problem. Copyright © 2014 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Uncertainties are present in many engineering applications, and it is important to account for their
effects during the design process to achieve robust and reliable systems. However, this is often
too computationally expensive in a formal optimization setting. A key challenge is to efficiently
propagate uncertainties from the random inputs of a numerical model to its outputs. However, the
trend toward higher fidelity models makes it increasingly expensive to perform uncertainty propa-
gation. This is especially challenging when uncertainty propagation is nested within another layer
of analysis such as optimization.

We propose to lower the computational cost of uncertainty propagation on high-fidelity models
by leveraging inexpensive low-fidelity models to provide useful information about the high-fidelity
model outputs. These low-fidelity models can be simpler versions or approximations of the underly-
ing physics, less accurate numerical solutions of the governing equations, reduced-order models, and
so on. Such multifidelity methods have been employed by the (deterministic) optimization commu-
nity to reduce the cost of minimizing expensive objective functions. The idea is that the low-fidelity
model can inexpensively supply the trend toward the general vicinity of the high-fidelity model
optimum with only occasional recourse to the high-fidelity model as a correction or adjustment to
ensure convergence [1-3]. For uncertainty propagation, we similarly take advantage of the trend of
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the low-fidelity model by making use of the linear correlation between the low-fidelity model out-
puts and the high-fidelity model outputs to make adjustments to the estimators of the statistics of
the high-fidelity model outputs.

Even with multifidelity models, optimization under uncertainty can still be prohibitively expen-
sive because of the nested structure, where the outer loop adjusts the design variables and the inner
loop samples the uncertain model parameters. We further reduce computational cost by leveraging
the model autocorrelation in the design space. The idea is that the samples of model outputs at one
design point provide useful information (based on linear correlation) about the samples of model
outputs at a different design point.

There have been recent efforts to bring multifidelity concepts to various topics of uncertainty
quantification. In rare event simulation (such as reliability analysis), an approach that is conceptu-
ally similar to multifidelity optimization is to evaluate the low-fidelity model extensively to narrow
down the location of the limit-state boundary and correct the estimate using the high-fidelity model
[4, 5]. Non-intrusive polynomial approximations (e.g., polynomial chaos expansion, stochastic col-
location) of the high-fidelity model outputs can be constructed by combining an approximation
of the low-fidelity model on a fine sparse grid with an approximation of the correction on a
coarse sparse grid [6]. There are also multifidelity sampling approaches for uncertainty propaga-
tion based on Bayesian regression between the high-fidelity model outputs and low-fidelity model
outputs [7, 8].

Our approach is based on the control variate technique for Monte Carlo (MC) simulation [9, 10]
to estimate statistics of the high-fidelity model outputs (e.g., mean and variance) given the distribu-
tions of the uncertain model parameters as inputs. It resembles multilevel or multigrid MC methods
for solving stochastic differential equations in which the estimators from coarse discretizations are
used as the ‘control’ to reduce the sampling variance of the estimator from the fine discretization
[11-13]. We consider more general engineering models, possibly as a black-box, so the complex-
ity analysis for the multilevel methods [11] does not necessarily apply. In addition, we may not
have the flexibility to easily adjust the accuracy and computational cost of the low-fidelity model as
we can for stochastic differential equations using a discretization parameter. Instead, we focus on
minimizing practical computation times with the assumption that the evaluation of the (black-box)
models takes up most of the computational effort. The reduced-basis control-variate MC method
pre-computes and stores a reduced-basis of the control variates offline to allow for efficient solution
of parameterized stochastic differential equations online [14, 15]. In our approach, we do not sep-
arate the calculation of the samples into an offline and online stage. Instead, both the low-fidelity
model and high-fidelity model are evaluated online with the computational resources split between
the two to minimize the sampling variance of the estimator. Finally, in contrast to the StackMC
method that constructs a low-fidelity model from the samples of high-fidelity model outputs using
data-fit techniques [16], we develop a mathematical framework that admits a broad range of low-
fidelity models, including reduced-order models and models that may arise from different modeling
assumptions.

In this paper, we present our multifidelity estimator, information reuse estimator, and combined
estimator for optimization under uncertainty. In Section 2, we describe the optimization under uncer-
tainty problem and set up the general framework. In Section 3, we develop the multifidelity estimator
to take advantage of multifidelity models for uncertainty propagation. In Section 4, we develop the
information reuse estimator to take advantage of model autocorrelation during optimization. We
discuss how to combine the two estimators in Section 5. The choices of optimization algorithms are
discussed in Section 6. Numerical results are presented in Section 7 for two example problems to
demonstrate the effectiveness of the estimators. Finally, we conclude in Section 8.

2. PROBLEM FORMULATION

The engineering system is described by a high-fidelity model, My;en (X, u), and a low-fidelity model,
Mow (X, u), with two input vectors: design variables x and model parameters u. We consider the case
where there are uncertainties in the model parameters represented by some probability distribution.
Therefore, u is a realization of the random vector U(w), w € © where Q2 is the sample space, and
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the high-fidelity model output is a random variable defined as A(X,w) = Mpign (X, U(w)). In this
setting, a statistic of the high-fidelity model output, denoted as s 4 (X), such as the mean, the variance,
and so on, can be used to describe the system performance.

We are interested in the design under uncertainty of the engineering system as described by the
high-fidelity model. Therefore, we consider the following general optimization problem:*

* = argmin f(x,54(x))

st g(x,54(x)) <0 (D
h(x,54(x)) =0,

where the objective and constraint functions f, g, and & may depend on the statistic s4(x). For
example, in robust design, the objective function may be a linear combination of the mean and the
standard deviation of the high-fidelity model output. Because we typically cannot compute s 4 (X)
exactly, we approximate it with its estimator §4(x), and so the objective and constraint functions are
themselves also estimators: f(x) = f (X,84(X)),2(X) = g (X,84(x)), and h(x) = & (x,54(x)).

To solve (1), we compute the estimator §4 (X ) at every step in the design space taken toward the
optimum, x;, k = 0, 1,2, .... We focus on MC simulation because it is non-intrusive, parallelizable,
broadly applicable (does not rely on smoothness of the underlying problem), and independent of
the dimension of the uncertain model parameters. Thus, we have a nested setup where the design
variables are adjusted by the optimization algorithm in the outer loop, and the uncertain model
parameters are sampled by the MC simulation in the inner loop.

For a particular vector of design variables X, consider estimating s4 = E[A(w)]. We generate n
independent and identically distributed (i.i.d.) samples a; = Mp;gn (X, w),i =1,2,...,n from the
distribution of A(w) by evaluating the high-fidelity model at # i.i.d. samples of the uncertain model
parameters u;,i,= 1,2,...,n drawn from the distribution of U(w). The regular MC estimator of
s 4, denoted as ay, is

=Y @

i=1

and its mean square error (MSE) is given by the estimator variance

3)

1 n
MSE [d;] = Var[d,] = — Var |:Za,-i| - %A

i=1

where 05 = Var[A(w)] is the variance of A(w) Once we obtain the estimator with an acceptably
low estimator variance, we evaluate f g, and h and return the estimated objective and constraint
functions to the optimization routine to determine the next vector of design variables, Xz 1.

This approach can be computationally expensive because the high-fidelity model is evaluated at
every sample of the uncertain model parameters and at every vector of design variables specified
by the optimization routine. This paper focuses on lowering the computational cost of the estimator
by making use of approximate information. The control variate method [9, 10] is a technique to
reduce the estimator variance by making use of the correlation between the random variables A(w)
and an auxiliary random variable. We modify the control variate method to leverage the output of
an inexpensive, low-fidelity model and to leverage the autocorrelation of the high-fidelity model
in the design space, resulting in our multifidelity estimator and our information reuse estimator,
respectively.

If the objective and constraints are functions of more than one statistic, we let the statistic s 4 become a vector of
statistics S 4.
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3. MULTIFIDELITY ESTIMATOR

In this section, we develop a method to compute the estimator §4 of the statistic 54, where the
random variable A(w) is the high-fidelity model output Mpign(x, ,u(w)) at some fixed values of the
design variables x;. We introduce the multifidelity estimator based on the control variate method to
make use of the low-fidelity model output Moy (x; ,u(w)) as the auxiliary random variable B(w).

3.1. Approach

For simplicity of explanation, consider the estimation of the mean of the high-fidelity model, that is,
s4 = E[A(w)]. Let the random variable of interest be A(w) = Mhpign (Xk, U(w)) and the auxiliary
random variable be B(®w) = Moy (Xg, U(w)). Given the i.i.d. samples w;,i = 1,2,3,... drawn
from the distribution of the uncertain model parameters U(w), we evaluate both the high-fidelity
model and the low-fidelity model to generate samples of the random variables a; = Mp;gh(Xg, 1;)
and b; = My (Xg,1;),i = 1,2,3,.... The classical control variate estimator is defined as

. Sy _ Iy ly
sA=an+a(sB—bn)=;Zai—i-a(SB—;Zbi),

i=1 i=1

where o € R is the control parameter and the statistic s = E[B(w)].

