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Abstract Multifidelity optimization approaches seek to
bring higher-fidelity analyses earlier into the design process
by using performance estimates from lower-fidelity models
to accelerate convergence towards the optimum of a high-
fidelity design problem. Current multifidelity optimization
methods generally fall into two broad categories: provably
convergent methods that use either the high-fidelity gradient
or a high-fidelity pattern-search, and heuristic model cali-
bration approaches, such as interpolating high-fidelity data
or adding a Kriging error model to a lower-fidelity function.
This paper presents a multifidelity optimization method that
bridges these two ideas; our method iteratively calibrates
lower-fidelity information to the high-fidelity function in
order to find an optimum of the high-fidelity design prob-
lem. The algorithm developed minimizes a high-fidelity
objective function subject to a high-fidelity constraint and
other simple constraints. The algorithm never computes the
gradient of a high-fidelity function; however, it achieves
first-order optimality using sensitivity information from the
calibrated low-fidelity models, which are constructed to
have negligible error in a neighborhood around the solution.
The method is demonstrated for aerodynamic shape opti-
mization and shows at least an 80% reduction in the num-
ber of high-fidelity analyses compared other single-fidelity
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derivative-free and sequential quadratic programming meth-
ods. The method uses approximately the same number of
high-fidelity analyses as a multifidelity trust-region algo-
rithm that estimates the high-fidelity gradient using finite
differences.
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Nomenclature

A Active and violated constraint Jacobian
a Sufficient decrease parameter
B A closed and bounded set in R

n

B Trust region
C Differentiability Class
c(x) Inequality constraint
d Artificial lower bound for constraint value
e(x) Error model for objective
ē(x) Error model for constraint
f (x) Objective function
g(x) Inequality constraint
h(x) Equality constraint
L Expanded level-set in R

n

L Level-set in R
n

L Lagrangian of trust-region subproblem
M Space of all fully linear models
m(x) Surrogate model of the high-fidelity objective

function
m̄(x) Surrogate model of the high-fidelity constraint
n Number of design variables
p Arbitrary step vector
RBF Radial Basis Function
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r Radial distance between two points
s Trust-region step
t Constant between 0 and 1
w Constraint violation conservatism factor
x Design vector
α Convergence tolerance multiplier
β Convergence tolerance multiplier
γ0 Trust-region contraction ratio
γ1 Trust-region expansion ratio
ε Termination tolerance
ε2 Termination tolerance for trust region size
� Trust region size
δh Linearized step size for feasibility
δx Finite difference step size
η0 Trust-region contraction criterion
η1, η2 Trust-region expansion criterion
κ Bound related to function smoothness
λ Lagrange multiplier
λ̂ Lagrange multiplier for surrogate model
ξ Radial basis function correlation length
ρ Ratio of actual to predicted improvement
σ Penalty parameter
τ Trust-region solution tolerance
� Penalty function
�̂ Surrogate penalty function
φ Radial basis function

Superscript

∗ Optimal
+ Active or violated inequality constraint

Subscript

0 Initial iterate
bhm Bound for Hessian of the surrogate model
blg Upper bound on the Lipschitz constant
c Relating to constraint
cg Relating to constraint gradient
cgm Maximum Lipschitz constant for a constraint

gradient
cm Maximum Lipschitz constant for a constraint
f Relating to objective function
f g Lipschitz constant for objective function gradient
FCD Fraction of Cauchy Decrease
g Relating to objective function gradient
high Relating to the high-fidelity function
k Index of trust-region iteration
low Relating to a lower-fidelity function
m̄ Related to constraint surrogate model
max User-set maximum value of that parameter

1 Introduction

High-fidelity numerical simulation tools can provide valu-
able insight to designers of complex systems and support
better decisions through optimal design. However, the de-
sign budget frequently prevents the use of formal optimiza-
tion methods in conjunction with high-fidelity simulation
tools, due to the high cost of simulations. An additional
challenge for optimization is obtaining accurate gradient
information for high-fidelity models, especially when the
design process employs black-box and/or legacy tools. In-
stead, designers often set design aspects using crude lower-
fidelity performance estimates and later attempt to optimize
system subcomponents using higher-fidelity methods. This
approach in many cases leads to suboptimal design per-
formance and unnecessary expenses for system operators.
An alternative is to use the approximate performance esti-
mates of lower-fidelity simulations in a formal multifidelity
optimization framework, which aims to speed the design
process towards a high-fidelity optimal design using sig-
nificantly fewer costly simulations. This paper presents a
multifidelity optimization method for the design of com-
plex systems, and targets in particular, systems for which
accurate design sensitivity information is challenging to
obtain.

Multifidelity optimization of systems with design con-
straints can be achieved with the approximation model man-
agement framework of Alexandrov et al. (1999, 2001). That
technique optimizes a sequence of surrogate models of the
objective function and constraints that are first-order con-
sistent with their high-fidelity counterparts. The first-order
consistent surrogates are constructed by correcting lower-
fidelity models with either additive or multiplicative error
models based on function value and gradient information of
the high-fidelity models. This technique is provably conver-
gent to a locally optimal high-fidelity design and in practice
can provide greater than 50% reductions in the number
of high-fidelity function calls, translating into important
reductions in design turnaround times (Alexandrov et al.
1999). Estimating the needed gradient information is often
a significant challenge, especially in the case of black-box
simulation tools. For example, the high-fidelity numerical
simulation tool may occasionally fail to provide a solution
or it may contain noise in the output (e.g., due to numer-
ical tolerances). In these cases, which arise frequently as
both objectives and constraints in complex system design,
if design sensitivities are unavailable then finite-difference
gradient estimates will likely be inaccurate and non-robust.
Therefore, there is a need for constrained multifidelity
optimization methods that can guarantee convergence to
a high-fidelity optimal design while reducing the number
of expensive simulations, but that do not require gradient
estimates of the high-fidelity models.
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Constraint handling in derivative-free optimization is
challenging. Common single-fidelity approaches use lin-
ear approximations (Powell 1994, 1998), an augmented
Lagrangian (Kolda et al. 2003, 2006; Lewis and Torczon
2010), exact penalty method (Liuzzi and Lucidi 2009), or
constraint filtering (Audet and Dennis 2004) in combina-
tion with either a pattern-search or a simplex method. In the
multifidelity setting, if the generated surrogate models are
smooth, then surrogate sensitivity information can be used
to speed convergence.1 This may provide an advantage over
single-fidelity pattern-search and simplex methods, espe-
cially when the dimension of the design space is large. For
example, constraint-handling approaches used in conjunc-
tion with Efficient Global Optimization (EGO) (Jones et al.
1998) either estimate the probability that a point is both a
minimum and that it is feasible, or add a smooth penalty to
the surrogate model prior to using optimization to select new
high-fidelity sample locations (Sasena et al. 2002; Jones
2001; Rajnarayan et al. 2008). These heuristic approaches
may work well in practice, but unfortunately have no guar-
antee of convergence to a minimum of the high-fidelity
design problem. Another constraint-handling method used
together with the Surrogate Management Framework (SMF)
(Booker et al. 1999) augments a pattern-search method
with predictions of locally optimal designs from a surro-
gate model. The underlying pattern-search method ensures
convergence of the method, so a broad range of surrogate
models are allowable. One technique for generating the
surrogate model is conformal space mapping, where a low-
fidelity function is calibrated to the high-fidelity function
at locations where the value is known (Castro et al. 2005).
This calibrated surrogate enables the inclusion of accurate
local penalty methods as a sensitivity-based technique for
quickly estimating the location of constrained high-fidelity
optima.

