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Abstract

An inverse problem seeks to infer unknown model parameters using observed

data. We consider a goal-oriented inverse problem, where the goal of inferring

parameters is to use them in predicting a quantity of interest (QoI). Recognizing

that multiple models of varying fidelity and computational cost may be available

to describe the physical system, we formulate a goal-oriented model adaptivity

approach that leverages multiple models while controlling the error in the QoI

prediction. In particular, we adaptively form a mixed-fidelity model by using

models of different levels of fidelity in different subregions of the domain. Tak-

ing the solution of the inverse problem with the highest-fidelity model as our

reference QoI prediction, we derive an adjoint-based third-order estimate for

the QoI error from using a lower-fidelity model. Localization of this error then

guides the formation of mixed-fidelity models. We demonstrate the method

for example problems described by convection-diffusion-reaction models. For

these examples, our mixed-fidelity models use the high-fidelity model over only

a small portion of the domain, but result in QoI estimates with small relative

errors. We also demonstrate that the mixed-fidelity inverse problems can be

cheaper to solve and less sensitive to the initial guess than the high-fidelity

inverse problems.
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1. Introduction

Physical and engineering systems are often described using sophisticated

mathematical models, such as coupled, nonlinear partial differential equations

(PDEs). The inverse problem seeks to infer unknown model parameters using

observed data; often these observations are limited, noisy and provide only indi-

rect information about the unknown parameters. Many such inverse problems

present a major computational challenge, since their solution involves repeated

solutions of the mathematical model. In many cases, a given physical sys-

tem can be represented with varying degrees of fidelity by different models.

A higher-fidelity model more accurately represents reality, but is also usually

more computationally expensive to solve. Lower-fidelity models can be solved

inexpensively, at the expense of introducing approximations. In this work, we

formulate an approach for leveraging multiple models of varying fidelities in

solution of an inverse problem.

The choice of model should be informed by one’s goal: for a range of ap-

plications, the parameters may be numerous, such as when corresponding to

a discretized field, and yet what is ultimately of interest may be some low-

dimensional quantity of interest (QoI). We consider this goal-oriented inverse

problem, where the goal of inferring parameters is to use them in predicting a

QoI. In this context, one may choose a lower-fidelity model for the inference

problem, sacrificing accuracy in the state and/or parameter estimates in ex-

change for reduced computational costs while keeping the error in the QoI to

within some acceptable tolerance. Compared to the highest-fidelity model, the

lower-fidelity model could, for example, be a simplified model including fewer

physical phenomena, be a reduced-order model, or have a reduced parameter

space; this generalizes the setup where one only refines the mesh to create high-

fidelity models. This paper formally poses the problem of managing the fidelity
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of modeling choices in solving the goal-oriented inverse problem, and develops

an adjoint-based model adaptivity approach that achieves a desired level of ac-

curacy in the QoI prediction. In particular, we adaptively form a mixed-fidelity

model by using models of different levels of fidelity in different parts of the

domain.

The simultaneous use of multiple models of varying fidelity for forward simu-

lations is well established in some fields. Ref. [23] categorizes two main strategies

for combining models: hierarchical and concurrent methods. Hierarchical meth-

ods (also known as information-passing or sequential methods) take the results

of a simulation using the high-fidelity model and use them to inform a lower-

fidelity model that is used globally. An example application is the modeling

of the molecular structure of a material to determine parameters for consti-

tutive equations [18, 41]. In contrast, concurrent methods (also called hybrid

methods) simultaneously solve the higher- and lower-fidelity models in different

parts of the domain. Applications include computational mechanics [20, 30],

porous media flow [5, 34], and fluid dynamics [3, 15, 17, 24, 35, 39]. We focus

on concurrent methods of combining models, which have desirable features: in

the case where the high-fidelity model is nonlinear, replacing it with a linear

lower-fidelity model in most of the domain can reduce the number of iterative

solves needed; when the high-fidelity model has a fine resolution and/or many

parameters, replacing it with a lower-fidelity model can reduce the number of

degrees of freedom of the mixed-fidelity model.

Goal-oriented approaches prioritize accuracy in the QoI over accuracy in the

states and/or parameters; one aims to reduce the cost of solving the problem

(whether forward or inverse) while maintaining an acceptably low error tolerance

for the QoI. In the context of the forward problem, goal-oriented methods have

been developed for mesh refinement [6, 29, 31, 37, 42] and for more general

model adaptivity [10, 27, 28, 36]. These methods derive an adjoint-based a

posteriori error estimate for an output functional, and this estimate is used

to guide adaptive mesh and/or model refinement. Approaches for the goal-

oriented forward problem can be applied to the inverse problem by treating the
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optimality conditions of the inverse problem as a forward model, though one

more complex than the original forward model. Methods tailored to the goal-

oriented inverse problem, including the one proposed in this work, make use of

the particular structure of the inverse problem.

For inverse problems, computational cost has been addressed by employing

surrogate and reduced-order models [16, 25, 33, 40]. For the particular case of

a goal-oriented inverse problem, methods exploit the possibility of accurately

computing the QoI without fully resolving the parameters. For example, for

a discretized linear inverse problem, one can find a low-dimensional subspace

of the parameter space that is both informed by observations and informative

to the QoI [22]. This subspace provides a low-dimensional map from the ob-

servations directly to the QoI, sacrificing accuracy in the inferred parameters

for accuracy in the QoI that is computed from them. For the linear Gaus-

sian Bayesian inverse problem, one can calculate an optimal approximation to

the predictive posterior of the QoI without fully calculating the posterior dis-

tribution of the parameters [32]. Mesh refinement in the goal-oriented inverse

problem is addressed in [8]; that work derives an a posteriori estimate of the

error in the QoI caused by discretizing the infinite-dimensional inverse problem,

and uses this error estimate to adaptively refine the mesh. The idea of goal-

oriented model adaptivity for an inverse problem is introduced in [26], which

outlines a possible extension of the adjoint-based adaptivity method of [27].

In this paper, we target model adaptivity in the solution of goal-oriented

inverse problems. We present a robust, adaptive framework that identifies the

subregions of the domain where high-fidelity representation of physics and pa-

rameters is important to achieving a desired accuracy in the QoI. To achieve

this, we combine ideas from goal-oriented model adaptivity for forward prob-

lems and goal-oriented methods for inverse problems. In particular, our method

allows one to systematically manage the use of multiple models in the context of

the goal-oriented inverse problem, so as to minimize the error in a QoI predic-

tion. Taking the inverse problem with the highest-fidelity model as our reference

QoI prediction, we obtain a third-order estimate, evaluated using an adjoint ap-
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proach, for the QoI error from using a lower-fidelity model. This estimate can

be localized, and the error decomposition then used to guide the formation of

mixed-fidelity models with which to solve the inverse problem, while minimizing

the error in the QoI.