Because, in general, we would not know exactly the statistic of the low-fidelity model output,
we approximate sg by b, = % 3" bi with m > n. That is, we make use of the relatively
low computational cost of the low-fidelity model to calculate a more accurate estimate of sp than
the estimate with only 7 samples. Some other extensions to the control variate method [17, 18]
generate an independent simulation with m samples to compute b,,. In our case, we simply require
m — n additional samples of b; beyond the n samples already available. Therefore, the multifidelity
estimator of s 4 is defined as

Sap=an+a(bm—by).  m>n, )

for some control parameter ¢ € R and computational effort p to be defined in the succeeding text.
The rationale for this formulation is to make an adjustment to the regular MC estimator a, by the
difference b,, —b,, which may be interpreted as the error of the estimator b, with respect to the more
accurate estimator b,,. Because E [bm — bn] = 0, the second term has no effect in expectation, but
we can take advantage of its effect in variance. The variance of the multifidelity estimator can be
derived as

Var [@A,p] = Var [d,] + o Var [5,,,] + o2 Var [l;n]

+ 2a Cov [dn, Bm] — 2a Cov [c'zn, 15,,] — 20 Cov [b_m, 5,,]
2 2

2
o o o
n m n

n

m m n
+ 205% Z Z Cov [a;, bj] —20(@ —Zazﬁ Z Z Cov [bi. bj]
i=1j=1 i=1j=1

2 2 2
o o (o
n m n

i=1

1 < PABOAOBR » 1 ¢
+2aﬁz Cov [a;, bi] —Z(XT —2u = 2:1 Cov [bj,bj]
i=

1 1,

== (04 +®0% —20p4BOAOR) — - (a*0p —20papoAOE),
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where 03 = Var[B(w)] and p4p = Corr[A(w), B(w)] are the variance of B(w) and the correlation
coefficient between A(w) and B(w), respectively.

Computing the regular MC estimator from (2) requires n evaluations of the high-fidelity model.
However, computing the multifidelity estimator §4 , from (4) requires n evaluations of the high-
fidelity model and m evaluations of the low-fidelity model. Therefore, to benchmark against the
regular MC estimator, we define a unit of computational effort p as the ‘equivalent number of
high-fidelity model evaluations’:

p=n+o=n(l+_). 5)

where w is the ratio of the average computation time per high-fidelity model evaluation to the aver-
age computation time per low-fidelity model evaluation,® and r = m/n > 1 is the ratio of the
number of low-fidelity model evaluations to the number of high-fidelity model evaluations. Thus,
for a fixed computational budget p, r is a parameter to allocate the computational resources between
high-fidelity model evaluations and low-fidelity model evaluations. We rewrite the multifidelity
estimator variance in terms of p, r, and w:

1 1
Var [§4,,] = 5 (1 + %) |:O'i + (1 — ;) (0520123 — 2apABUAoB)j|

Given the computational budget p, we minimize Var [§ A, p] in terms of both « and 7. Because 1/p
is a multiplicative factor in Var [§A, p], the optimal value of « and r, denoted as o* and r*, do not

depend on p. The result is
* 04 * wpiB
o = pap—, 1= [—"5—
OB 1= p4p

and the optimal Var [§4,, |, denoted as Var [ﬁj‘l p], is

o e rr 1Y 5, o3
MSE [§} ,] = Var [§} ] = T+ — )1 = 1= 5 ) s s (6)
It can be seen that r* allocates a greater proportion of the computational budget p to low-fidelity
model evaluations when the low-fidelity model is inexpensive (i.e., w is large) and ‘accurate’, where

accuracy is in terms of the correlation (i.e., p4p is close to 1). In the extreme cases, as w — oo, that
2
is, the low-fidelity model is almost free, then r* — oo and Var [&Z’p] — (1-p%p) UTA, which is

the classical control variate solution where we know exactly the statistic of the low-fidelity model
output sg. The effect of replacing sp with the estimate by, is to reduce pi g by the factor (1 — l*)

On the other hand, as p4p — 1, that is, the low-fidelity model is almost perfect, then Var 32 P e

lﬁ. Therefore, a perfectly correlated low-fidelity model is not sufficient for variance reduction
over the regular MC estimator using the same computational budget p; it must also be cheaper to
evaluate than the high-fidelity model, that is, w > 1.

If the values of w and p4p are such that r* < 1, the correlation is not high enough and the
low-fidelity model is not cheap enough for the multifidelity estimator to be worthwhile. In other

words, if

1

2
[
IOAB 1+w

is not satisfied, it is better to switch back to the regular MC estimator.

STf w is not known, we simply time a few evaluations of the high-fidelity model and the low-fidelity model and take the
ratio.
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3.2. Implementation

In practice, we cannot compute the multifidelity estimator 54, and its estimator variance Var [§ A, p]
directly from (4) and (6), respectively, because o4, 0p, and p4p are typically unknown. Therefore,
as in the classical control variate method, we replace these quantities with their sample estimates.
At a particular computational budget p, we have n samples of A(w) and m > n samples of B(w).
Therefore, we make use of the n common samples {a;, b; }_, to calculate

~ er‘l=1 (ai - ‘_Zn) (bi - En)

o= — , (7a)
Z?:l (bi - bn)

A wﬁilg
=, —, 7b
TV, .
Pap = [ZLI (@i~ an) (bi — Bn)]z (7¢)

[y (@ —an? | [y (5 = B)°]
n L =32

52 = Ziz1 (@ = dn)” (7d)

n—1

Because we have replaced the exact parameters o* and r* with their sample estimates & and 7,
it is important to check if the multifidelity estimator still has a lower estimator variance than the
regular MC estimator. We assess the robustness of the multifidelity estimator to the errors in & and
7 relative to ™ and r* by plotting the ratio

V: q 2
Yo lian] (4 L) [1 N (1 _ 1) (O,sz_g _ZQpABO_B)}
Var [ap] w r 04 04

as a function of « and r in Figure 1 for some typical values of w and p4p. A value less than one
indicates the multifidelity estimator variance is lower than the regular MC estimator variance for the
same computational effort. It can be seen that small errors in «* and r* (location indicated by the
cross) is acceptable, although optimal variance reduction will not be achieved.

To compute the multifidelity estimator, we first draw n samples {u;}_, from the distribution
of U(w) and evaluate Mygn (Xg,w;) and M,y (Xg, ;) to generate the samples {a;, b; }7_,. We cal-
culate the quantities in (7) and obtain m = round (n7), allowing us to draw an additional m — n

100 100
90 S 90
80 80
70 0.7 70
60 60
50 0.8 50
40 // - 40
30 09 /05 30
20 // ,/ 0.4 \ 20
10 /(1 O'GL_ x) ) 2 10

Ratio of Number of Model Evaluations
Ratio of Number of Model Evaluations

0 0.5 1 15 2 2
Control Parameter Control Parameter
(a) Correlation coefficient p4p = 0.9 (b) Correlation coefficient p4a g = 0.95

Figure 1. Contour plots of Var [§ 4. »] /Var [a 5] as a function of control parameter o and ratio of the number
of model evaluations r with w = 30 and 6 4/0p = 1. The cross indicates the location of (a™, r™*). (a)
correlation coefficient p4 p = 0.9 and (b) correlation coefficient p 4 g = 0.95.
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samples of U(w) and to evaluate the low-fidelity model an additional m — n times to obtain the
samples {b; }/, (including the original n samples). We can then compute the multifidelity estima-
tor from (4) and its MSE from (6). If the MSE is too high, we increase n and repeat. We emphasize
that all of the samples used in the method are generated from the same stream of uncertain model
parameters, u;,i = 1,2,3,..., to induce the correlation between the high-fidelity model and the
low-fidelity model.

4. INFORMATION REUSE ESTIMATOR

In this section, let us assume that we do not have an inexpensive, low-fidelity model. Instead, we
consider Mg (x¢, U(w)) ,X¢ # Xg, as an approximation to Myen (Xk, U(w)) when ||xp — x¢|| is
small. During optimization under uncertainty, as described in Section 2, the statistic of the high-
fidelity model output is estimated at a sequence of steps in the design space toward the optimum.
Therefore, we introduce the information reuse estimator that takes advantage of this setting to reuse
the estimator computed at a previously visited design point.