These existing multifidelity methods highlight the ben-
efits of exploiting sensitivity information generated from
calibrated surrogate models in a derivative-free optimiza-
tion setting. Here we propose a formal framework, based
on a derivative-free trust region approach, to systemat-
ically generate calibration data and to control surrogate
model quality. Thus, this paper develops a constrained mul-
tifidelity optimization method that in practice can quickly
find high-fidelity optimal designs and be robust to unavail-
able or inaccurate gradient estimates, because it gener-
ates smooth surrogate models of high-fidelity objectives
and constraints without requiring high-fidelity model gra-
dient information. More specifically, this is accomplished
by creating a fully linear model (formally defined in the
next section), which establishes Lipschitz-type error bounds

1Note that in the multifidelity setting, we use the term “derivative-free”
to indicate an absence of derivatives of the high-fidelity model.

between the high-fidelity function and the surrogate model.
This ensures that the error between the high-fidelity model
gradient and surrogate model gradient is locally bounded
without ever calculating the high-fidelity gradient. Conn
et al. (2008) showed that polynomial interpolation mod-
els can be made fully linear, provided the interpolating set
satisfies certain geometric requirements, and further devel-
oped an unconstrained gradient-free optimization technique
using fully linear models (Conn et al. 2009a, b). Wild
et al. (2008) demonstrated that a radial basis function inter-
polation could satisfy the requirements for a fully linear
model and be used in Conn’s derivative-free optimization
framework (Wild 2009; Wild and Shoemaker 2009). March
and Willcox (2010) generalized this method to the cases
with arbitrary low-fidelity functions or multiple low-fidelity
functions using Bayesian model calibration methods.

Section 2 of this paper presents the derivative-free
method to optimize a high-fidelity objective function sub-
ject to constraints with available derivatives. Fully linear
surrogate models of the objective function are minimized
within a trust-region setting until no further progress is pos-
sible or when convergence to a high-fidelity optimum is
achieved. Section 3 presents a technique for minimizing a
high-fidelity objective function subject to both constraints
with available derivatives and computationally expensive
constraints with unavailable derivatives. The constraints
without available derivatives are approximated with mul-
tifidelity methods, whereas the other constraints are han-
dled either implicitly with a penalty method or explicitly.
Section 4 presents an aerodynamic shape optimization prob-
lem to demonstrate the proposed multifidelity optimization
techniques and compares the results with other single-
fidelity methods and approximation model management
using finite difference gradient estimates. Finally, Section 5
concludes the paper and discusses extensions of the method
to the case when constraints are hard (when the objective
function fails to exist if the constraints are violated).

2 Constrained optimization of a multifidelity
objective function

This section considers the constrained optimization of a
high-fidelity function, fhigh(x), that accurately estimates
system metrics of interest but for which accurate gradi-
ent estimates are unavailable. We first present a formalized
problem statement and some qualifying assumptions. We
then present a trust-region framework, the surrogate-based
optimization problems performed within the trust region,
and the trust region updating scheme. We follow this with
an algorithmic implementation of the method, and with a
brief discussion of algorithmic limitations and theoretical
considerations needed for robustness.
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2.1 Problem setup and assumptions

We seek the vector x ∈ R
n of n design variables that

minimizes the value of the high-fidelity objective function
subject to equality constraints, h(x), and inequality con-
straints g(x),

min
x∈Rn

fhigh(x)

s.t. h(x) = 0

g(x) ≤ 0,

(1)

where we assume gradients of h(x) and g(x) with respect
to x are available or can be estimated accurately. To reduce
the number of evaluations of fhigh(x) we use a low-fidelity
function, flow(x), that estimates the same metric as fhigh(x)

but with cheaper evaluation cost and lower accuracy. We
seek to find the solution to (1) without estimating gra-
dients of fhigh(x), by calibrating flow(x) to fhigh(x) and
using sensitivity information from the calibrated surrogate
model. The calibration strategy employed may break down
should either fhigh(x) or flow(x) not be twice continu-
ously differentiable or not have a Lipschitz continuous first
derivative, although in many such cases the algorithm may
still perform well.

2.2 Trust-region model management

From an initial design vector x0, the trust-region method
generates a sequence of design vectors that each reduce a
merit function consisting of the high-fidelity function value
and penalized constraint violation, where we denote xk to be
this design vector on the kth trust-region iteration. Follow-
ing the general Bayesian calibration approach in Kennedy
and O’Hagan (2000), we define ek(x) to be a model of the
error between the high- and low-fidelity functions on the
kth trust-region iteration, and construct a surrogate model
mk(x) for fhigh(x) as

mk(x) = flow(x) + ek(x). (2)

We define the trust region at iteration k, Bk , to be the region
centered at xk with size �k ,

Bk = {x : ‖x − xk‖ ≤ �k}, (3)

where any norm on R
n can be used.