The remainder of this paper is organized as follows, Section 2 presents the

mathematical formulation and error analysis for the multi-model inverse prob-

lem. Section 3 discusses the goal-oriented inference algorithm and presents a

computational complexity analysis. Section 4 shows the application of this algo-

rithm to a model problem and a contaminant flow problem. Finally, we present

conclusions and directions for future work in Section 5.

2. Mathematical Formulation

In this section, we introduce the high-, low- and mixed-fidelity inverse prob-

lems. We develop theoretical results which extend the work in [8] to multi-model

settings; in particular, we obtain a computable error estimate in the QoI that

can be used for targeted generation of mixed-fidelity formulations of inverse

problems.

2.1. Inverse Problem Formulation

Consider the inverse problem where, given observations (data) d ∈ Rnd , we

seek to infer parameter(s) q ∈ Q, where Q is a Hilbert space. An observation

operator C : U → Rnd relates the parameter to the observations via state

variable(s) u ∈ U , with u satisfying,

a(u, q)(φ) = `(q)(φ), ∀φ ∈ U, (1)

where U is also a Hilbert space. Equation 1 is called the state equation. The

form a, and the functional ` are linear with respect to the arguments in the

second pair of parentheses (in Equation (1), they are linear with respect to φ).

The unknown parameter q can be inferred by minimizing the difference be-

tween the predicted and actual observations in a chosen norm, leading to an
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inverse problem. We consider the case where observations are sparse; this leads

to inverse problems that are ill-posed, since the sparse observations are insuffi-

ciently informative to uniquely determine the parameters. To make the inverse

problem well-posed, a regularization, denoted by R(q), is used to inject prior in-

formation or beliefs about the parameters into the formulation. The regularized

inverse problem can thus be written as a constrained optimization problem,

min
q,u

J(q, u) =
1

2
‖d− C(u)‖22 +R(q), (2a)

s.t. a(u, q)(φ) = `(q)(φ), ∀φ ∈ U. (2b)

Thus, we aim to minimize the cost function J , which includes the mismatch

between predicted and actual observations and a regularization term R(q), sub-

ject to the state u and parameters q satisfying the model given by Equation (1),

which appears as a constraint in Equation (2b).

A given physical system can be described to varying degrees of fidelity us-

ing different models. One has a choice in how to define the structure of the

inferred parameters q, as well as how to define the state equation and variables.

For example, the parameter q can be modeled as a single scalar value or as

an infinite-dimensional distributed field variable. The state equation can be

nonlinear and multiscale, requiring an expensive computation to resolve (e.g.

the Navier-Stokes equations) or a linear, single physics model (e.g. Laplace’s

equation). All these different modeling choices lead to different versions of the

optimization problem described by Equation (2) that would need to be solved

to infer the unknown parameters.

We assume that there exists an ‘ideal’ model for solving the inverse prob-

lem, which we will call the high-fidelity model; given adequate computational

resources, we would use this high-fidelity to formulate and solve our inverse

problem. We use the subscript HF to denote the high-fidelity inverse problem,

qHF , uHF = arg min
q,u

J(q, u) =
1

2
‖d− C(u)‖22 +R(q), (3a)

s.t. aHF (u, q)(φ) = `HF (q)(φ), ∀φ ∈ UHF (3b)
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where qHF ∈ QHF and uHF ∈ UHF are the inferred parameters and correspond-

ing state, respectively. In practice, one has limited computational resources, so

one may need to instead infer the parameters using a less computationally de-

manding model, which we call the low-fidelity model. We use the subscript LF

to denote the low-fidelity inverse problem,

qLF , uLF = arg min
q,u

J(q, u) =
1

2
‖d− C(u)‖22 +R(q), (4a)

s.t. aLF (u, q)(φ) = `LF (q)(φ), ∀φ ∈ ULF , (4b)

where qLF ∈ QLF and uLF ∈ ULF are the inferred parameters and correspond-

ing state, respectively. If there is compatibility between the low-fidelity and

high-fidelity solution spaces for the parameter and state variables (i.e., if the

solutions of one can be interpreted in the context of the other; see Section 3.1 for

more details), one may combine the two models to form a mixed-fidelity model

and corresponding mixed-fidelity inverse problem. The low-fidelity model can

be used in part of the computational domain, and the high fidelity in the remain-

der; we denote the mixed-fidelity model and its variables with the subscript MF .

How one chooses to combine the low- and high-fidelity models can be informed

by what aspect of the inferred parameters is of interest.

In a goal-oriented inverse problem, the ultimate purpose of inferring the

unknown parameters is to calculate some quantity of interest (QoI). We denote a

scalar QoI by a functional that maps the parameters and state to our QoI, I : Q×

U → R. The QoIs evaluated with the high- (I(qHF , uHF )), low- (I(qLF , uLF )),

or mixed- (I(qMF , uMF )) fidelity models correspondingly map parameters and

state from the high-, low- or mixed- fidelity function spaces to QoI values.

We consider the tradeoff between the error in the QoI and the fidelity (and

corresponding computational expense) of the model we use, seeking computable

estimates for the error incurred in approximating the high-fidelity model with

lower-fidelity models. Such an estimate allows us to adaptively choose regions

where the high-fidelity model is used, starting from an initial low- or mixed-

fidelity model.

We build on the work in [7, 8] which utilize the special structure of the
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coupled system of PDEs corresponding to the optimality conditions for Equa-

tion (2) to derive estimates for the QoI error due to discretization in a single

model setting; they consider the case where the high- and low-fidelity models

represent different discretizations in the variables corresponding to the same

infinite-dimensional model. Details of how the structure of the goal-oriented

inverse problem is exploited can be found in [7] (see Section 3.1 in particular).

Here we extend the work in [8] to include the situation where state equations

the high- and low-fidelity models differ in more than the discretization of the

variable spaces, and it is the QoI error induced by modeling differences that

needs to be estimated.

As in [8], we introduce the QoI functional I into the inverse problem formu-

lation by introducing auxiliary variables and additional adjoint equations. We

then use this formulation to derive an a posteriori error estimate for the QoI,

where the errors considered are those due to the use of different multi-fidelity

models. However, unlike in [8], this estimate cannot be computed by patch

recovery or projection techniques, since the low- and high- fidelity solutions

do not differ merely in mesh resolution, but in the underlying equations being

discretized. To compute this error estimate, we instead introduce additional

supplementary adjoint variables; these new variables serve a similar role to the

patch recovery or projection techniques in that they carry information about

the high-fidelity solution to the error estimate.

2.2. Error Estimate for a Goal-Oriented Inverse Problem

For a given hierarchy of models, we take the QoI calculated from inferring the

parameters with the highest-fidelity model to be the ‘exact’ or ‘true’ solution;

we now derive an a posteriori estimate for the error in the QoI from inferring

the parameters with a lower-fidelity model.

Proposition 1. Consider the high- and low-fidelity inverse problems described

by the constrained optimization problems in Equations (3) and (4). Let the

forms aHF/LF : UHF/LF ×QHF/LF ×UHF/LF → R be three times continuously

differentiable with respect to the state u and parameters q. Let the observation
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operator C : UHF/LF → Rnd be three times continuously differentiable with re-

spect to the state u. Also, let the regularization operator R : QHF/LF → R

be differentiable with respect to the parameter q, and the QoI functional I :

QHF/LF ×UHF/LF → R be differentiable with respect to the state u and param-

eter q.