4.1. Model autocorrelation

To motivate our approach, we interpret the high-fidelity model output My;en (X, U(w)) as a random
process indexed by the vector of design variables x. Therefore, if the random variable of interest
A(w) is the high-fidelity model output at a particular vector of design variables and the auxiliary
random variable C(w) is the high-fidelity model output at another vector of design variables, then
the autocorrelation structure of My;gh (X, U(w)) provides the correlation between A(w) and C(w)
for the control variate method. Intuitively, if Myion(X, u) at a realization u of the uncertain model
parameters U(w) is smooth in the x direction, then a small perturbation x4+ Ax produces only a small
change in the output. Considering all realizations of U(w), it is likely that My;g (x + AX, U(w)) is
correlated with Mg (x, U(w)).

To make the argument concrete, consider the simpler case of a scalar design variable x. Let
Mhign(x, u) be twice differentiable in x for all realizations u of U(w). Applying a second order Tay-
lor expansion in x, the correlation coefficient between My;gn (x + Ax, U(w)) and My, (x, U(w))
is quadratic in Ax for |Ax| <« 1, as derived in Appendix A:

Corr [ Myigh(x + Ax, U(®)), Mpign(x, U(®)))]

2
1 — Corr [Mﬁigh (x, U(®)) , Mpjgn (x, U(a)))] ®)
~ 1 — Ax?,
2Var [ Mygn(x, U(w))] / Var [Mk;igh(x, U(w))]
where M, (x,u) = 0Mpigh(x,w)/dx. We see that the correlation coefficient approaches one

as Ax — 0. This motivates the use of the information reuse estimator within an optimization
algorithm, where a sequence of potentially small steps in the design space readily provides good
candidates for the choice of the auxiliary random variable C(w).

4.2. Approach

Let k be the current optimization iteration and let {Xo,X1,...,Xx} be the sequence of design
points visited by the optimization algorithm. Let the random variable of interest be A(w) =
Mhigh (X, U(w)), and we again compute an estimator § 4, of s4 = E[A4(w)] and the estimator vari-
ance Var [§ A, p], where p denotes the computational effort. Furthermore, let the auxiliary random
variable be C (w) = Mhjgn (x¢, U(w)) for £ < k. We assume that during optimization iteration £, we
have stored the estimator at that iteration and its estimator variance in a database. Therefore, at the
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current optimization iteration k, we have available the value of the estimator §¢ of s¢ = E[C(w)]
as well as the value of the estimator variance Var [§¢].1 Analogous to the multifidelity estimator, we
do not know exactly the statistic s¢ required by the classical control variate method. Therefore, we
approximate s¢ by S¢ to obtain the information reuse estimator of s 4

§A,p =an +y Sc —cn) ©)]
for some control parameter y € R. The variance of the information reuse estimator can be derived as

Var [§4,5] = Var [an] + y* (Var [Sc] + Var [¢4]) — 2y CoV [dn. Cn]

2 2
o . o 040
_ %4 (Var el + _c) _ o, Pacoaoc
n n n

1
=5 [0 +v?0& (1 +n) —2ypacoaoc].
where
_ Var [§¢] _ Var [$c]

T Var 6] o2/n 0¢ = Var[C(w)], pac = Corr[A(w), C(w)].
n C

The derivation assumes that Sc, the estimator from optimization iteration £, is uncorrelated with a,
or ¢, which are computed at the current optimization iteration k. This can be achieved in practice
by ensuring that the set of realizations of U(w) used in optimization iteration k is independent of the
set of realizations of U(w) used in optimization iteration £. Otherwise, additional covariance terms,
Cov [ay, Sc] and Cov [Sc, ¢,], appear in the expression. This is problematic because S¢ is itself
the information reuse estimator at optimization iteration £ with its own auxiliary random variable
at yet another earlier optimization iteration and so on, resulting in a chain of covariance terms
between random variables stretching back to the first optimization iteration. By requiring §¢ to be
independent of a, or ¢,, we break this chain of dependence and simplify the expression.
Computing the information reuse estimator at optimization iteration k using the samples u;,i =
1,2,3,...,n drawn from the distribution of U(w) requires n high-fidelity model evaluations at xx
to calculate a, and n high-fidelity model evaluations at x; to calculate ¢,. Therefore, the computa-
tional effort is p = 2n. Given the computational budget p, we minimize Var [§ A, p] in terms of y

and obtain
)/* — ( PAC ) G_A
14+1n) oc

and
2
%4

. (10)
p

A . P
MSE[§} ,] = Var [§} ,] =2 (1 - ﬁcn)

The information reuse estimator variance is low if the correlation between the high-fidelity model
output at X and the high-fidelity model output at x; is high. Based on the discussion in Section 4.1,
we select £ = arg miny , ||Xx — X¢||. However, similar to the multifidelity estimator, the effect of
replacing s¢ with the estimate S¢ is to reduce pic by the factor 1/(1 + ). Thus, the amount of
variance reduction is degraded when the parameter 7 is large, which occurs when Var [S¢] is large
relative to Var [¢y]. This also suggests that the benefit of the information reuse estimator is reduced

if the desired estimator variance at the current optimization iteration, Var [§j‘1 p], is much lower
than the estimator variance at the previous optimization iteration, Var [Sc].

IWe do not indicate the computation effort of the estimator §¢ because it is not relevant to the current optimization
iteration.
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The information reuse estimator variance is not guaranteed to be lower than the regular MC
estimator variance at the same computational effort because of the need to evaluate the high-fidelity
model twice (at X; and at x;) per sample. Therefore, we compare the results of (10) and (3) to decide
if it is necessary to switch to the regular MC estimator as a safeguard.

4.3. Implementation

Analogous to the multifidelity estimator, we replace the unknown quantities o 4, oc, and p4c with
their sample estimates using the available samples {a;, ¢; }}_, and obtain

N 1 Z?:l (a,- — dn) (Ci — 5,,)

= , 11
’ L+ Z?:l (ci — En)z (
. Var[Sc]n(n—1)
= m — , (11b)
! Zi=1 (ci — Cn)2
n L= Y
16,24C _ [Zi:l (@i —an) (¢ Cn)] ’ (11¢)
[Z:’l:l (a;i — L_Zn)z] [Z?:l (ci — En)z]
n = )\2
631 = Zi=1(a—’a")_ (11d)

n—1

The information reuse estimator is intended to be used within an outer optimization loop that
steps through a sequence of design points {Xg, X, ..., Xg }." At the initial design point xo, we cannot
compute the information reuse estimator and thus we start with the regular MC estimator and save
the estimator and the estimator variance in a database. At each optimization iteration, we select
x¢ and the corresponding S¢ and Var [§¢] from the database to compute the information reuse
estimator. We then store the current information reuse estimator and the estimator variance in the
database to provide candidates for §¢ and Var [$¢] at subsequent optimization iterations.

The procedure to compute the information reuse estimator at a particular vector of design vari-
ables x, once §c and Var [Sc] have been retrieved from the database, is analogous to that of the
multifidelity estimator. However, as a safeguard mechanism, we start with a small number of sam-
ples {a,-,c,-}:?f‘l, which is used to determine whether to (i) continue with the information reuse
estimator or to (ii) switch to the regular MC estimator by comparing (10) and (3). The value of nj,;
is chosen by the user. If it is set too large, then it defeats the purpose of the safeguard mechanism.
However, ni,; should be large enough to make a reasonable prediction about whether to continue
with the information reuse estimator or switch to the regular MC estimator. If continuing with the
information reuse estimator, we then increase the sample size n, generate additional samples to
obtain {a;, ¢; }7_,, calculate the quantities in (11), and compute the estimator from (9) and the MSE

from (10). If the MSE is too high, we increase n and repeat.

4.4. Correlated estimator errors

Because the results of an optimization iteration are reused at a later optimization iteration, the infor-
mation reuse estimators computed during the course of optimization are correlated with each other.
To illustrate, we derive an expression for the correlation coefficient between §4, p» the information
reuse estimator at optimization iteration k, and Sc, the information reuse estimator at optimization

ITechnically, the information reuse estimator can be used within any outer loop that generates a sequence of design
points. However, it is most effective when the design points visited by the outer loop cluster together, as is often the case
during optimization when it is near the optimum.
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iteration £ < k. Because Cov [d,, Sc] = 0 and Cov [C,, Sc] = 0, we have

Cov [SA,p,fc] = Cov [dn +y* (Sc —Cn) ,fc]

= y*Cov [5c.5c]

1+1n) oc
Furthermore,
2 2
R R Pac \ %4
Var |§ Var [s¢]=(1-— —=Var [§
[54,p] Var [Sc] ( 1+n)n [5c]
1+ n—p3 o2
= ( 1 'OAC) “AVar [5c]
147 n
Therefore,

Cov [§A,p,§c]

\/Var [34.5] Var [5c]

Corr[§A,p,§c] =

) \/ nVar [Sc]
(L+n) (1 +n—phc)oe (12)

_ n
- pAC\/(l +m (1+n-pc)

PAC ‘
\/(1 +1/n) (1 +n—p%¢c)

A contour plot of the correlation of the estimators Corr [§ A,p §C] as a function of the correlation
coefficient of the model outputs p4¢ and the ratio of estimator variances n = Var [Sc]/Var [¢,] is
shown in Figure 2. As the model outputs become more correlated, that is, p 4¢ is high, the estimators
become more correlated as well.