To solve the constrained optimization problem presented
in (1) we define a merit function, �(xk, σk), where σk is a
parameter that must go to infinity as the iteration number k
goes to infinity and serves to increase the penalty placed on
the constraint violation. To prevent divergence of this algo-
rithm, we need the penalty function to satisfy some basic

properties. First, the merit function with the initial penalty,
σ0, must be bounded from below within a relaxed level-set,
L (x0, σ0), defined as

L(x0, σ0) = {
x ∈ R

n : �(x, σ0) ≤ �(x0, σ0)
}

(4)

B(xk) = {
x ∈ R

n : ‖x − xk‖ ≤ �max
}

(5)

L (x0, σ0) = L(x0, σ0)
⋃

xk∈L(x0,σ0)

B(xk), (6)

where �max is the maximum allowable trust-region size
and the relaxed level-set is required because the trust-region
algorithm may attempt to evaluate the high-fidelity function
at points outside of the level set at x0. Second, the level
sets of �(xk, σk > σ0) must be contained within L(x0, σ0),
and third, L(x0, σ0) must be a compact set. These properties
ensure that all design iterates, xk , remain within L(x0, σ0).

Although other merit functions, such as augmented
Lagrangians, are possible, we restrict our attention to merit
functions based on quadratic penalty functions because it
is trivial to show that they are bounded from below if the
objective function obtains a finite global minimum and there
is no need to consider arbitrarily bad Lagrange multiplier
estimates. The merit function used in this method is the
objective function plus the scaled sum-squares of the con-
straint violation, where g+(x) denotes the values of the
nonnegative inequality constraints,

�(x, σk) = fhigh(x) + σk
2 h(x)Th(x) + σk

2 g+(x)Tg+(x).

(7)

The parameter σk is a penalty weight, which must go to
+∞ as the iteration k goes to +∞. Note that when using
a quadratic penalty function for constrained optimization,
under suitable hypotheses on the optimization algorithm and
penalty function, the sequence of iterates generated, {xk},
can either terminate at a feasible regular point at which the
Karush–Kuhn–Tucker (KKT) conditions are satisfied, or at
a point that minimizes the squared norm of the constraint
violation, h(x)Th(x) + g+(x)Tg+(x) (Nocedal and Wright
2006; Bertsekas 1999).

We now define a surrogate merit function, �̂(x, σk),
which replaces fhigh(x) with its surrogate model mk(x),

�̂(x, σk) = mk(x) + σk
2 h(x)Th(x) + σk

2 g+(x)Tg+(x).

(8)

Optimization is performed on this function, and updates to
the trust-region are based on how changes in this surrogate
merit function compare with changes in the original merit
function, �(x, σk).

Our calibration strategy is to make the surrogate models
mk(x) fully linear, where the following definition of a fully
linear model is from Conn et al.:
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Definition 1 Let a function fhigh(x) : R
n → R that is

continuously differentiable and has a Lipschitz continuous
derivative, be given. A set of model functions M = {m :
R

n → R, m ∈ C1} is called a fully linear class of models if
the following occur:
There exist positive constants κ f , κg and κblg such that for
any x ∈ L(x0, σ0) and �k ∈ (0, �max] there exists a model
function mk(x) in M with Lipschitz continuous gradient
and corresponding Lipschitz constant bounded by kblg , and
such that the error between the gradient of the model and
the gradient of the function satisfies

‖∇ fhigh(x) − ∇mk(x)‖ ≤ κg�k ∀x ∈ Bk (9)

and the error between the model and the function satisfies

∣∣ fhigh(x) − mk(x)
∣∣ ≤ κ f �

2
k ∀x ∈ Bk . (10)

Such a model mk(x) is called fully linear on Bk (Conn et al.
2009a).

2.3 Trust-region subproblem

At each trust-region iteration a point likely to decrease the
merit function is found by solving one of two minimization
problems on the fully linear model for a step sk , on a trust
region of size �k :

min
sk∈Rn

mk(xk + sk)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

‖sk‖ ≤ �k, (11)

or

min
sk∈Rn

�̂k(xk + sk, σk)

s.t. ‖sk‖ ≤ �k . (12)

The subproblem in (12) is used initially to reduce constraint
infeasibility. However, there is a limitation with this sub-
problem that the norm of the objective function Hessian
grows without bound due to the penalty parameter increas-
ing to infinity. Therefore to both speed convergence and
prevent Hessian conditioning issues, the subproblem in (11)
with explicit constraint handling is used as soon as a point
that satisfies h(x) = 0 and g(x) ≤ 0 exists within the cur-
rent trust region. This is estimated by a linear approximation
to the constraints, however, if the linearized estimate falsely

suggests (11) has a feasible solution then we take recourse
to (12).2

For both trust-region subproblems, (11) and (12), the
subproblem must be solved such that the 2-norm of the
first-order optimality conditions is less than a constant τk .
This requirement is stated as ‖∇xLk‖ ≤ τk , where Lk is
the Lagrangian for the trust-region subproblem used. There
are two requirements for τk . First τk < ε, where ε is the
desired termination tolerance for the optimization problem
in (1). Second, τk must decrease to zero as the number of
iterations goes to infinity. Accordingly, we define

τk = min [βε, α�k] , (13)

with a constant β ∈ (0, 1) to satisfy the overall tolerance
criteria, and a constant α ∈ (a, 1) multiplying �k to ensure
that τk goes to zero. The constant a will be defined as part
of a sufficient decrease condition that forces the size of the
trust-region to decrease to zero in the next subsection.

2.4 Trust-region updating

Without using the high-fidelity function gradient, the trust-
region update scheme must ensure the size of the trust-
region decreases to zero to establish convergence. To
do this, a requirement similar to the fraction of Cauchy
decrease requirement in an the unconstrained trust-region
formulation is used (see, for example, Conn et al. 2009a).
We require that the improvement in our merit function is at
least a small constant a ∈ (0, ε], multiplying �k ,

�̂(xk, σk) − �̂(xk + sk, σk) ≥ a�k . (14)

The sufficient decrease condition is enforced through the
trust region update parameter, ρk . The update parameter
is the ratio of the actual reduction in the merit function
to the predicted reduction in the merit function unless the
sufficient decrease condition is not met,

ρk =
{

0 �̂(xk, σk) − �̂(xk + sk, σk) < a�k

�(xk ,σk )−�(xk+sk ,σk )

�̂(xk ,σk )−�̂(xk+sk ,σk )
otherwise.