Consider the Lagrangian equation induced by Equation (3),

LHF (q, u, z) = JHF (q, u)− (aHF (u, q)(z)− `HF (q)(z)), (5)

where z ∈ UHF is the adjoint. Denoting the primary variables as ξ = (q, u, z),

introduce corresponding auxiliary variables χ = (p, v, y) ∈ QHF × UHF × UHF .

Let the augmented Lagrangian be defined as

MHF ((q, u, z), (p, v, y)) = I(q, u) + L′HF (q, u, z)(p, v, y), (6)

where L′HF (q, u, z)(p, v, y) denotes the Fréchet derivative of the Lagrangian about

the primary variables (q, u, z), in the direction of the auxiliary variables (p, v, y).

One can define a similar Lagrangian LLF induced by Equation (4), and a cor-

responding augmented Lagrangian MLF , for the low-fidelity model. Let ΨHF =

(ξHF , χHF ) = ((qHF , uHF , zHF ), (pHF , vHF , yHF )) and ΨLF = (ξLF , χLF ) =

((qLF , uLF , zLF ), (pLF , vLF , yLF )) denote the stationary points of the high- and

low- fidelity augmented Lagrangians, respectively. Then, the error in the QoI is

given by,

I(qHF , uHF )− I(qLF , uLF ) =

1

2
M′HF (ΨLF )(ΨHF −ΨLF ) +MHF (ΨLF )−MLF (ΨLF ) +R, (7)

where R is a remainder term that is third-order in the error e = ΨHF −ΨLF .

Proof. Observe that

MHF (ΨHF ) = I(qHF , uHF ) and MLF (ΨLF ) = I(qLF , uLF ), (8)

since taking variations ofMHF andMLF with respect to the auxiliary variables

gives that ξHF and ξLF are stationary points of LHF and LLF , respectively.
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Extending the property in Equation (8) to the augmented Lagrangians for

the high- and low-fidelity models, we have,

I(qHF , uHF )− I(qLF , uLF ) =

MHF (ΨHF )−MHF (ΨLF ) +MHF (ΨLF )−MLF (ΨLF ). (9)

Following [8], we rewrite the termMHF (ΨHF )−MHF (ΨLF ) using the Funda-

mental Theorem of Calculus,

MHF (ΨHF )−MHF (ΨLF ) =

1∫
0

M′HF (ΨHF + se) (e) ds. (10)

Applying the trapezoidal rule to the integral in Equation (10) gives,

MHF (ΨHF )−MHF (ΨLF ) =
1

2
M′HF (ΨHF )(e) +

1

2
M′HF (ΨLF )(e) +R. (11)

where the remainder R is given as,

R =
1

2

1∫
0

M′′′HF (ΨLF + se) (e, e, e) s(s− 1) ds, (12)

which is finite due to the third-order differentiability assumptions. We further

note that M′HF (ΨHF )(e) vanishes since ΨHF is a stationary point of MHF ,

and Equation (11) can be simplified to,

MHF (ΨHF )−MHF (ΨLF ) =
1

2
M′HF (ΨLF )(ΨHF −ΨLF ) +R. (13)

Combining Equation (9) and Equation (13) we obtain,

I(qHF , uHF )− I(qLF , uLF ) =

1

2
M′HF (ΨLF )(ΨHF −ΨLF ) +MHF (ΨLF )−MLF (ΨLF ) +R, (14)

which completes the proof.

The above Proposition 1 splits the error in the QoI into three compo-

nents: a third-order remainder term R, a computable ‘bias’ termMHF (ΨLF )−

MLF (ΨLF ), and a linear term 1
2M

′
HF (ΨLF )(ΨHF −ΨLF ). Although the linear
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term is not computable without solving for ΨHF , it can be estimated. We de-

scribe one method of estimating this term, using an appropriate dual problem,

in Proposition 2 below.

Proposition 2. Let the hypotheses of Proposition 1 hold. Let the variational

form

R(ΨHF )(Φ) = 0, ∀Φ ∈ (QHF × UHF × UHF )2 (15)

represent the equation M′HF,Ψ(ΨHF )(Φ) = 0 in residual form, where Φ is a test

function. Define an adjoint problem

R′(ΨLF ,Φ)(Λ) = Q(Φ), ∀Φ ∈ (QHF × UHF × UHF )2 (16)

for the supplementary adjoint Λ, where R is defined in Equation (15), and where

where Q : (UHF × UHF ×QHF )2 → R is a linear functional defined by,

Q(Φ) =M′HF (ΨLF )(Φ). (17)

Then we have,

I(qHF , uHF )− I(qLF , uLF ) =

− 1

2
M′HF (ΨLF )(Λ) +MHF (ΨLF )−MLF (ΨLF ) +RR +R (18)

where RR is a second-order term in the error e = ΨHF − ΨLF , and R is as

defined in Proposition 1.

Proof. The proof follows from the classic dual-based a posteriori error estimation

strategy. Note that, as a stationary point, ΨHF satisfies,

R(ΨHF )(Φ) = 0, ∀Φ ∈ (QHF × UHF × UHF )2 (19)

which is represents the equationM′HF (ΨHF )(Φ) = 0 in residual form, where Φ

is a test function. Define the adjoint problem

R′(ΨLF ,Φ)(Λ) = Q(Φ), ∀Φ ∈ (QHF × UHF × UHF )2 (20)

for the supplementary adjoint Λ. The error in the linear output Q defined in

Equation (17) can then be expressed as a dual-weighted residual,

Q(ΨHF −ΨLF ) = −R(ΨLF )(Λ) +RR, (21)
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where RR is a second order remainder term due to the linearization of R about

ΨLF in Equation (20). This implies the required result.

Other approaches to estimating the term 1
2M

′
HF (ΨLF )(ΨHF − ΨLF ) can

become feasible in certain scenarios; for example, if the high- and low-fidelity

models only differ in the computational grid used, the difference ΨHF − ΨLF

can be approximated using interpolation or patch recovery methods [8].

3. Goal-Oriented Inference Algorithm

Based on the theoretical developments in the last section, we now give a

goal-oriented inference algorithm that allows one to combine models of varying

fidelity, while maintaining rigorous control of QoI error.

3.1. Adaptive Model Mixing Algorithm

Just as error estimates can be used to guide mesh refinement [2, 6, 8, 31, 37],

the error estimate obtained after dropping the remainder terms R and RR in

Equation (18) can be localized to give elemental contributions and used to guide

physics-based refinement over the domain to create a mixed-fidelity model. After

refinement, the error estimate can be calculated again, using the mixed-fidelity

model as the lower-fidelity model. This process can be repeated, successively

increasing the proportion of the domain in which the high-fidelity model is used,

until some error threshold is reached. Algorithm 1 describes this approach.