If we assume normality, then §4,, and Sc are jointly normally distributed as

Sap | o ar (|54 Var [$4,p] Cov[$4,p.5¢]
Sc sc |"| Cov[§a,p.5c]  Var [c] :
where Var [§ A, p] is given by (10). Thus, §4,, conditioned on Sc is a biased estimator of s 4

Var [5,4’1,]

Sc —sc),
Var [S¢] (S¢ = sc)

§A,p |S¢ ~N |54+ COI‘r[.’S\A,p,fc]

(1 — Corr [§A,p, §c]2) Var [§A,p]

In other words, given a particular realization of the estimator at the first optimization iteration, the
information reuse estimators at all subsequent optimization iterations will have a bias. For fixed
values of Var [§ A, p] and Var [$¢] (i.e., keeping the MSE fixed), as Corr [§ A,p §c] increases, the
estimator §4,, conditioned on a given value of §c trades estimator variance for bias. Because
this conditional estimator variance manifests as noise to the optimization algorithm, trading the
conditional estimator variance for conditional bias (for a particular MSE) reduces the amount of
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noise in the objective and/or constraint functions experienced by the optimization algorithm. At the
same time, as correlation increases, the overall MSE, given by (10), decreases because of the vari-
ance reduction. This combination of effects improves the convergence during optimization under
uncertainty. This is discussed further in the numerical example in Section 7.2.

5. COMBINED ESTIMATOR

In this section, we return to the situation where an inexpensive low-fidelity model is available
and discuss how to combine the multifidelity estimator and the information reuse estimator to fur-
ther reduce the computational cost of uncertainty propagation in the context of optimization under
uncertainty.

5.1. Approach

Let k be the current optimization iteration and let £ < k be a past optimization iteration as
described in Section 4.2. Given vectors of design variables x; and x;, we define the following
random variables:

A(w) = Mhigh (X, U(w)),

B(w) = Miow (X, U(®)) ,

C(w) = Mhpigh (x¢, U(w)),

D(a)) = Moy (Xl’ U(w)) .

The multifidelity estimators for s4 = E[A(w)] and s¢ = E[C(w)], as discussed in Section 3.1, are
S4 = ay —}-Ot(];m—gn),
§C =5n+,3(dm_dn)9

respectively, for control parameters o, 8 € R and m > n. We apply the information reuse esti-
mator formulation (9) but replace the regular MC estimators a, and ¢, with the aforementioned
multifidelity estimators instead. Therefore, the combined estimator of s 4, denoted as §4_p, is

Sap =34+ vGBc—3c) (13)
— [an + b — )] + 7 [5c — G B (dn — )]

[ 4]

o

0.4 |
0.5

e
o
T
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Ratio of Estimator Variances
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Figure 2. A contour plot of the correlation of the estimators Corr [§ 4., Sc] as a function of the correlation
coefficient of the model outputs p 4 and the ratio of estimator variances n = Var [Sc] /Var [c,].
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for control parameter y € R, where 5S¢ is the combined estimator at optimization iteration £.

The computational effort for the combined estimator is p = 2(n 4+ m/w), where w is the ratio of
the average computation time per high-fidelity model evaluation to the average computation time per
low-fidelity model evaluation. If we were to follow the derivations in Sections 3.1 or 4.2, we would
derive the expression for the combined estimator variance Var [§ A, p] and minimize it with respect
to all of the parameters «, B, y, and r = m/n > 1 for fixed computational budget p. Unfortunately,
there is no tractable analytical result similar to the multifidelity estimator and the information reuse
estimator. Therefore, we propose a suboptimal approach to reduce the combined estimator variance
whereby we determine the parameters sequentially.

We first calculate the optimal (but suboptimal overall) & and f for the multifidelity estimators § 4
and S¢, respectively. From Section 3.1, they are

2
04 Wh4aB
o* = pap—, rip = >
OB 1 —pyp
2
* oc * WPcp
ﬂ = pcpD — r'ep =75 -
oD 1= pep

To be conservative in expending computational effort to evaluate the low-fidelity model, we choose
the ratio of the number of low-fidelity model evaluations to the number of high-fidelity model
evaluations as

and

*

m
rt=—
n

=min{r}g.7ép}.

Using these choices for a*, 8*, and r*, the variances of the multifidelity estimators, based on (5)

and (6), are
. 1 o4
Var [$}] = [1 - (1 - r—*) wa} .

and

" .

R 1 o2
Var [§¢] = [1 - (1 - r_*) péD] ¢

Next, we need to determine y. Because we already have Var [3% ] and Var [5% ], the variance of
the combined estimator is

Var [54,p] = Var [§%] + > (Var [S¢] + Var [$§]) — 2yCov [§4. 55 ]
Minimizing the variance with respect to y gives

. Cov [33.8¢]

YT Var [Sc] + Var [3%]
and
y " 1 Cov[sasel
MSE [§} ,| = Var [§} ,] = Var [§}] — Var ) + Var [f2]’ (14)
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Lastly, to use (14), we derive the expression for the covariance of the multifidelity estimators:

Cov [84.3¢&] = Cov[an +o* (15,,, — 5,,) ,Cn + B* (d_m - cZ,,)]
= Cov [y, ¢y] + B*Cov [d,,, d_m] — B*Cov [dn, cZ,,] + a*Cov [Bm,En]

—a*Cov [l;n, Cn] 4+ *B*Cov [l;m, dm| — a*B*Cov [15,,,, cZ,,]
—a*B*Cov [b_,,, c?m] + o™ B*Cov [l;n, a?,,]

1
n

(pacoaoc — B papoaop —e*ppcopoc +a*B*pppopop)
1 * * * *
- (—B*papoaop —a*ppcoroc + a*B*pppoBop)

1 1
= [PACUAUC + (1 - r—*) («*B*pBpOBOD — 0¥ pRCOBOC — ﬂ*PADUAOD)]

040C

1
= |:pAC + (1 - r_*) (P4BPCDPBD — PABPBC — PCDPAD)i|

The implementation of the combined estimator is similar to that of the multifidelity estimator and
the information reuse estimator. At a particular n, we evaluate the high-fidelity model at both x; and
x¢ n times and evaluate low-fidelity model at both x; and x; m = nr* times for a computational
effort of p = 2(n + m/w). Quantities such as afl, Ué, PAB> PBC» PCD, and so on are replaced by
their sample estimates using the first #n samples, similar to (7) and (11). If the MSE is too high, we
increase n and repeat. Analogous to the information reuse estimator, we compare the results of (14)
and (6) to decide if it is necessary to switch to the multifidelity estimator as a safeguard.

6. OPTIMIZATION METHODS

We return to optimization problem (1) introduced in Section 2 and briefly discuss the choice
of optimization algorithms to use in the outer loop in conjunction with the multifidelity estima-
tor, information reuse estimator, or the combined estimator in the inner loop. Because of the
pseudo-randomness of MC sampling, the objective and constraint values returned to the opti-
mizer at optimization iteration k, f(x¢) = f (Xk.84,p(Xk)).8(Xk) = & (Xk.84,p(xx)), and
ﬁ(xk) = h (xk,éA, p(xk)) are noisy with respect to the exact objective and constraint values
f (Xi,84(Xx)) , & (Xk,S4(Xx)), and /1 (Xg, 4 (Xg)) and the optimization problem becomes a stochas-
tic optimization problem. While the level of noise can be controlled by specifying the desired
estimator variance, it nevertheless poses a challenge for any optimization algorithm that is not noise
tolerant. Therefore, we consider three classes of optimization algorithms:

Stochastic approximation (also known as the Robbins-Monro method) [19] generates steps in the
estimated descent direction of the design space from the noisy evaluations of the objective (or
gradient) functions, analogous to the steepest descent method for deterministic optimization. It
converges to the true optimal design as k — oo. However, it can be difficult to incorporate
nonlinear (potentially also noisy) constraints.

Sample average approximation (also known as the sample path method) [19] uses the same
realizations of the uncertain model parameters U(w) to calculate the estimators for all optimiza-
tion iterations. This effectively turns the objective and constraint functions into deterministic
functions of x at the cost of introducing a bias, permitting a wide range of deterministic con-
strained nonlinear programming techniques to solve the optimization problem. As discussed in
Section 4.2 for the information reuse estimator, the realizations of the uncertain model parame-
ters at each optimization iteration must be independent of those at other optimization iterations.
As a result, the information reuse estimator and the combined estimator are incompatible with
the sample average approximation method.
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Figure 3. 2-D horn geometry where @ = 0.5, b = 3, and L = 5. The shape of the horn flare is described by
the half-widths b;,i = 1,..., 6 uniformly distributed along the flare.