(15)

The size of the trust region, �k , must now be updated based
on the quality of the surrogate model prediction. The size of
the trust region is increased if the surrogate model predicts
the change in the function value well, kept constant if the

2Note that an initial feasible point, x0 could be found directly using the
gradients of h(x) and g(x); however, since the penalty method includes
the descent direction of the objective function it may better guide the
optimization process in the case of multiple feasible regions. Should
the initial iterate be feasible, the deficiencies of a quadratic penalty
function are not an issue.
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prediction is fair, and the trust region is contracted if the
model predicts the change poorly. Specifically, we update
the trust region size using

�k+1 =

⎧
⎪⎨

⎪⎩

min{γ1�k, �max} if η1 ≤ ρk ≤ η2,

γ0�k if ρk ≤ η0,

�k otherwise,

(16)

where 0 < η0 < η1 < 1 < η2, 0 < γ0 < 1, and γ1 > 1.
Regardless of whether or not a sufficient decrease has been
found, the trust-region center will be updated if the trial
point has decreased the value of the merit function,

xk+1 =
{

xk + sk if �(xk, σk) > �(xk + sk, σk)

xk otherwise.
(17)

A new surrogate model, mk+1(x), is then built such that
it is fully linear on a region Bk+1 having center xk+1 and
size �k+1. The new fully linear model is constructed using
the procedure of Wild et al. (2008) with the calibration
technique of March and Willcox (2010).

2.5 Termination

For termination, we must establish that the first-order KKT
conditions,

∥∥∥∇ fhigh(xk) + A(xk)
Tλ(xk)

∥∥∥ ≤ ε, (18)

∥∥∥
[
h(xk)

T, g+(xk)
T
]∥∥∥ ≤ ε (19)

are satisfied at xk , where A(xk) is defined to be the Jacobian
of all active or violated constraints at xk ,

A(xk) = [∇h(xk)
T, ∇g+(xk)

T
]T

, (20)

and λ(xk) are Lagrange multipliers. The additional com-
plementarity conditions are assumed to be satisfied from
the solution of (11). The constraint violation criteria, (19),
can be evaluated directly. However, the first-order condi-
tion, (18), cannot be verified directly in the derivative-
free case because the gradient, ∇ fhigh(xk), is unknown.
Therefore, for first-order optimality we require two condi-
tions: first-order optimality with the surrogate model, and
a sufficiently small trust-region. The first-order optimality
condition using the surrogate model is

∥∥∥∇mk(xk) + A(xk)
Tλ̂(xk)

∥∥∥ ≤ max [βε, α�k, a] ≤ ε, (21)

where λ̂ are the Lagrange multipliers computed using the
surrogate model and active constraint set estimated from the

surrogate model instead of the high-fidelity function. This
approximate stationarity condition is similar to what would
be obtained using a finite-difference gradient estimate with
a fixed step size where the truncation error in the approxi-
mate derivative eventually dominates the stationarity mea-
sure, but in our case the sufficient decrease modification
of the update parameter eventually dominates the station-
arity measure (Boggs and Dennis 1976). For �k → 0,
we have from (9) that ‖∇ fhigh(x) − ∇mk(x)‖ → 0, and
also ‖λ̂(xk) − λ(xk)‖ → 0. Therefore, we have first-order
optimality as given in (18). In practice, the algorithm is
terminated when the constraint violation is small, (19), first-
order optimality is satisfied on the model, (21), and the trust
region is small, say �k < ε2 for a small ε2.

2.6 Implementation

The numerical implementation of the multifidelity opti-
mization algorithm, which does not compute the gradi-
ent of the high-fidelity objective function, is presented as
Algorithm 1. A set of possible parameters that may be used
in this algorithm is listed in Table 2 in Section 4. A key
element of this algorithm is the logic to switch from the
penalty function trust-region subproblem, (12), to the sub-
problem that uses the constraints explicitly, (11). Handling
the constraints explicitly will generally lead to faster conver-
gence and fewer function evaluations; however, a feasible
solution to this subproblem likely does not exist at early
iterations. If either the constraint violation is sufficiently
small, ‖ [

h(xk)
T, g+(xk)

T
] ‖ ≤ ε, or the linearized steps,

δh , satisfying h(x) + ∇h(x)Tδh = 0 for all equality and
inequality constraints are all smaller than the size of the trust
region, then the subproblem with the explicit constraints
is attempted. If the optimization fails, then the penalty
function subproblem is solved.

This method may be accelerated with the use of mul-
tiple lower-fidelity models. March and Willcox (2010)
suggest a multifidelity filtering technique to combine esti-
mates from multiple low-fidelity functions into a single
maximum likelihood estimate of the high-fidelity function
value. That technique will work unmodified within this mul-
tifidelity optimization framework and in many situations
may improve performance.

2.7 Theoretical considerations

This subsection discusses some performance limitations of
the proposed algorithm as well as theoretical considerations
needed for robustness.

This paper has not presented a formal convergence the-
ory; at best, such a theory will apply only under many
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restrictive assumptions. In addition, we can at best guaran-
tee convergence to a near-optimal solution (i.e., optimality
to an a priori tolerance level and not to stationarity). Forc-
ing the trust region size to decrease every time the sufficient
decrease condition is not satisfied means that if the

projection of the gradient onto the feasible domain is less
than the parameter a, then the algorithm can fail to make
progress. This limitation is presented in (21); however, it
is not seen as severe because a can be set at any value
arbitrarily close to (but strictly greater than) zero.
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A second limitation is that the model calibration strat-
egy, generating a fully linear model, is theoretically only
guaranteed to be possible for functions that are twice con-
tinuously differentiable and have Lipschitz-continuous first
derivatives. Though this assumption may seem to limit
some desired opportunities for derivative-free optimization
of functions with noise, noise with certain characteristics
like that discussed in Conn et al. (2009b, Section 9.3), or
the case of models with dynamic accuracy as in Conn et al.
(2000, Section 10.6) can be accommodated in this frame-
work. Approaches such as those in Moré and Wild (2010)
may be used to characterize the noise in a specific problem.
However, our algorithm applies even in the case of general
noise, where no guarantees can be made on the quality of
the surrogate models. As will be shown in the test problem
in Section 4, in such a case our approach exhibits robustness
and significant advantages over gradient-based methods that
are susceptible to poor gradient estimates.