As an example, consider a pair of low- and high-fidelity models described by

the convection-diffusion and convection-diffusion-reaction equations

low-fidelity: kd∇2u− ~V · ∇u = q, (22a)

high-fidelity: kd∇2u− ~V · ∇u+ kru
2 = q, (22b)

where kd and kr are diffusion and reaction coefficients, respectively, and the state

u and parameters q are continuous functions over a domain Ω with homogeneous

Dirichlet boundary conditions. To form the mixed-fidelity models, we divide the

domain into complementary subdomains, ΩHF and ΩLF , where the high- and
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Algorithm 1 An algorithm to adaptively build a mixed-fidelity model for low

error in the QoI.

1: Define maximum acceptable absolute relative QoI error errTol

2: Define maximum number of adaptive iterations maxIter

3: procedure BuildMixedFidelity(HF model, LF model, errTol, maxIter)

4: Let the model MF0 be the LF model applied everywhere in the domain.

5: i← 0

6: Solve for stationary point ΨMF0 of augmented Lagrangian MMF0

7: Solve QoI error adjoint equation, linearized about ΨMF0 , for

supplementary adjoint Λ0 (see Equation (20))

8: Compute QoI error estimate

ε0 = − 1
2
M′HF (ΨMF0)(Λ0) +MHF (ΨMF0)−MMF0(ΨMF0)

9: Calculate QoI I(qMF0 , uMF0)

10: while i < maxIter and |εi/(εi + I(qMFi , uMFi))| > errTol do

11: Localize εi (see Section 3.2) and use this decomposition to guide

formation of new mixed-fidelity model MFi+1

12: i← i+ 1

13: Solve for stationary point ΨMFi of augmented Lagrangian MMFi

14: Solve QoI error adjoint equation, linearized about ΨMFi , for

supplementary adjoint Λi (see Equation (20))

15: Compute QoI error estimate

εi = − 1
2
M′HF (ΨMFi)(Λi) +MHF (ΨMFi)−MMFi(ΨMFi)

16: Calculate QoI I(qMFi , uMFi)

17: end while

18: return model MFi and QoI estimate I(qMFi , uMFi)

19: end procedure

low-fidelity models are solved, respectively; initially, ΩLF = Ω. The resulting

mixed-fidelity models can be described by,

kd∇2u− ~V · ∇u+ kMF
r u2 = q, (23)
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where kMF
r is a piecewise-constant reaction coefficient,

kMF
r =

kr if x ∈ ΩHF

0 if x ∈ ΩLF .

(24)

Let the QoI be described by I(q, u) =
∫

ΩI
u dΩ, where ΩI ⊂ Ω is the QoI

region. Let the observations be of the state at some set of locations, so that

the data-misfit term is 1
2

∫
Ω
δobs(u− d)2 dΩ, where δobs is a sum of Dirac delta

functions indicating the locations of the observations. Since the inverse problem

is ill-posed, we use Tikhonov regularization [14], with R(q) = β
2

∫
Ω
‖∇q‖22 dΩ,

where β is a regularization coefficient. Assuming divergence-free velocity ~V , the

mixed-fidelity model has augmented Lagrangian

MMF ((q, u, z)(p, v, y)) =

∫
ΩI⊂Ω

u dΩ

+

∫
Ω

p(−β∇2q + z)

+ v(kd∇2z + ~V · ∇z + 2kMF
r zu+ δobs(u− d))

+ y(kd∇2u− ~V · ∇u+ kMF
r u2 + q) dΩ. (25)

Taking variations with respect to the auxiliary variables (p, v, y) recovers the

equations for the primary variables; taking variations with respect to the pri-

mary variables gives the equations for the auxiliary variables. Solving for the

primary variables and then the auxiliary variables gives the stationary point

ΨMF of MMF . The high-fidelity versions of these primary and auxiliary sys-

tems are satisfied by ΨHF ; we seek the error in the linear functional described

by Equation (17) induced by applying it to ΨMF instead of ΨHF . We take the

classical dual-weighted residual approach and solve for the supplementary ad-

joint Λ, linearizing about ΨMF instead of ΨHF when necessary, since the latter

is not available; the components of the supplementary adjoint corresponding to

the primary and auxiliary systems can be solved separately. Having obtained

ΨMF and the supplementary adjoint Λ, we evaluate the error estimate (see Step

15 of Algorithm 1), localize it (see Section 3.2), and use the localization to guide

the selection of elements currently in ΩLF to include in ΩHF in the next iter-
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ation. We return to this example and give results of applying Algorithm 1 to

this pair of models in Section 4.1.

Algorithm 1 is applicable to a large class of models. The lower-fidelity model

could, for example, be a simplified model including fewer physical phenomena

(as in the example above), or be a reduced-order model, or have a reduced pa-

rameter and/or state space. The derived error estimate is not applicable to all

models, however. It is assumed that the two models share the same domain;

for example, the low-fidelity model can not be a one-dimensional average of a

two-dimensional high-fidelity model. The low- and high-fidelity models must be

expressible in a weak form, so this cannot be applied to, for example, a model

of chemical reactions using kinetic Monte Carlo. We need some degree of com-

patibility between the two models, in that we require the low-fidelity solutions

to be interpretable in the context of the high-fidelity model; specifically, we

require that ΨLF be in a space admissible to M′HF and MHF . For example,

compared to the high-fidelity model, the low-fidelity model may have a coarser

mesh, basis functions of a lower order, or basis functions spanning a reduced

subspace. The high-fidelity model could describe changes in states that have

a fixed nominal value in the low-fidelity model; the high-fidelity model could

allow anisotropy of the inferred parameters while the low-fidelity model could

constrain their components and require isotropy. We note that in the case where

the two models correspond to two levels of mesh refinement, method described

in [8] would likely be more efficient, since interpolation could be used to estimate

ΨHF −ΨLF instead.

3.2. Error Estimate Localization

Algorithm 1 does not require a specific method for localizing the error es-

timate. A näıve approach would be to write the error estimate as a sum of

integrals over elements and their boundaries, and calculate the error contri-

bution by each element as the integral over that element. While simple, this

method can lead to non-zero error contributions from elements in which the

high-fidelity model is already being used, making the error decomposition more
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difficult to interpret and use for refinement.