Derivative-free optimization methods, such as mesh adaptive direct search [20], implicit filtering
[21], derivative-free optimization (DFO) [22], bound optimization by quadratic approximation
(BOBYQA)™, and constrained optimization by linear approximation (COBYLA) [24], are not
developed specifically for stochastic optimization problems but are typically tolerant to small
levels of noise in practice [25]. Most of these methods sample the objective and constraint func-
tions relatively widely in the design space to determine the search direction, which has the effect
of smoothing out the high-frequency noise in the function evaluations provided that the magni-
tude of the noise is small relative to the true function values. However, there is no guarantee that
the DFO methods will actually converge to the true optimal design.

In the succeeding example problems, we have selected the derivative-free optimization methods
BOBYQA and COBYLA. BOBYQA solves bound-constrained optimization problems without ana-
lytical derivatives by constructing an underdetermined quadratic interpolation model of the objective
function based on the least-Frobenius-norm update of the Hessian [26, 27]. The quadratic model is
used in a trust-region subproblem to generate the vectors of design variables. COBYLA can also
handle nonlinear constraints by constructing linear interpolation models of the objective and con-
straint functions using evaluations on a simplex. The vectors of design variables are obtained by
solving a linear programming subproblem.

7. NUMERICAL RESULTS

We demonstrate the multifidelity estimator, the information reuse estimator, and the combined
estimator with two example problems.

7.1. Acoustic horn uncertainty propagation

In this example, we model a 2-D acoustic horn governed by the non-dimensional complex Helmholtz
equation V2u + k*u = 0. An incoming wave enters the horn through the inlet and exits the
outlet into the exterior domain with a truncated absorbing boundary ['iygiation [28]. The geome-
try of the horn is illustrated in Figure 3. The output of the model is the reflection coefficient

s = fF_ WU dI' — 1‘, a measure of the horn’s efficiency, and we estimate its mean and its variance.
The three uncertain model parameters considered for this example are the wave number k, upper

"*BOBYQA was developed by M.J.D. Powell based on his earlier work on the NEWUOA software [23].
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Table I. Distributions of the three uncertain parameters for the horn example.

Random variable  Distribution Lower bound Upper bound Mean Standard Deviation

k(w) Uniform 1.3 1.5 - -
Zu(w) Normal - - 50 3
z1(w) Normal - - 50 3

horn wall impedance z,,, and lower horn wall impedance z; with distributions listed in Table I. In
the next section, we also consider six geometric design variables b; to bg describing the profile of
the horn flare for optimization. Here, for uncertainty propagation, the design variables are fixed at a
straight flare profile as shown in Figure 3.

The high-fidelity model is a finite element model of the Helmholtz equation [28]. The spatial
domain as depicted in Figure 3 is discretized using linear nodal basis functions, resulting in a system
of 35,895 equations with 35,895 unknowns corresponding to the pressures at the nodal grid points.
At a particular vector of design variables and a realization of uncertain model parameters, the system
is solved for the pressures that are then used to compute the reflection coefficient of the horn.

The low-fidelity model is a reduced basis model obtained by projecting the system of equations
from the high-fidelity finite element discretization onto a reduced subspace [29]. This is done
by determining N < 35,895 basis vectors, which define an N -dimensional reduced subspace.
Approximating the unknowns as a linear combination of these basis vectors and projecting the gov-
erning equations onto the reduced subspace lead to a system of N equations with N unknowns.
The reduced system is significantly faster to solve but is less accurate because of the discarded
modes. We consider two cases for the low-fidelity model: (i) a less accurate reduced basis model
with N = 25 reduced basis functions and (ii) a more accurate reduced basis model with N = 30
reduced basis functions. For (i), the correlation coefficient between the high-fidelity model and the
low-fidelity model (computed from (7¢)) is p4p = 0.959 for the samples used to estimate the mean
and is p4p = 0.897 for the samples used to estimate the variance. For (ii), it is pg4p = 0.998 for
the samples used to estimate the mean and is p4p = 0.994 for the samples used to estimate the
variance. In both cases, the ratio of the average computation time of the high-fidelity model to that
of the low-fidelity model is w = 40 (the increase in computation time caused by the addition of five
more reduced basis functions in (ii) relative to (i) is negligible compared with the 35,895 unknowns
in the high-fidelity model). This allows us to examine the effect of the correlation coefficient on the
efficiency of the multifidelity estimator.

The root mean square error (RMSE) of the mean estimator and of the variance estimator are
shown in Figure 4(a) and (b), respectively. The computational effort is the number of high-fidelity
model evaluations for the regular MC estimator and the equivalent number of high-fidelity model
evaluations for the multifidelity estimator. This example demonstrates the benefit of a good corre-
lation between the high-fidelity model and the low-fidelity model. To achieve 10~> RMSE for the
variance estimate, the regular MC estimator requires about 1800 high-fidelity model evaluations, the
multifidelity estimator with the less correlated low-fidelity model (N = 25 basis functions) requires
about 600 equivalent high-fidelity model evaluations, and the multifidelity estimator with the more
correlated low-fidelity model (N = 30 basis functions) requires about 100 equivalent high-fidelity
model evaluations.

Given the high correlation between the reduced basis model with N = 30 basis functions and the
finite element model, it appears to be simpler to throw all of the computational budget into comput-
ing a regular MC estimator using only the reduced order model. If we do this for the mean estimate,
there will be a bias error of about —3 x 10~3 with respect to the true mean of the finite element model
that cannot be reduced regardless of the number of cheap reduced order model evaluations used. For
this problem, the bias is large relative to the RMSE that can be achieved by the multifidelity estima-
tor (Figure 4(a)) and highlights the fact that the choice of the low-fidelity model should be on the
basis of its correlation with the high-fidelity model rather than point-wise differences in the outputs.
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Figure 4. Root mean square error of the estimators as a function of the computational effort for the horn
example. The dashed line indicates the bias of the low-fidelity model (N = 30 basis functions). (a) mean
estimator and (b) variance estimator.

Table II. Initial values, lower bounds, upper bounds, and optimal values of the six
horn flare half-widths.

Design variables  Initial values Lower bounds  Upper bounds  Optimal values

b1 0.857 0.679 1.04 0.679
by 1.21 1.04 1.39 1.07
b3 1.57 1.39 1.75 1.75
ba 1.93 1.75 2.11 1.99
bs 2.29 2.11 2.46 2.25
be 2.64 2.46 2.82 2.46

7.2. Acoustic horn robust optimization

Next, we demonstrate the effectiveness of the information reuse estimator in the robust optimization
of the shape of the acoustic horn flare. The model we consider is the reduced basis model for the
reflection coefficient s with N = 30 basis functions. The design variables are b = [b; ---bs]T,
representing the half-widths of the horn flare as shown in Figure 3. The initial values of the design
variables (corresponding to the straight flare), their lower bounds, and their upper bounds are listed
in Table II. The minimization of the horn reflection coefficient is formulated as

min  f(b) = E[s(b, )] + 3/ Var[s(b, w)].

bz <b<by

The mean and the variance of the horn reflection coefficient, E[s(b, )] and Var [s(b, w)], respec-
tively, are estimated using either the regular MC estimator or the information reuse estimator. The
MSE of the objective function can be approximately evaluated from the estimator variances of the
regular MC estimator or the information reuse estimator based on a first-order Taylor expansion
about E[s(b, w)] and Var [s(b, ®)].

We employ the BOBYQA optimization algorithm described in Section 6. The optimization is con-
ducted with the objective function evaluated using the regular MC estimator and with the objective
function evaluated using the information reuse estimator. In both cases, we employ the number of
model evaluations needed to satisfy the RMSE tolerance on objective function of 1 x 1072 at every
vector of design variables. Three trials were run for each case and the convergence of the objective
as a function of the cumulative computational effort is shown in Figure 5, where the computational
effort is the number of model evaluations. It can be seen that we locate the optimum using about
50% less computational effort with the information reuse estimator.

We examine the computational cost in more detail by plotting the computational effort used at
each optimization iteration in Figure 6(a). We see that, while both estimators require about the same
computational effort during the first few optimization iterations, the information reuse estimator
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Figure 5. Comparison of convergence histories for the robust horn optimization using the regular Monte
Carlo estimator and the information reuse estimator.
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Figure 6. Computational effort per optimization iteration and the root mean square error of the objective
versus optimization iteration for the robust horn optimization example. (a) computational effort and (b)
objective RMSE.

requires significantly less computational effort at subsequent optimization iterations. However, we
maintained a minimum of 32 samples at each optimization iteration to calculate the parameters in
(11). The result is that the RMSE of the objective actually decreases and becomes smaller than the
specified tolerance of 1 x 10~3 as shown in Figure 6(b).