Algorithm 1 is more complicated than conventional
gradient-based trust-region algorithms using quadratic
penalty functions, such as the algorithm in Conn et al.
(2000, Chapter 14). There are three sources of added com-
plexity. First, our algorithm increases the penalty parame-
ter after each trust-region subproblem as opposed to after
a completed minimization of the penalty function. This
aspect can significantly reduce the number of required high-
fidelity evaluations, but adds complexity to the algorithm.
Second, our algorithm switches between two trust region
subproblems to avoid numerical issues associated with the
conditioning of the quadratic penalty function Hessian. The
third reason for added complexity is that in derivative-free
optimization the size of the trust-region must decrease to
zero in order to demonstrate optimality. This aspect serves
to add unwanted coupling between the penalty parameter
and the size of the trust region, which must be handled
appropriately. We now discuss how these two aspects of
the algorithm place important constraints on the penalty
parameter σk .

The requirements for the penalty parameter, σk , are that
(i) limk→∞ σk�k = ∞, (ii) limk→∞ σk�

2
k = 0, and (iii)∑∞

k=0 1/σk is finite. The lower bound for the growth of σk ,
that (i) limk→∞ σk�k = ∞, comes from the properties of
the minima of quadratic penalty functions presented in Conn
et al. (2000, Chapter 14), properties of a fully linear model,
and (13). If xk is at an approximate minimizer of the sur-
rogate quadratic penalty function, (8), then a bound on the
constraint violation is

‖
[
h(xk)

T g+(xk)
T
]
‖

≤ κ1(max{α�k, a} + κg�k)+‖λ(x∗)‖+κ2‖xk − x∗‖
σk

,

(22)

where x∗ is a KKT point of (1), and κ1, κ2 are finite pos-
itive constants. If {σk�k} diverges then an iteration exists
where both the bound, (22), holds (the trust region size must
be large enough that a feasible point exists in the interior)
and the constraint violation is less than the given toler-
ance ε. This enables the switching between the two trust
region subproblems, (12) and (11). The upper bound for the
growth of σk , that (ii) limk→∞ σk�

2
k = 0, comes from the

smoothness of the quadratic penalty function. To establish
an upper bound for the Hessian 2-norm for the subprob-
lem in (12) we compare the value of the merit function at
a point �(xk +p, σk) with its linearized prediction based on
�(xk, σk), �̃(xk + p, σk). If κ f g is the Lipschitz constant
for ∇ fhigh(x), κcm is the maximum Lipschitz constant for
the constraints, and κcgm is the maximum Lipschitz constant
for a constraint gradient, we can show that

‖�(xk + p, σk) − �̃(xk + p, σk)‖

≤
[
κ f g + σk

(
κcm

∥∥∥
[
h(xk)

T g+(xk)
T
]∥∥∥

+ κcgm ‖A(xk)‖ ‖p‖ + κcmκcgm‖p‖2
)]

× ‖p‖2. (23)

We have a similar result for �̂(x, σk) by replacing κ f g with
the sum κ f g + κg , using the definition of a fully linear
model, and by bounding ‖p‖ by �k . Therefore, we may
show the error in a linearized prediction of the surrogate
model will go to zero and that Lipschitz-type smoothness
is ensured provided that the sequence {σk�

2
k} converges to

zero regardless of the constraint violation.
The final requirement, that (iii)

∑∞
k=0 1/σk is finite,

comes from the need for the size of the trust region to go to
zero in gradient-free optimization. The sufficient decrease con-
dition, that ρk =0 unless �̂(xk, σk)−�̂(xk + sk, σk) ≥ a�k

ensures that the trust region size decreases unless the change
in the merit function �(xk, σk) − �(xk + sk, σk) ≥ η0a�k .
This provides an upper bound on the total number of times
in which the size of the trust region is kept constant or
increased. We have assumed that the merit function is
bounded from below and also that the trust-region iter-
ates remain within a level-set L(x0, σ0) as defined by (4).
We now consider the merit function written in an alternate
form,

�(xk, σk) = fhigh(xk) + σk

2

∥∥∥
[
h(xk)

T, g+(xk)
T
]∥∥∥

2
. (24)

From (22), if σk is large enough such that the bound on the
constraint violation is less than unity, we may use the bound
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on the constraint violation in (22) to show that an upper
bound on the total remaining change in the merit function is

fhigh(xk) − min
x∈L(x0,σ0)

fhigh(x)

+
[
κ1(max{α�k, a}+κg�k)+‖λ(x∗)‖+κ2‖xk − x∗‖]2

σk
.

(25)

Each term in the numerator is bounded from above because
�k is always bounded from above by �max, ‖λ(x∗)‖ is
bounded from above because x∗ is a regular point, and
‖xk − x∗‖ is bounded from above because L(x0, σ0) is a
compact set. Therefore, if the series {1/σk} has a finite sum,
then the total remaining improvement in the merit function
is finite. Accordingly, the sum of the series {�k} must be
finite, and �k → 0 as k → ∞. The prescribed sequence
for {σk} in our algorithm satisfies these requirements for a
broad range of problems.

3 Multifidelity objective and constraint optimization

This section considers a more general constrained optimiza-
tion problem with a computationally expensive objective
function and computationally expensive constraints. The
specific problem considered is where the gradients for both
the expensive objective and expensive constraints are either
unavailable, unreliable or expensive to estimate. Accord-
ingly, the multifidelity optimization problem in (1) is aug-
mented with the high-fidelity constraint, chigh(x) ≤ 0.
In addition, we have a low-fidelity estimate of this con-
straint function, clow(x), which estimates the same metric
as chigh(x), but with unknown error. Therefore, our goal is
to find the vector x ∈ R

n of n design variables that solves
the nonlinear constrained optimization problem,

min
x∈Rn

fhigh(x)

s.t. h(x) = 0

g(x) ≤ 0

chigh(x) ≤ 0, (26)

where h(x) and g(x) represent vectors of inexpensive equal-
ity and inequality constraints with derivatives that are either
known or may be estimated cheaply. The same assump-
tions for the expensive objective function formulation given
in Section 2.1 are made for the functions presented in this
formulation. It is also necessary to make an assumption sim-
ilar to that in Section 2.2, that a quadratic penalty function
with the new high-fidelity constraint is bounded from below
within an initial expanded level-set. A point of note is that

multiple high-fidelity constraints can be used if an initial
point x0 is given that is feasible with respect to all con-
straints; however, due to the effort required to construct
approximations of the multiple high-fidelity constraints, it
is recommended that all of the high-fidelity constraints
be combined into a single high-fidelity constraint through,
as an example, a discriminant function (Rvachev 1963;
Papalambros and Wilde 2000).