We instead use the alternative method described in [35], decomposing the

error estimate into contributions from locally supported basis functions rather

than elements. Recall the error estimate

ε = −1

2
M′HF (ΨMF )(Λ) +MHF (ΨMF )−MMF (ΨMF ) (26)

from Algorithm 1. Let (Qh×Uh×Uh)3 ⊂ (Q×U×U)3 be the finite-dimensional

conforming subspace in which we solve for the approximations Λh and Ψh
MF ;

we seek to decompose the error estimate

εh = −1

2
M′HF (Ψh

MF )(Λh) +MHF (Ψh
MF )−MMF (Ψh

MF ). (27)

Define a basis Φh = {(ϕ,ϕ)i}i∈I consisting of locally supported functions

such that span(Φh) = (Qh × Uh × Uh)3, so that we can write (Λh,Ψh
MF ) =

(
∑
i∈I

ϕiλi,
∑
i∈I

ϕiψi). Then the error estimate satisfies

εh ≤
∑
i∈I

εhi , (28)

where,

εhi =

∣∣∣∣−1

2
M′HF (Ψh

MF )(λiϕi) +MHF (ϕiψi)−MMF (ϕiψi)

∣∣∣∣ (29)

can be interpreted as the error contribution from the basis function (ϕ,ϕ)i. Near

the interfaces between the low-fidelity and high-fidelity regions, basis functions

may have their support divided between the two regions and thus have a nonzero

error contribution. The basis functions with the largest error contributions

are flagged, and the elements in their support are added to the high-fidelity

subdomain. Basis functions whose support lie completely in the high-fidelity

region will have a zero contribution and the elements in their support are never

flagged for refinement again.

4. Numerical Experiments

We now use Algorithm 1 to solve goal-oriented inverse problems in a multi-

model setting; the method used to localize the error estimate is described in
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Section 3.2. We first consider two-dimensional models in order to explore

the behavior of the algorithm as well as the effect of varying the placement

of observations and QoI regions. In Section 4.1, the high-fidelity model is a

convection-diffusion-reaction nonlinear model, and the low-fidelity model is a

linear convection-diffusion model. We apply Algorithm 1 to this pair of mod-

els, and then examine how the localized error estimate is affected by changes

in sensor placement and in the QoI region. In Section 4.2, both the high-

and low-fidelity models are convection-diffusion-reaction nonlinear models, but

they differ in how the parameter is represented. In Section 4.3, we consider a

more realistic pair of three-dimensional models, again targeting a convection-

diffusion-reaction problem.

4.1. Variable Physics: Convection-Diffusion(-Reaction)

In this section, we consider a pair of models which differ in the physics in-

cluded. In Section 4.1.1 we describe a baseline setup for a simple two-dimensional

problem. Section 4.1.2 describes the results of applying Algorithm 1 to the base-

line problem, and Section 4.1.3 describes the results of changing the placement

of the observations or the QoI region from the baseline.

4.1.1. Problem Setup

We consider a rectangular domain Ω(x1, x2) = [0, 5]× [0, 1], where x1 and x2

are the spatial coordinates. Recall the pair of models introduced in Section 3.1.

The high-fidelity model is a single-species convection-diffusion-reaction equation

with a nonlinear reaction term, described by Equation (22b). The low-fidelity

model, described by Equation (22a), differs only in the removal of the reaction

term. We have a divergence-free parabolic-profile velocity field ~V (x1, x2) =

(2x2(1 − x2), 0); the diffusion and reaction coefficients are kd = 0.1 and kr =

−42.0, respectively. Homogeneous Dirichlet boundary conditions are applied on

the entire boundary of the domain.

The QoI region is ΩI = [0.625, 0.875]× [0.375, 0.625]. The parameters q we

wish to infer correspond to the forcing function. The observations are sparse
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measurements of the state. Figure 1 shows the locations of the observations and

the region ΩI over which the QoI is calculated. Note that for the low-fidelity

model, the inverse problem is linear (i.e., the observations depend linearly on

the parameters). We choose the regularization coefficient to be β = 10−5; in

this work, β is chosen arbitrarily, though methods exist for choosing optimal

regularization coefficients [9, 11].

0 1 2 3 4 5

x1

0

0.5

1

x
2

ΩI

Observations

Figure 1: Locations of the observations and the QoI region.

For the numerical simulations, we use the finite element method (FEM), em-

ploying a continuous Galerkin formulation with first-order Lagrange elements.

We use the libMesh library [21] for the FEM calculations. The domain is dis-

cretized by a regular mesh of quadrilaterals, with 250 and 50 elements along

the x1 and x2 directions, respectively, for a total of 12,500 elements, resulting

in 12,801 degrees of freedom per variable; all variables are represented by the

same basis. The diffusion coefficient is such that the cell Péclet number never

exceeds 0.1, and thus no stabilization is required.

Synthetic observations consisting of the state at three points in the domain

are artificially generated by running the high-fidelity model on a finer mesh with

the true forcing field

ftrue(x1, x2) =


1.0 if (x1, x2) ∈ [0.125, 0.375]× [0.125, 0.375]

0.8 if (x1, x2) ∈ [2.375, 2.625]× [0.375, 0.625]

0 otherwise.

(30)

4.1.2. Adaptive Model Refinement Results

We now present the results for solving the inference problem using Algo-

rithm 1. Once the QoI error estimate is calculated using Equation (18), the
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error estimate is then decomposed into local contributions. At each iteration,

based on this decomposition, we choose the basis functions with the largest er-

ror contributions until an additional 5% of the elements has been marked for

refinement. This is repeated until the estimated absolute relative error in the

QoI, calculated as εi/(εi + I(qMFi , uMFi)), is less than 1%.

Figure 2 shows the local error contributions, as well as the subdomains where

the low- and high-fidelity models are used, for the series of mixed-fidelity models

thus generated. Note that the error contribution of each basis function whose

(a) LF ≡ MF0 (0% HF)

(b) MF1 (5% HF)

(c) MF2 (10% HF)

Figure 2: Left: Multi-fidelity refinement over the domain (low-fidelity convection-diffusion

model used in red portion, high-fidelity convection-diffusion-reaction model used in blue por-

tion). Right: local error contributions.

support is entirely within the high-fidelity regions is zero.

We see that the largest local error contributions are concentrated in the

QoI region and around the observation location closest to the QoI. In the first

decomposition of the error (Figure 2a), the region where the elemental error

is greatest is around the leftmost observation location. Since the constraining
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model is an elliptic PDE, with weak convection, information flow is localized,

and is weakly convected from left to right. Therefore, for the calculation of

the QoI, it is most important to refine the region near the leftmost observation

location, and then around the QoI region. After that, the error decomposition

suggests refinement in regions upstream and around the middle observation

location, and then the rightmost observation location.

Figure 3 shows the true and estimated absolute relative errors in the QoI

for the various mixed-fidelity models generated by Algorithm 1; the true and

estimated relative errors are calculated relative to the true and estimated high-

fidelity QoI, respectively. In this case, we see that QoI error of 1% is attained

with a mixed-fidelity model where the high-fidelity model is used in only about

10% of the domain. We note that while here the error is seen to decrease with

increasing refinement, in general there is no guarantee that either the error in

the QoI or the relative error in the error estimate will decrease monotonically

as more of the domain is refined.

Figure 3: True and estimated absolute relative error in QoI, plotted as a function of the

percentage area of the domain in which the high-fidelity convection-diffusion-reaction model

is used. In this case, only two refinement iterations are necessary to achieve the target relative

QoI error (dotted line).