The reduction in computational effort corresponds to the high correlation coefficient p4¢ shown
in Figure 7(a) due to the optimizer taking smaller and smaller steps in the design space at the later
optimization iterations as it refines the vector of design variables near the optimum. As discussed in
Section 4.1, the correlation between the random model output at a vector of design variables and the
random model output at another vector of design variables tends to increase as the distance between
the two vectors of design variables decreases.

In Figure 7(b), we plot the correlation coefficient between the estimators §4 , and Sc as derived
in (12). It shows that the errors in the estimators at the later optimization iterations become more
and more correlated with each other. As discussed in Section 4.4, this correlation has the effect of
smoothing the noise in the objective function at the cost of introducing a bias. This may help prevent
the derivative-free optimization algorithm from getting stuck in the noise of the objective function
by causing it to behave more like the sample average approximation method. Furthermore, as shown
in Figure 6(b), the estimator variances (not conditioned on the previous estimators) decreases at the

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme



L. W. T. NG AND K. E. WILLCOX

1 W 1 ——
~ 0.8 0.8
C c
@ o
£ k]
© 06 2 06
S I
= 2
= o
T 04 = 04
° £
5] ®

w
© 02 , 0.2 ,
Mean Estimator Mean Estimator
Variance Estimator Variance Estimator
0 0
0 50 100 150 0 50 100 150
Optimization Iteration Optimization lteration

(a) Model output correlation p4¢ (b) Estimator correlation Corr [5 A,ps §C}

Figure 7. The model output correlation coefficient and the estimator correlation coefficient for the informa-
tion reuse estimator versus optimization iteration for the robust horn optimization example. (a) model output
correlation p4c and (b) estimator correlation Corr [S4,p, Sc].

later optimization iterations. Therefore, unlike the sample average approximation method, the bias
can decrease as the optimization algorithm progresses.

We verify our theoretical RMSE for the information reuse estimator from (10) by comparing
it with the empirical RMSE. We fix the sequence of vectors of design variables generated by the
optimization algorithm and calculate the information reuse estimators on this sequence of vectors of
design variables, expending p = 1000 computational effort on every vector of design variables. We
repeat this with new realizations of the random inputs 100 times to calculate the empirical RMSE
of the information reuse estimators. The results are shown in Figure 8 and show good agreement.

7.3. Acoustic horn — combined estimator

Finally, we compare the regular MC estimator, the information reuse estimator, the multifidelity
estimator, and the combined estimator. The problem setup is the same as that in Section 7.2; how-
ever, we now consider the high-fidelity model to be the finite element model of the Helmholtz
equation and the low-fidelity model to be the reduced basis model with N = 30 basis functions.
Figure 9 shows the convergence of the objective with respect to the cumulative computational effort,
where the computational effort is the number of high-fidelity model evaluations for the regular MC
estimator and the information reuse estimator and is the equivalent number of high-fidelity model
evaluations for the multifidelity estimator and the combined estimator. It can be seen that the com-
bined estimator requires significantly less computational effort than the regular MC estimator. For
this problem, the multifidelity estimator is already quite efficient and so the combined estimator
does not provide much additional benefit. Nevertheless, Figure 10 shows that the combined esti-
mator indeed combines the benefits of both the multifidelity estimator and the information reuse
estimator—at the first few optimization iterations, when the optimizer takes relative large steps in
the design space, the combined estimator takes about the same computational effort as the multi-
fidelity estimator; at the last few optimization iterations, when the optimizer takes relative small
steps in the design space, the combined estimator uses only the minimum number of samples as in
the case of the information reuse estimator. Overall the information reuse estimator provided about
60% computational savings, the multifidelity estimator provided about 75% computational savings,
and the combined estimator provided about 90% computational savings, as shown in Table III.
Table IV presents the four slightly different optimal solutions obtained using each of the four
estimators and shows the challenge in solving noisy optimization problems using derivative-free
optimization algorithms. While the RMSE of 1 x 1073 is two orders of magnitude less than the initial
objective value, it is only one order of magnitude less than the final objective value. As discussed in
Section 6, derivative-free optimization methods are not guaranteed to converge to the true optimal
solution in the presence of noise and may terminate prematurely. If computational resources allow,
one may perform multiple runs of the optimization to obtain a spread of the final objective values,
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Figure 8. Comparison of the theoretical root mean square errors to the empirical root mean square errors of
the information reuse estimators for the robust horn optimization example. (a) mean estimator, (b) variance
estimator, and (c) f = E[s] + 3./ Var [s] estimator.
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Figure 9. Comparison of convergence histories for the robust horn optimization using the regular Monte
Carlo estimator, the information reuse estimator, the multifidelity estimator, and the combined estimator.
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Figure 10. Computational effort per optimization iteration versus optimization iteration for the robust horn
optimization example.

Table III. Comparison of the total computational efforts for

the robust horn optimization using the regular Monte Carlo

estimator, the information reuse estimator, the multifidelity
estimator, and the combined estimator.

Total computational effort

Regular Monte Carlo estimator 209,096
Information reuse estimator 82,928
Multifidelity estimator 48,595
Combined estimator 19,449

Table IV. Comparison of the final design variables for the robust horn opti-
mization using the regular Monte Carlo (MC) estimator, the information
reuse estimator, the multifidelity estimator, and the combined estimator.

Design variables  Regular MC  Inforeuse Multifidelity Combined

by 0.679 0.679 0.679 0.679
by 1.06 1.08 1.10 1.06
b3 1.75 1.67 1.66 1.69
ba 1.96 1.86 1.89 1.84
bs 2.26 2.11 2.11 2.14
be 2.46 2.46 2.52 2.48

similar to what is sometimes done for the sample average approximation method. For the acoustic
horn problem, the spread of final objective values for the different estimators would overlap, as can
be seen in Figure 5.

7.4. Multifidelity robust wing optimization

For the second example problem, we consider the robust optimization of a wing whose geometry
is loosely based on the Bombardier Q400 aircraft. The numerical model is a coupled aerostructural
solver using Tripan for the aerodynamic analysis and the Toolkit for the Analysis of Composite
Structures (TACS) for the structural analysis [30]. Tripan is an unstructured panel method using
source and doublet singularities for inviscid, incompressible, external lifting flow. TACS is a second-
order finite element method using linear or nonlinear strain relationships for thin-walled structures.
The aerostructural solver is parallelized at both the coupling level and at the individual analysis
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Figure 11. Geometry and the free-form deformation control points of the wing [32, Figure 6-8].

Table V. Geometry data of the wing.

Planform area [m?] 68.44
Wing span [m] 28.40
Aspect ratio 11.78
Taper ratio 0.54
Taper break [% of span] 40
Airfoil stack NACA 2412
Twist None
Number of ribs 20
Forward spar location [% of chord] 15

Aft spar location [% of chord] 50

level to take advantage of multiple processors. A computer-aided-design-free (CAD-free) approach
based on free-form deformations [31] is used to parameterize the wing geometry. The wing and the
free-form deformation control points are shown in Figure 11, and some data for the initial wing
geometry are listed in Table V.

In the deterministic optimization problem [30, 32], the drag of the wing is minimized subject to
1-g cruise lift equals weight constraint, four Kreisselmeier-Steinhauser (KS) stress constraints for
the ribs, the spars, the upper surface skin, and the lower surface skin, and 72 constraints on the
magnitude of the change in thicknesses of spars and skins along the span for a total of 77 constraints.
The design variables include the angle of attack, eight wing twist angles along the span, and 19
thicknesses of each of the forward spar, the aft spar, the ribs, the upper surface skin, and the lower
surface skin for a total of 104 variables.’" Because only the wing is optimized, any savings in wing
weight is subtracted from the total aircraft weight for the lift constraint.

We introduce uncertainties into the cruise condition and structural properties using triangular
distributions listed in Table VI. However, the deterministic optimization problem cannot be trans-
lated into a robust optimization problem in a straightforward manner because it is not clear how
to apply the lift equals weight equality constraint when the lift and the weight are random outputs
of the numerical model. To resolve this issue, we wrap the secant root-finding method around the
aerostructural solver to find the angle of attack that satisfies the equality constraint. This effectively
moves the equality constraint out of the optimization problem and into the augmented numerical

T The aspect ratio is a natural choice for the design variables as it provides a trade-off between aerodynamics and
structural loads, but it is not available in the current free-form deformation parameterization of the wing.
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Table VI. Triangular distributions of the seven uncertain model parameters for
the robust wing optimization problem.