The optimization problem in (26) is solved in two phases.
First, the multifidelity optimization method presented in
Section 2 is used to find a feasible point, and then an interior
point formulation is used to find a minimum of the opti-
mization problem in (26). The interior point formulation is
presented in Section 3.2 and the numerical implementation
is presented in Section 3.3.

3.1 Finding a feasible point

This algorithm begins by finding a point that is feasible with
respect to all of the constraints by applying Algorithm 1 to
the optimization problem

min
x∈Rn

chigh(x)

s.t. h(x) = 0

g(x) ≤ 0, (27)

until a point that is feasible with respect to the constraints
in (26) is found. If this optimization problem is uncon-
strained (i.e., there are no constraints h(x) and g(x)) then
the trust-region algorithm of Conn et al. (2009a) is used with
the multifidelity calibration method of March and Willcox
(2010). The optimization problem in (27) may violate one
of the assumptions for Algorithm 1 in that chigh(x) may not
be bounded from below. This issue will be addressed in the
numerical implementation of the method in Section 3.3.

3.2 Interior point trust-region method

Once a feasible point is found we minimize the high-fidelity
objective function ensuring that we never again violate the
constraints, that is we solve (26). This is accomplished in
two steps, first by solving trust region subproblems that
use fully linear surrogate models for both the high-fidelity
objective function and the high-fidelity constraint. Second,
the trust region step is evaluated for feasibility and any
infeasible step is rejected. The surrogate model for the
objective function is mk(x) as defined in (2). For the con-
straint, the surrogate model, m̄k(x), is defined as

m̄k(x) = clow(x) + ēk(x). (28)
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From the definition of a fully linear model, (9) and (10),
m̄k(x) satisfies

∥∥∇chigh(x) − ∇m̄k(x)
∥∥ ≤ κcg�k ∀x ∈ Bk, (29)

∣∣chigh(x) − m̄k(x)
∣∣ ≤ κc�

2
k ∀x ∈ Bk . (30)

In addition, we require that our procedure to construct fully
linear models ensures that at the current design iterate, the
fully linear models exactly interpolate the function they are
modeling,

mk(xk) = fhigh(xk), (31)

m̄k(xk) = chigh(xk). (32)

This is required so that every trust-region subproblem is
feasible at its initial point xk .

The trust-region subproblem is

min
sk∈Rn

mk(xk + sk)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

m̄k(xk + sk) ≤ max{chigh(xk), −w�k}
‖sk‖ ≤ �k . (33)

The surrogate model constraint does not have zero as a right
hand side to account for the fact the algorithm is looking for
interior points. The right hand side, max{chigh(xk), −w�k},
ensures that the constraint is initially feasible and that
protection of constraint violation decreases to zero as the
number of iterations increase to infinity. The constant w

must be greater than α, which is defined as part of the termi-
nation tolerance τk in (13). The trust-region subproblem is
solved to the same termination tolerance as the multifidelity
objective function formulation, ‖∇xLk‖ ≤ τk , where Lk is
the Lagrangian of (33).

The center of the trust region is updated if a decrease in
the objective function is found at a feasible point,

xk+1 =

⎧
⎪⎨

⎪⎩

xk + sk if fhigh(xk) > fhigh(xk + sk)

and chigh(xk + sk) ≤ 0

xk otherwise,

(34)

with h(xk + sk) = 0 and g(xk + sk) ≤ 0 already satisfied
in (33). The trust-region size update must ensure that the
predictions of the surrogate models are accurate and that
the size of the trust region goes to zero in the limit as the
number of iterations goes to infinity. Therefore, we again
impose a sufficient decrease condition, that the change

in the objective function is at least a constant, a, multiply-
ing �k ,

�k+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min{γ1�k, �max} if fhigh(xk + sk)

− fhigh(xk) ≥ a�k

and chigh(xk + sk) ≤ 0

γ0�k otherwise.

(35)

New surrogate models, mk+1(x) and m̄k+1(x), are then built
such that they are fully linear on a region Bk+1 having cen-
ter xk+1 and size �k+1. The new fully linear models are
constructed using the procedure of Wild et al. (2008) with
the calibration technique of March and Willcox (2010).

3.3 Multifidelity objective and constraint implementation

The numerical implementation of this multifidelity opti-
mization algorithm is presented as Algorithm 2. A set of
possible parameters that may be used in this algorithm is
listed in Table 2 in Section 4. An important implementation
issue with this algorithm is finding the initial feasible point.
Algorithm 1 is used to minimize the high-fidelity constraint
value subject to the constraints with available derivatives in
order to find a point that is feasible. However, Algorithm
1 uses a quadratic penalty function to handle the constraints
with available derivatives if the constraints are violated. The
convergence of a penalty function requires that the objective
function is bounded from below, therefore a more general
problem than (27) to find an initial feasible point is to use,

min
x∈Rn

[
max{chigh(x) + d, 0}]2

s.t. h(x) = 0

g(x) ≤ 0. (36)

The maximization in the objective prevents the need for the
high-fidelity constraint to be bounded from below, and the
constraint violation is squared to ensure the gradient of the
objective is continuous. The constant d is used to account
for the fact that the surrogate model will have some error
in its prediction of chigh(x), so looking for a slightly nega-
tive value of the constraint may save iterations as compared
to seeking a value that is exactly zero. For example, if
d ≥ κc�

2
k and m̄k(x) + d = 0 then (30) guarantees that

chigh(x) ≤ 0.
There is a similar consideration in the solution of (33),

where a slightly negative value of the surrogate constraint is
desired. If this subproblem is solved with an interior point
algorithm this should be satisfied automatically; however, if
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a sequential quadratic programming method is used the con-
straint violation will have a numerical tolerance that is either
slightly negative or slightly positive. It may be necessary to
bias the subproblem to look for a value of the constraint that
is more negative than the optimizer constraint violation tol-
erance to ensure the solution is an interior point. This feature
avoids difficulties with the convergence of the trust-region
iterates.