4.1.3. Interaction of Observations and QoI

The error estimate decomposition suggests the use of the high-fidelity model

in areas of the domain that are important to the interaction between the ob-
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servations and QoI; the interaction between these two can be complex, and the

areas suggested for refinement may be nonintuitive. To see this, we compare the

error estimate decomposition for three sizes of the QoI region ΩI given the same

set of observation locations, and for three nested sets of observation locations

given the same QoI region. For the sake of illustration, we make two refinement

iterations for each combination of observations and QoI region, regardless of the

magnitude of the relative error estimate. However, in conducting the numerical

experiments, it was observed that the number of iterations needed to achieve a

given tolerance tended to increase as the QoI region increased.

Figure 4a shows the domain for three cases considered, with the same set of

observations but increasingly large, nested QoI regions ΩI . The error decom-

positions for each case are shown in Figures 4b to 4d. The bottom row gives

the baseline case presented in Section 4.1.2, although here we choose the basis

functions i whose error εi are among the largest 5%, rather than only enough

basis functions to cover 5% of the domain in their support, so the proportion

of elements marked for refinement in each iteration will be slightly larger than

in Section 4.1.2. Although refinement is still most important around the ob-

servation location closest to x1 = 0, as the QoI region expands the other two

observation locations become more important in that the error decomposition

suggests refinement around them earlier. As the QoI region expands, it is also

more clearly noticeable that refinement is not equally important in all parts of

the QoI region.

Figure 5 shows another set of cases considered, now with the same QoI region

ΩI but with increasing, nested sets of observations. The error decomposition

for the three cases is shown in Figures 5b to 5d. The bottom row is the same as

that in Figure 4. Refinement appears to be consistently most important around

the observation location closest to x1 = 0 and the QoI region. However, as more

observation locations are added, it becomes no longer necessarily true that re-

finement becomes less important around observation locations as their distance

from the QoI region increases. In the second and third rows, one can see that

after the areas around the QoI region and the two closest observation locations
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Figure 4: Effects of increasing the QoI region. Column (a): configuration of observations (teal

points) and QoI region (purple box). Columns (b)–(d): the relative error estimate decompo-

sitions for different mixed-fidelity models, relative to the largest localized error contribution;

note the locations of regions of relatively large error compared to the observation locations

and QoI region.
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have been refined, the next area to be refined is not around the third closest ob-

servation location, but rather around one near the middle of the domain. This

suggests that interactions between observation locations and the QoI may be

non-intuitive, and in these cases a rigorous method for forming a mixed-fidelity

model leads to well-supported modeling choices.

4.2. Variable Parameterization: Constant vs. Field Parameters

In this subsection, we consider two models which differ in the space to which

the parameter belongs, with the low-fidelity model having fewer degrees of free-

dom.

4.2.1. Problem Setup

We consider the same high-fidelity model as in Section 4.1:

kd∇2u− ~V · ∇u+ kru
2 = f(q), q ∈ H1(Ω), (31)

with the same diffusion coefficient kd = 0.1 and reaction coefficient kr = −42.

The low-fidelity model

kd∇2u− ~V · ∇u+ kru
2 = f(q), q ∈ ULF (32)

differs from the high-fidelity model only in that ULF is limited to the space

of constant functions over Ω; we maintain f(q) = q. The intermediate mixed-

fidelity models thus have parameter fields (and forcing functions) that are con-

stant over the subregions of the domain where the low-fidelity model is used;

disconnected low-fidelity regions still share the same parameter value. The do-

main, mesh, boundary conditions, and velocity field, as well as the observations

and QoI, remain the same as described in Section 4.1; we continue to infer

for the forcing field. For ease of implementation, we require that the result-

ing parameter field remain continuous at the interface between the low-fidelity

and high-fidelity subdomains, although this constraint is not necessary for the

theory to hold. Also for ease of implementation and for localizing the error,

the forcing field and its auxiliary and supplementary adjoint counterparts are
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Figure 5: Effects of increasing the number of observations. Column (a): configuration of

observations (teal points) and QoI region (purple box). Columns (b)–(d): the relative error

estimate decompositions for different mixed-fidelity models, relative to the largest localized

error contribution; note the locations of regions of relatively large error compared to the

observation locations and QoI region.
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represented with the same basis functions as the other variables in the high-

fidelity regions, and forced to be constant in the low-fidelity regions using a

penalty term. Although the chosen pair of models has the potential to give

mixed-fidelity models with fewer degrees of freedom in the parameter, this is

not the case in our implementation; however, we are not looking to demonstrate

computational savings with this example, but rather to explore the behavior of

Algorithm 1 when applied to such a pair of models. As the inverse problem is

ill-posed, except when the low-fidelity model is used throughout the domain,

regularization is used; the Tikhonov regularization term in Equation (2a) is

R(q) = β
2

∫
Ω
‖∇f(q)‖22 + f(q)2 dA, where β = 10−3 is a regularization coeffi-

cient.

4.2.2. Adaptive Model Refinement Results

As with the previous examples in Section 4.1, the decomposition of the error

estimate is used to select additional regions of the domain in which to use the

high-fidelity model. The number of degrees of freedom in the inverse problem

increases with the proportion of the domain in which the high-fidelity model is

used. With each iteration, an additional 10% of the elements are marked for

refinement. This is repeated until the estimated absolute relative error in the

QoI is less than 1%.

Figure 6 shows the local error contributions, as well as the subdomains where

the low- and high-fidelity models are used, for the first two and last mixed-

fidelity model thus generated. Comparing to Figure 2, we see that in this case

the local error contribution is not as greatly concentrated around the QoI region

and the nearest observation location; here, all three observation locations and

the QoI region have associated regions of sufficiently similar high local error

that all are refined in the first iteration. This reflects the global nature of the

differences between the low- and high-fidelity models.

Figure 7 shows the inferred parameters using some of the mixed-fidelity mod-

els and the high-fidelity model. The corresponding true and estimated absolute

errors in the QoI are shown in Figure 8. In this case, we see that we must
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(a) MF0 (0% HF)

(b) MF1 (10% HF)

(c) MF2 (20% HF)

(d) MF6 (60% HF)

Figure 6: Left: Multi-fidelity refinement over the domain (low-fidelity constant-parameter

model used in red portion, high-fidelity field-parameter model used in blue portion). Right:

local error contributions. The (weighted) residual, and thus the local error contribution, tends

to spike sharply at the interface between the low- and high-fidelity regions; the color range is

truncated to make the error distribution visible elsewhere in the domain.
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Figure 8: True and estimated absolute relative error in QoI, plotted as a function of the

percentage area of the domain in which the high-fidelity field-parameter model is used. The

dotted line indicates the target relative QoI error.
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use the high-fidelity model in most of the domain in order to get an accurate

QoI. The adaptive algorithm requires us to use the field representation of the

high-fidelity model in much of the left half of the domain; this reflects the topol-

ogy of the inferred parameter field in the high-fidelity inverse problem, which is

only relatively constant towards the right portion of the domain (compare the

bottom two figures of Figure 7). We also see that in this case, in contrast to the

example in Section 4.1.2, increasing the proportion of the domain in which the

high-fidelity model is used does not monotonically decrease the error in the QoI.