Random variable Lower limit Mode  Upper limit
Maximum take-off weight [kg] 29257 x 0.9 29257 29257 x 1.1
Fraction of weight not including wing 0.83 0.86 0.89
Cruise Mach number 0.55 0.6 0.65
Material density [kg/m?3] 2810 x 0.95 2810 2810 x 1.05
Material elastic modulus [GPa] 70 x 0.9 70 70 x 1.1
Material poisson ratio 0.31 0.33 0.35
Material yield stress [MPa] 370 x 0.9 370 370 x 1.1

model and eliminates the angle of attack from the design variables. The interpretation is that each
set of design variables (wing twists and thicknesses) along with a realization of the uncertain model
parameters define a wing for the aircraft that is trimmed for level flight and the augmented numeri-
cal model outputs the drag and stresses for this wing at level flight. This illustrates that a numerical
model for deterministic optimization may not always make sense in the presence of uncertainties.

We further modify the problem by removing the rib and skin thicknesses from the design vari-
ables and their corresponding change-in-thickness constraints to reduce the size of the problem.
Therefore, the robust optimization problem has 46 design variables (8 twist angles, 19 forward spar
thicknesses, and 19 aft spar thicknesses) and 40 constraints (4 stress constraints and 36 change
in thickness constraints). Let the vector of design variables be x with lower and upper bounds xr
and Xy, respectively, and let u be a realization of the uncertain model parameters U(w) listed in
Table VI. The four stress constraints are denoted as

ks1(x,u) = KS function for rib stress — yield stress < 0

ks, (x,u) = KS function for spar stress — yield stress < 0
ks3(x,u) = KS function for upper surface skin stress — yield stress < 0
ks4(x,u) = KS function for lower surface skin stress — yield stress < 0.

The change-in-thickness constraints are deterministic and linear and are represented as the matrix

K. In the presence of uncertain model parameters, the robust wing optimization problem is
formulated as

min  E [drag (x, U(w))] + A+/Var [drag (x, U(w))]

X7 SXSXy

s.t. E [ks; (x, U(w))] + A+/Var [ks; (x, U(w))
ksy (x, U(w))] + A/ Var [ks; (x, U(w))
ks3 (x, U(®))] + A+/Var [ks3 (x, U(w))
ksg (x, U(®))] + A+/Var [ks4 (x, U(w))
Kx <0,

INCININ TN
o o o o

[ ]
E[ ]
E[ ]
E[ ]

where we chose A = 2.

We employ the COBYLA optimization algorithm [24] described in Section 6. The discretizations
of the wing for the aerostructural solver are shown in Table VII with the high-fidelity model uti-
lizing the fine discretization and the low-fidelity model utilizing the coarse discretization. The ratio
of average computational cost between the high-fidelity model and the low-fidelity model, w, is
approximately 4. The optimization is conducted with the objective and constraint functions evalu-
ated using the combined estimator and with the objective and constraint functions evaluated using
the information reuse estimator. We do not have the regular MC estimator as a comparison because
of unaffordable computational cost. In both cases, the tolerance on the RMSE of the objective and
constraint function estimators is fixed at 2 x 1074,

The convergence of the objective as a function of the cumulative computational effort is shown
in Figure 12. The computational effort is the number of high-fidelity model evaluations for the
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Table VII. Number of degrees of freedom for different discretiza-

tions of the aerodynamic and structural elements. The approximate

evaluation time for the aerostructural solver wrapped with the secant
method is based on a PC with 16 processors at 2.93 GHz each.

Coarse Fine

Aerodynamic panels Chordwise 30 34
Spanwise 20 40
Wake 20 40
Total panels 1000 2960
Structural elements Chordwise 5 8
Spanwise 30 80
Thickness 4 6
Total d.o.f. 5624 14288
Approximate evaluation time [s] 6 24
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Figure 12. Comparison of convergence histories for the robust wing optimization problem using the infor-
mation reuse estimator and the combined estimator. The objective is mean +A standard deviations of the
drag coefficient.
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Figure 13. Computational effort per optimization iteration versus optimization iteration for the robust wing
optimization problem. The scales of the axes have been expanded in (b) to show the comparison more clearly.
(a) original axes scales and (b) expanded axes scales.

information reuse estimator and the equivalent number of high-fidelity model evaluations for the
combined estimator. The initial wing drag coefficient has a mean of 0.1254 and a standard devia-
tion of 0.008974 and the final wing drag coefficient has a mean of 0.1239 and a standard deviation
of 0.008515—a reduction of about 1.2% in expected wing drag and a reduction of 5.1% in the
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standard deviation. In Figure 13, we plot the computational effort required to compute the combined
estimator and the information reuse estimator at each optimization iteration. As discussed in previ-
ous examples, the information reuse estimator tends to reduce computational effort only in the later
optimization iterations. It can be seen that the main benefit of the combined estimator here is to
reduce the computational effort during the first few optimization iterations by leveraging the cheaper
low-fidelity model. The solution was obtained in 13.4 days using the information reuse estimator
and in 9.7 days using the combined estimator on a PC with 16 processors at 2.93 GHz each. If the
90% computational savings of the combined estimator over the regular MC estimator seen in the
acoustic horn robust optimization example in Section 7.3 is extended to this problem, the solution
would have taken about 3.2 months to obtain using the regular MC estimator.

8. CONCLUSIONS

In this paper, we developed the multifidelity estimator, the information reuse estimator, and the
combined estimator to address the need for a general optimization under uncertainty approach that
makes use of inexpensive, approximate information to reduce computational cost. The quality of the
approximate information is measured in terms of its linear correlation with the high-fidelity model
output—a strong correlation indicates that a statistical correction calculated from the approximate
information is likely to be beneficial to the estimator of the statistic of the high-fidelity model output.

The estimators presented are not much more difficult to implement than the regular MC estimator.
They can make use of models that are provided as closed ‘black-boxes’. They are embarrassingly
parallelizable. Furthermore, they do not require a priori knowledge about the models. Although all
of the estimators share the same slow convergence rate as the regular MC estimator, the reduction
in the MSE can be significant enough, as demonstrated in the numerical examples, to mitigate this
disadvantage unless very high accuracy is needed. On the other hand, the methods are suitable for
problems with a very large number of uncertain parameters.

An apparent extension to the estimators is to consider two or more sources of approximate infor-
mation, for example, using multiple low-fidelity models and reusing multiple past optimization
iterations. However, the benefit is not immediately clear—the multiple sources of approximate infor-
mation are likely to be correlated with each other, thus providing less unique new information for
the high-fidelity model output. It may also be advantageous to generalize the approach to methods
beyond MC simulation, particularly to those that exhibit faster convergence rate for smooth prob-
lems such as quasi-MC simulation. The challenge is in determining which aspect of the high-fidelity
model output should be correlated with the approximate information [33].

The robust wing optimization problem represents a first step in large-scale, high-fidelity engineer-
ing design under uncertainty. Further development of this problem includes extending the free-form
deformation parameterization of the wing to cover other geometric changes and incorporating dis-
tributed uncertainties in the structural properties along the wing. Distributed uncertainties is a more
realistic scenario than uncertainties in the bulk material properties and may also be used to represent
degradation in the wing structure. The estimators developed in this paper are well-suited to handle
this high-dimensional (in the stochastic space) problem.

APPENDIX A: AUTOCORRELATION DERIVATION
In this appendix, we derive the result presented in Section 4.1:
Corr [Mhigh(x + Ax’ U(w))7 Mhigh(xa U(a))))]

1 1 — Corr [M}{igh (x,U(w)) , Mpign (x, U(w))]2

— Ax~,
2Var [ Myigh (x, U(w))] / Var I:Ml:igh (x, U(a)))]

for |Ax| <« 1. To simplify notation, for the remainder of this appendix we drop the subscript ‘high’
and the argument U(w) from M .
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Let the model be twice differentiable in x for all realizations of U(w). For some small Ax, we
apply a second-order Taylor expansion in x to obtain
/ 1" sz
M(x + Ax) ~ M(x) + M (x)Ax + M (x)T,

where M’ (x) = % and M"(x) = %. Taking the expectation of both sides, we obtain

Ax?
M (x + Ax) ~ pup(x) + ppr (X)Ax + MM”(X)T,

where pp (x) = E[M(x)], ppr = E[M'(x)], and upyrr = E[M"(x)].
We first derive the covariance between M (x + Ax) and M(x):

Cov[M(x + Ax), M(x)]
= E[{M(x + Ax) — piar (x + Ax)} {M(x) = ppr (x)}]
~ E[(M() = juar ()Y | + E[{(M(6) = pagr (O} (M) = e (1)}] Ax

. Ax?
+E[{M"(x) — pupr(x)} {M(x) — par(x)}] "

Ax?