A final implementation note is that if a high-fidelity con-
straint has numerical noise or steep gradients it may be wise

to shrink the trust region at a slower rate, increasing γ0. This
will help to ensure that the trust-region does not decrease to
zero at a suboptimal point.

4 Supersonic airfoil design test problem

This section presents results of the two multifidelity opti-
mization algorithms on a supersonic airfoil design problem.
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(a) Panel method. (b) Shock-expansion method. (c) Cart3D.

Fig. 1 Supersonic airfoil estimated pressure distribution comparisons for a 5% thick biconvex airfoil at Mach 1.5 and 2◦ angle of attack

4.1 Problem setup

The supersonic airfoil design problem has 11 parameters:
the angle of attack, 5 spline points on the upper surface
and 5 spline points on the lower surface. However, there
is an actual total of 7 spline points on both the upper and
lower surfaces because the leading and trailing edges must
be sharp for the low-fidelity methods used. The airfoils are
constrained such that the minimum thickness-to-chord ratio
is 0.05 and that the thickness everywhere on the airfoil must
be positive. In addition, there are lower and upper bounds
for all spline points.

Three supersonic airfoil analysis models are available: a
linearized panel method, a nonlinear shock-expansion the-
ory method, and Cart3D, an Euler CFD solver (Aftosmis
1997). Note, that Cart3D has a finite convergence tolerance
so there is some numerical noise in the lift and drag predic-
tions. In addition, because random airfoils are used as initial
conditions, Cart3D may fail to converge, in which case the
results of the panel method are used. Figure 1 shows com-
puted pressure distributions for each of the models for a 5%
thick biconvex airfoil at Mach 1.5 and 2◦ angle of attack.
Table 1 provides the estimated lift and drag coefficients
for the same airfoil and indicates the approximate level of
accuracy of the codes with respect to each other.

Table 1 5% thick biconvex airfoil results comparison at Mach 1.5 and
2◦ angle of attack

Panel Shock-expansion Cart3D

CL 0.1244 0.1278 0.1250

% Diff 0.46% 2.26% 0.00%

CD 0.0164 0.0167 0.01666

% Diff 1.56% 0.24% 0.00%

Percent difference is taken with respect to the Cart3D results

We first present single-fidelity results using state-of-the-
art derivative-free methods. Then the following sections
present results for three optimization examples each using
this airfoil problem to demonstrate the capabilities of the
optimization algorithms presented. In the first example,
Section 4.3, the airfoil drag is minimized using the con-
strained multifidelity objective function formulation pre-
sented in Section 2 with only the simple geometric con-
straints. In the second example, Section 4.4, the airfoil
lift-to-drag ratio is maximized subject to a constraint that
the drag coefficient is less than 0.01, where the constraint
is handled with the multifidelity framework presented in
Section 3. In the final example, Section 4.5, the airfoil
lift-to-drag ratio is maximized subject to the constrained
drag coefficient and both the objective function and the
constraints are handled with the multifidelity framework
presented in Section 3. The initial airfoils for all prob-
lems are randomly generated and likely will not satisfy
the constraints.

The three multifidelity airfoil problems are solved
with four alternative optimization algorithms: Sequential
Quadratic Programming (SQP) (MathWorks, Inc. 2010);
a first-order consistent multifidelity trust-region algorithm
that uses a SQP formulation and an additive correction
(Alexandrov et al. 2001); the high-fidelity-gradient-free
approach presented in this paper using a Gaussian radial
basis function and a fixed spatial correlation parameter,
ξ = 2; and the approach presented in this paper using a
maximum likelihood estimate to find an improved corre-
lation length, ξ = ξ∗. The Gaussian correlation functions
used in these results are all isotropic. An anisotropic corre-
lation function (i.e., choosing a correlation length for each
direction in the design space) may speed convergence of
this algorithm and reduce sensitivity to Hessian condition-
ing. The parameters used for the optimization algorithm are
presented in Table 2. The fully linear models are constructed
using the procedure of Wild et al. (2008) with the calibration
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Table 2 List of constants used in the algorithm

Constant Description Value

a Sufficient decrease constant 1 × 10−4

α Convergence tolerance multiplier 1 × 10−2

β Convergence tolerance multiplier 1 × 10−2

d Artificial lower bound for 1

constraint value

w Constraint violation conservatism 0.1

factor

ε, ε2 Termination tolerance 5 × 10−4

γ0 Trust region contraction ratio 0.5

γ1 Trust region expansion ratio 2

η0 Trust region contraction criterion 0.25

η1, η2 Trust region expansion criterion 0.75, 2.0

�0 Initial trust region radius 1

�max Maximum trust region size 20

σk Penalty parameter max
[
ek/10, 1/�1.1

k

]

δx Finite difference step 1 × 10−5

All parameters used in constructing the radial basis function error
model are the same as in March and Willcox (2010). These param-
eter values are based on recommendations for unconstrained trust-
region algorithms and through numerical testing appear to have good
performance for an assortment of problems

technique of March and Willcox (2010) and the parameters
stated therein.

4.2 Single-fidelity derivative-free optimization

For benchmark purposes, we first solve the airfoil opti-
mization problem using three single-fidelity gradient-free
optimization methods: the Nelder–Mead simplex algorithm
(Nelder and Mead 1965), the global optimization method
DIRECT (Jones et al. 1993), and the constrained gradient-
free optimizer, COBYLA (Powell 1994, 1998). The test
case is to minimize the drag of supersonic airfoil estimated
with a panel method, subject to the airfoil having positive
thickness everywhere and at least 5% thickness to chord
ratio. This test case is a lower-fidelity version of the exam-
ple in Section 4.3. Nelder–Mead simplex and DIRECT
are unconstrained optimizers that use a quadratic penalty

function known to perform well on this problem (March
and Willcox 2010), while COBYLA handles the constraints
explicitly. On this problem, starting from ten random ini-
tial airfoils the best observed results were 5,170 function
evaluations for the Nelder–Mead simplex algorithm, over
11,000 evaluations for DIRECT, and 6,284 evaluations for
COBYLA. Such high numbers of function evaluations mean
that these single-fidelity gradient-free algorithms are too
expensive for use with an expensive forward solver, such
as Cart3D.