Note that although the inferred parameters in the first and third mixed-fidelity

models (see the top two figures of Figure 7) are very different, they give very

similar QoI error; the same is true for the second and fourth mixed-fidelity mod-

els. These provide additional examples supporting the idea that using inferring

parameters with models of different mixtures of fidelities can produce similar

QoIs.

4.3. Combining Meshes and Physics in 3D

In the previous examples, although the low- and high-fidelity models are

sufficiently different to illustrate the behavior of Algorithm 1, they are both

simple enough and similar enough that using Algorithm 1 saves little, if any,

computational effort. In this section, we consider a pair of models that differ

in both the physics included and the mesh resolution, and we demonstrate

computational savings using the multi-fidelity approach. In Section 4.3.1 we

describe the setup of the models and their inverse problems, and in Section 4.3.2

we describe the results of applying Algorithm 1 to this pair of models.

4.3.1. Problem Setup

The two models share a box domain Ω(x1, x2, x3) which is 2300m, 1650m,

and 100m long in the x1, x2, and x3 directions, respectively. We will refer

to the positive and negative directions in x1 as “east” and “west”, respectively.

The high-fidelity model is a single-species convection-diffusion-reaction equation
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with a nonlinear reaction term, described by

∇ · (n~V u− nD∇u) + kru
2 = f(q) in Ω, (33a)

u = 0 on ∂Ωwest, (33b)

∂u

∂n
= 0 on ∂Ωeast, (33c)

n̂ · (n~V u− nD∇u) = 0 on ∂Ω\(∂Ωeast ∪ ∂Ωwest), (33d)

where the state u is the mass-fraction (in parts-per-billion) of some contami-

nant species and f(q) is a source/sink field. The velocity field is a constant

~V = (2.1, 0, 0) m/day. Given this velocity field and letting the molecular dif-

fusion be negligible, we follow [38] to express the (diagonal) dispersion tensor

D as D11 = αLHV1, D22 = αTHV1, and D33 = αTV V1, where αLH = 100m,

αTH = 40m, and αTV = 4m are the longitudinal horizontal, transverse horizon-

tal, and transverse vertical dispersivities, respectively; the dispersivity values

were drawn from within the range of observed values in various porous media

[13]. We have porosity n = 0.1. The reaction coefficient is kr = 4.2 ·10−4 1/day,

chosen from within the wide range of reaction-rate coefficients for second-order

reactions. Although the reaction term kru
2 does not correspond to any particu-

lar reaction of any particular species, we note that, in addition to second-order

elementary reactions, a quadratic reaction term can appear in models of disso-

lution/precipitation processes in porous media [1] and biochemical degradation

of petroleum hydrocarbons in soils [19].

The low-fidelity model,

∇ · (−nkd∇u) = f(q) in Ω, (34)

differs in the removal of the reaction and convection terms and the anisotropy of

the dispersion tensor; the dispersion tensor D is replaced with a scalar kd = D11.

The boundary conditions remain unchanged. As in the previous examples in

Section 4.1, the mixed-fidelity models are formed by dividing the domain into

complementary subdomains ΩHF and ΩLF , where Equations (33a) and (34) are

solved, respectively. The QoI we wish to calculate is the integral of the state

over a region ΩI .
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The unknown parameters we wish to infer correspond to the source term

f(q) = q; we impose f(q) = q = 0 on the boundary ∂Ω. Synthetic observations

at 18 points in the domain are generated by running the high-fidelity model

on a finer mesh. The locations of the observations as well as the QoI region

ΩI = [1100m, 1200m]× [775m, 875m]× [80m, 100m] are shown in Figure 9. We

set the regularization term in Equation (2a) to be R(q) = β
2

∫
Ω
‖∇f(q)‖22 dV .
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Figure 9: Three views of the locations of the observations and the QoI region.

We use a FEM with a continuous Galerkin formulation and Lagrange ele-

ments. The lack of a convection term allows the low-fidelity model to be solved

on a coarser mesh. For the high-fidelity model, the domain is discretized by 32,

64, and 32 elements along the x1, x2, and x3 directions, respectively; for the

low-fidelity model, the domain is discretized by 16, 32, and 16 elements along

the x1, x2, and x3 directions, respectively. The cell Péclet number is less than

one and so stabilization is not required.

4.3.2. Adaptive Model Refinement Results

We now present the results of solving the inference problem using Algo-

rithm 1, with a relative error tolerance of 0.1%. At each iteration, we choose

the 2% of the basis functions with the largest error for model refinement; since
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each linear Lagrange basis function has eight elements in its support, the num-

ber of additional elements marked for refinement in each iteration is usually

greater than for the 2D examples. All simulations are run on a single proces-

sor; we use the default nonlinear solver in libMesh [21] (Newton’s method with

Brent line-search), and linear solves are performed using PETSc’s [4] GMRES

solver, preconditioned by incomplete factorization.

Table 1 shows the error at the end of each adaptive iteration. Each iteration

of the adaptive algorithm uses the solution of the previous iteration as its initial

guess. The number of degrees of freedom of each of the primary (and, if ap-

plicable, auxiliary) variables at each iteration is also given; the supplementary

adjoint is solved on the high-fidelity mesh and thus each of its variables has the

same number of degrees of freedom as each of the primary variables in the high-

fidelity inverse problem. We note that convergence of the high-fidelity inverse

problem is sensitive to the initial guess; the solve does not converge when the

low-fidelity solution is used as an initial guess. Instead, we solve the inverse

problem for an intermediate model

∇ · (n~V u− nD∇u) + kru
2 = f(q) (35)

with kr = 0, and use the solution as an initial guess for the high-fidelity problem;

this is equivalent to using two steps of natural continuation on the reaction

parameter: kr = 0, then kr = 4.2 · 10−4. In comparison, the adaptive algorithm

needs no such continuation in kr to converge; each step can be viewed as implicit

continuation in the addition of high-fidelity regions.

We notice that, compared to the results in Figure 3, the error estimates

for the low-fidelity and first mixed-fidelity models are far from the true errors.

This can be attributed to the linearization about ΨLF and ΨMF1
instead of

ΨHF in solving the supplementary adjoints as well as the third-order term that

is ignored in the error estimate; the large differences in the QoI for the LF

and MF01 models compared to the high-fidelity QoI indicate that ΨLF and

ΨMF1
are significantly different from ΨHF . Compared to the pair of models in

Section 4.1.1, the low- and high-fidelity models in this case are more dissimilar,

31



Case %HF DOFs QoI
Error Error % Relative

(Estimated) (Actual) Error (Actual)

LF 0 9537 168710 -16463 -85663 -103

MF01 5.2 13417 167366 -7207 -84319 -102

MF02 11.4 17895 89777 -6208 -6730 -8.10

MF03 16.3 21001 85880 -2473 -2833 -3.41

MF04 22.0 24528 83902 -711 -855 -1.03

MF05 27.7 27984 83119 32 -72 -0.087

HF 100 70785 83047 – – –

Table 1: Runtime and relative errors of adaptive algorithm iterations given relative error

tolerance of 0.1%; relative errors are given with respect to the high-fidelity QoI estimate.

even though in both Section 4.1.1 and this case the nonlinear term in the high-

fidelity model Equation (22b) and Equation (33) is a quadratic reaction term.