2

Cov [M'(x), M(x)] Ax Cov [M"(x), M(x)] sz}
Var [M (x)] Var [M (x)] 2

= Var [M(x)] 4+ Cov [M'(x), M(x)] Ax + Cov[M" (x), M(x)]

= Var [M (x)] {1 +

Next, we derive the variance of M(x + AXx) in a similar manner:

Var [M(x + Ax)]
= E [{M(x + Ax) = g (x + A0
~ Var [M(x)] + Var [M'(x)] Ax* + Var [M" (x)] ATX4 + 2 Cov[M'(x), M(x)] Ax
Ax? Ax3

+2 Cov[M"(x), M(x)] - +2 Cov[M"(x), M’(x)]T.

Using the formula for the Taylor expansion of the inverse square root

1 1 b N 3b? —4dac ,
A — Z z°,
Va+bz+cz2+dz3 +eztr  a/? 2432 8a5/2

we obtain

1
V/Var [M(x + Ax)Var [M(x)]]
~ 1 Cov [M'(x), M(x)]
T Var[M(x)]  Var[M(x)]?
3 Cov [M'(x), M(X)I = Var [M(x)] {Var [M'(x)] + Cov [M"(x). M()]} ,
+ 2Var [M(x)]? *
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Therefore, the correlation coefficient between M (x 4+ Ax) and M(x), omitting terms of order Ax3
or higher, is

Corr [M(x + Ax), M(x)]
Cov [M(x + Ax), M(x)]
~ NVar[M(x 1 Ax)Var [M0)]]
Cov [M'(x), M(x)]

~1 Var [M (x)] Ax
3 Cov[M'(x), M(x)] — Var [M(x)] {Var [M'(x)] + Cov [M"(x), M(x)]} , ,
+ Ax
2Var [M(x)]?
Cov [M’(x), M(x)] A, Cov [M'(x), M(x)]? A2y Cov [M”(x), M(x)] A2
Var [M(x)] Var [M(x)]? 2Var [M(x)]
| Var [M'(x)] Var [M(x)] — Cov [M'(x), M(x))? A2
B 2Var [M (x)]?

1 — Cort [M'(x), M&)* .,
T Var[M(x)]/Var [M'(x)]

ACKNOWLEDGEMENTS

This work was supported by the AFOSR MURI on Uncertainty Quantification, grant FA9550-09-0613,
program manager F. Fahroo. The authors thank D.B.P. Huynh for his development of the acoustic horn
finite element and reduced basis models. The authors thank G. Kennedy and J. Martins for supplying the
aerostructural wing models.

14.

15.

16.

REFERENCES

. Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA. Approximation and Model Management in

Aerodynamic Optimization with Variable Fidelity Models. AIAA Journal of Aircraft 2001; 38(6):1093-1101.

. Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW. A Rigorous Framework for Optimization of

Expensive Functions by Surrogates. Structural and Multidisciplinary Optimization 1999; 17(1):1-13.

. Eldred MS, Giunta AA, Collis SS. Second-Order Corrections for Surrogate-Based Optimization with Model

Hierarchies. /0th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, 2004; 1-15.

. Dribusch C, Missoum S, Beran P. A Multifidelity Approach for the Construction of Explicit Decision Boundaries:

Application to Aeroelasticity. Structural and Multidisciplinary Optimization 2010; 42(5):693-705.

. Li J, Xiu D. Evaluation of Failure Probability via Surrogate Models. Journal of Computational Physics 2010;

229(23):8966-8980.

. Ng LWT, Eldred MS. Multifidelity Uncertainty Quantification Using Nonintrusive Polynomial Chaos and Stochastic

Collocation. /4th AIAA Non-Deterministic Approaches Conference, Honolulu, HI, 2012; 1-15.

. Kennedy MC, O’Hagan A. Predicting the Output from a Complex Computer Code When Fast Approximations Are

Available. Biometrika 2000; 87(1):1-13.

. Koutsourelakis PS. Accurate Uncertainty Quantification Using Inaccurate Computational Models. SIAM Journal on

Scientific Computing 2009; 31(5):3274-3300.

. Hammersley JM, Handscomb DC. Monte Carlo Methods. Methuen: London, UK, 1964.
10.
11.
12.
13.

Nelson BL. On Control Variate Estimators. Computers & Operations Research 1987; 14(3):219-225.

Giles MB. Multilevel Monte Carlo Path Simulation. Operations Research 2008; 56(3):607-617.

Speight A. A Multilevel Approach to Control Variates. Journal of Computational Finance 2009; 12(4):3-27.
Teckentrup AL, Scheichl R, Giles MB, Ullmann E. Further Analysis of Multilevel Monte Carlo Methods for Elliptic
PDEs with Random Coefficients. Numerische Mathematik 2013; 125(3):569-600.

Boyaval S, Lelievre T. A Variance Reduction Method for Parametrized Stochastic Differential Equations Using the
Reduced Basis Paradigm. Communications in Mathematical Sciences 2010; 8(3):735-762.

Boyaval S. A Fast Monte-Carlo Method with a Reduced Basis of Control Variates Applied to Uncertainty Propagation
and Bayesian Estimation. Computer Methods in Applied Mechanics and Engineering 2012; 241:190-205.

Tracey B, Wolpert D, Alonso JJ. Using Supervised Learning to Improve Monte Carlo Integral Estimation. AIAA
Journal 2013; 51(8):2015-2023.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)

DOI: 10.1002/nme



17.

18.

19.

20.

21.
22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.
33.

MULTIFIDELITY APPROACHES FOR OPTIMIZATION UNDER UNCERTAINTY

Emsermann M, Simon B. Improving Simulation Efficiency with Quasi Control Variates. Stochastic Models 2002;
18(3):425-448.

Pasupathy R, Schmeiser BW, Taaffe MR, Wang J. Control-Variate Estimation Using Estimated Control Means. //E
Transactions 2012; 44(5):381-385.

Spall JC. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley &
Sons: Hoboken, NJ, 2003.

Audet C, Dennis Jr. JE. Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on
Optimization 2006; 17(1):188-217.

Kelley CT. Implicit Filtering. SIAM: Philadelphia, PA, 2011.

Conn AR, Scheinberg K, Toint PL. A Derivative Free Optimization Algorithm in Practice. 7th AIAA/USAF/NASA/
ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, 1998; 129-139.

Powell MJD. The NEWUOA Software for Unconstrained Optimization Without Derivatives. In Large-Scale
Nonlinear Optimization. Springer, 2006; 255-297.

Powell MJD. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear
Interpolation. Advances in Optimization and Numerical Analysis 1994; 7:51-67.

Conn AR, Scheinberg K, Vicente LN. Introduction to Derivative-Free Optimization. SIAM: Philadelphia, PA, 2009.
Powell MJD. Least Frobenius Norm Updating of Quadratic Models that Satisfy Interpolation Conditions. Mathemat-
ical Programming 2004; 100(1):183-215.

Powell MJID. On the Use of Quadratic Models in Unconstrained Minimization Without Derivatives. Optimization
Methods and Software 2004; 19(3—4):399—-411.

Eftang JL, Huynh DBP, Knezevic DJ, Patera AT. A Two-Step Certified Reduced Basis Method. SIAM Journal of
Scientific Computing 2012; 51(1):28-58.

Rozza G, Huynh DBP, Patera AT. Reduced Basis Approximation and A Posteriori Error Estimation for Affinely
Parametrized Elliptic Coercive Partial Differential Equations. Archives of Computational Methods in Engineering
2008; 15(3):229-275.

Kennedy GJ, Martins JRRA. Parallel Solution Methods for Aerostructural Analysis and Design Optimization. /3th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Fort Worth, TX, 2010; 1-19.

Kenway GKW, Kennedy GJ, Martins JRRA. A CAD-Free Approach to High-Fidelity Aerostructural Optimization.
13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Fort Worth, TX, 2010; 1-18.

March Al Multifidelity Methods for Multidisciplinary System Design. Ph.D. Thesis, Cambridge, MA, 2012.
Hickernell FJ, Lemieux C, Owen AB. Control Variates for Quasi-Monte Carlo. Statistical Science 2005; 20(1):1-31.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)

DOI: 10.1002/nme



	Multifidelity approaches for optimization under uncertainty
	Summary
	Introduction
	Problem Formulation
	Multifidelity Estimator
	Approach
	Implementation

	Information Reuse Estimator
	Model autocorrelation
	Approach
	Implementation
	Correlated estimator errors

	Combined Estimator
	Approach

	Optimization Methods
	Numerical Results
	Acoustic horn uncertainty propagation
	Acoustic horn robust optimization
	Acoustic horn – combined estimator
	Multifidelity robust wing optimization

	Conclusions
	APPENDIX A: AUTOCORRELATION DERIVATION
	REFERENCES