The multi-fidelity domain refinements for the five adaptive iterations are

shown in Figure 10. Similarly to the behavior seen in Section 4.1.2, the QoI

region and the areas around some of the measurement points are first targeted

for refinement, with those measurement points furthest downstream of the QoI

being the last to receive refinement. We also see that the domain is refined

completely in the x3 direction first in an area slightly upstream of the QoI region

(see Figure 10c), reflecting the large difference in the high-fidelity dispersion

tensor D and the low-fidelity dispersion coefficient in the x3 direction.

In this case, although the mixed-fidelity models have fewer degrees of free-

dom than the high-fidelity model, it is faster to solve the high-fidelity inverse

problem than to adaptively seek a mixed-fidelity model with a small QoI error,

starting from the low-fidelity model. This can be attributed to multiple fac-

tors: the high-fidelity problem is mildly nonlinear and has a close initial guess

that is a solution to a linear system (when kr = 0), and the supplementary

adjoint is solved on the high-fidelity mesh. Generally, as the nonlinearity of the

high-fidelity model increases, one would expect solving the high-fidelity inverse

problem to require more time relative to using the adaptive algorithm. How-
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(a) Slice location and color key (b) MF1 (5.2% HF)

(c) MF2 (11.4% HF) (d) MF3 (16.3% HF)

(e) MF4 (22.0% HF) (f) MF5 (27.7% HF)

Figure 10: Domain division for mixed-fidelity models ((b)–(f)): 3D view with 2D slice through

domain below (see (a) for slice location and orientation). Low-fidelity convection-diffusion

model used in red portion, high-fidelity convection-diffusion-reaction model used in blue por-

tion (intermediate colors in 3D view due to transparency indicate a mix of the two models

along the line of sight). Slices cut through QoI region, indicated by purple box. x3 direction

scaled for clarity.
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ever, one can also consider an “offline-online” setting, where the mixed-fidelity

models are identified up-front by applying Algorithm 1 to a set of representa-

tive observations d∗. Then when actual/new data are received, one can solve

the inverse problem with the mixed-fidelity model and the new data, and, if

desired, compute an updated error estimate for the QoI. The mixed-fidelity in-

verse problems are expected to require less time to solve than the high-fidelity

inverse problems.

To illustrate this offline-online application, we generate ten sets of noisy

observations to represent the actual data gained during the online phase; the

noisy observations are generated by taking the observations used in the adaptive

algorithm and adding Gaussian white noise with standard deviation of σ = 0.02

(equivalent to, on average, 5% of the observed values). We then solve the

inverse problem using each of the mixed-fidelity models depicted in Table 1 and

Figure 10 as well as the high-fidelity model. The low-fidelity inverse problem is

first solved and used as an initial guess for the higher-fidelity problems; we note

that although there is a linear model that is more similar to the high-fidelity

model than the low-fidelity model (i.e., convection-diffusion with anisotropic

diffusivity and kr = 0 on the high-fidelity mesh) and thus would serve as a

better initial guess, its existence is specific to our particular choice of models.

The auxiliary and supplementary adjoint variables use a zero initial guess.

Table 2 shows the average QoI values, error estimates and solution times

for the (non)linear solves. Table 3 shows the times needed to solve the inverse

problems and to solve for the additional variables needed to obtain an error

estimate. For six of the ten datasets, the high-fidelity inverse problem does

not converge given the low-fidelity solution as an initial guess; these are solved

using the kr = 0 solution as an initial guess so that true QoI errors can be

calculated. The average high-fidelity inverse problem solution time shown in

Table 3 includes only those cases (four of ten) that converged with the low-

fidelity initial guess.

We see that the mixed-fidelity models, when applied to noisy datasets dif-

ferent to those with which they were generated, continue to perform well in
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Case %HF QoI
Error Error % Relative

(Estimated) (Actual) Error (Actual)

LF 0 166774 – -84326 -102.3

MF01 5.2 164597 4347 -82149 -99.65

MF02 11.4 88867 -5921 -6418 -7.79

MF03 16.3 85237 -2414 -2789 -3.38

MF04 22.0 83411 -724 -963 -1.17

MF05 27.7 82664 -18 -216 -0.26

HF 100 82500 – – –

Table 2: Average QoI values and errors from solving inverse problem with mixed- and high-

fidelity models and noisy data; relative errors are with respect to true high-fidelity QoI.

Error Estimation

Case DOFs

Inverse Auxiliary Supplementary Total

Problem Variables Adjoint Solution

Time (s) Time (s) Time (s) Time (s)

LF 9537 16 – – –

MF01 13147 185 107 235 526

MF02 17895 328 169 206 703

MF03 21001 435 202 185 821

MF04 24528 406 201 188 795

MF05 27984 498 263 198 959

HF 70785 1185 – – 1185

Table 3: Average times to solve inverse problem and obtain error estimate with mixed- and

high-fidelity models and noisy datasets.
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achieving a small error in the QoI while limiting the use of the high-fidelity

model to less than a third of the domain. Given the same initial guess, the

mixed-fidelity inverse problems takes less time on average than the high-fidelity

inverse problem to solve, and they converge consistently.

5. Conclusion

We adaptively create mixed-fidelity models to solve goal-oriented inverse

problems. The paper develops an error estimator that drives the adaptation,

so as to minimize the error in the QoI calculated from the inferred parameters.

We applied this method to pairs of low- and high-fidelity models of convection-

diffusion-reaction phenomena. The results showed QoI estimates with a small

relative error even when the high-fidelity model was used only in a small por-

tion of the domain. In these cases, the localization of the error estimate also

indicated regions of the domain that were important to the interactions between

the observations and the QoI. A direction for extension of this work is to the

case of the statistical inverse problem. One way we could potentially apply this

work to the statistical inverse problem is by reducing the parameter space that

needs to be sampled. Such a direction is suggested by the results presented in

Section 4.3, where the mixed-fidelity model had significantly fewer degrees of

freedom in its parameter field than the high-fidelity model, and thus a smaller

parameter space. One could explore creation of an alternative statistical in-

verse problem that, by utilizing a mixed-fidelity model with fewer degrees of

freedom in its parameter field, requires exploration of a small parameter space

with minimal compromise in the predictive posterior.

Another potential approach would be to extend our method to the creation

of mixed-fidelity models that are used as surrogates; these surrogate models can

be evaluated in place of the high-fidelity model, thus decoupling the number of

expensive forward evaluations of the high-fidelity model needed from the number

of posterior parameter distribution samples that is desired [12]. In such a case,

the cost of creating the mixed-fidelity model would be amortized over a large
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number of posterior samples using the cheaper mixed-fidelity model in place of

the high-fidelity model.
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