4.3 Multifidelity objective function results

This section presents optimization results in terms of the
number of high-fidelity function evaluations required to find
the minimum drag for a supersonic airfoil at Mach 1.5 with
only geometric constraints on the design. Two cases are
tested: the first uses the shock-expansion method as the
high-fidelity function and the panel method as the low-
fidelity function; the second uses Cart3D as the high-fidelity
function and the panel method as the low-fidelity function.
These problems are solved using the multifidelity optimiza-
tion algorithm for a computationally expensive objective
function and constraints with available derivatives presented
in Section 2.

The average numbers of high-fidelity function evalua-
tions required to find a locally optimal design starting from
random initial airfoils are presented in Table 3. The results
show that our approach uses approximately 78% fewer high-
fidelity function evaluations than SQP and approximately
30% fewer function evaluations than the first-order consis-
tent trust-region method using finite difference gradient esti-
mates. In addition, Fig. 2 compares the objective function
and constraint violation histories verse the number of high-
fidelity evaluations for these methods as well as DIRECT
and Nelder-Mead simplex from a representative random ini-
tial airfoil for the case with the shock-expansion method
as the high-fidelity function. For the single-fidelity opti-
mization using Cart3D, the convergence results were highly
sensitive to the finite difference step length. The step size
required tuning, and the step with the highest success
rate was used. A reason for this is that the initial airfoils
were randomly generated, and the convergence tolerance

Table 3 The average number of high-fidelity function evaluations to minimize the drag of a supersonic airfoil with only geometric constraints

High-fidelity Low-fidelity SQP First-order TR RBF, ξ = 2 RBF, ξ = ξ*

Shock-expansion Panel method 314 (−) 110 (−65%) 73 (−77%) 68 (−78%)

Cart3D Panel method 359* (−) 109 (−70%) 80 (−78%) 79 (−78%)

The asterisk for the Cart3D results means a significant fraction of the optimizations failed and the average is taken over fewer samples. The
numbers in parentheses indicate the percentage reduction in high-fidelity function evaluations relative to SQP
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Fig. 2 Convergence history for minimizing the drag of an airfoil using
the shock-expansion theory method as the high-fidelity function sub-
ject to only geometric constraints. The methods presented are our
calibration approach, a first-order consistent multifidelity trust-region
algorithm, sequential quadratic programming, DIRECT, and Nelder-
Mead simplex. Both DIRECT and Nelder-Mead simplex use a fixed
penalty function to handle the constraints, so only an objective function

value is shown. COBYLA and BOBYQA were attempted, but failed to
find the known solution to this problem. On the constraint violation
plot, missing points denote a feasible iterate, and the sudden decrease
in the constraint violation for the RBF calibration approach at 37 high-
fidelity evaluations (13th iteration, σk = 9.13 × 105) is when the
algorithm switches from solving (12) to solving (11)

Table 4 The average number of high-fidelity constraint evaluations required to maximize the lift-to-drag ratio of a supersonic airfoil estimated
with a panel method subject to a multifidelity constraint

High-fidelity Low-fidelity SQP First-order TR RBF, ξ = 2 RBF, ξ = ξ*

Shock-expansion Panel method 827 (−) 104 (−87%) 104 (−87%) 115 (−86%)

Cart3D Panel method 909* (−) 100 (−89%) 103 (−89%) 105 (−88%)

The asterisk for the Cart3D results means a significant fraction of the optimizations failed and the average is taken over fewer samples. The
numbers in parentheses indicate the percentage reduction in high-fidelity function evaluations relative to SQP

(a) Initial airfoil. (b) Optimal shock-expansion theory airfoil. (c) Optimal Cart3D flow solution.

Fig. 3 Initial airfoil and supersonic airfoil with the maximum lift-to-drag ratio having drag less than 0.01 and 5% thickness at Mach 1.5
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Table 5 The average number of high-fidelity objective function and high-fidelity constraint evaluations to optimize a supersonic airfoil for a
maximum lift-to-drag ratio subject to a maximum drag constraint

High-fidelity Low-fidelity SQP First-order TR RBF, ξ = 2 RBF, ξ = ξ*

Objective: Shock-expansion Panel method 773 (−) 132 (−83%) 93 (−88%) 90 (−88%)

Constraint: Shock-expansion Panel method 773 (−) 132 (−83%) 97 (−87%) 96 (−88%)

Objective: Cart3D Panel method 1168* (−) 97 (−92%) 104 (−91%) 112 (−90%)

Constraint: Cart3D Panel method 2335* (−) 97 (−96%) 115 (−95%) 128 (−94%)

The asterisk for the Cart3D results means a significant fraction of the optimizations failed and the average is taken over fewer samples. The
numbers in parentheses indicate the percentage reduction in high-fidelity function evaluations relative to SQP

of Cart3D for airfoils with sharp peaks and negative thick-
ness was large compared with the airfoils near the optimal
design. This sensitivity of gradient-based optimizers to
the finite difference step length highlights the benefit of
gradient-free approaches, especially when constraint gradi-
ent estimates become poor.

4.4 Multifidelity constraint results

This section presents optimization results in terms of the
number of function evaluations required to find the maxi-
mum lift-to-drag ratio for a supersonic airfoil at Mach 1.5
subject to both geometric constraints and the requirement
that the drag coefficient is less than 0.01. The lift-to-drag
ratio is computed with the panel method; however, the
drag coefficient constraint is handled using the multifidelity
technique presented in Section 3. Two cases are exam-
ined: in the first the shock-expansion method models the
high-fidelity constraint and the panel method models the
low-fidelity constraint; in the second case, Cart3D models
the high-fidelity constraint and the panel method models the
low-fidelity constraint. Table 4 presents the average num-
ber of high-fidelity constraint evaluations required to find
the optimal design using SQP, a first-order consistent trust-
region algorithm and the multifidelity techniques developed
in this paper. A significant decrease (almost 90%) in the
number of high-fidelity function evaluations is observed
when compared with SQP. Performance is almost the same
as the first-order consistent trust-region algorithm.

4.5 Multifidelity objective function and constraint results

This section presents optimization results in terms of the
number of function evaluations required to find the max-
imum lift-to-drag ratio for a supersonic airfoil at Mach 1.5
subject to geometric constraints and the requirement that the
drag coefficient is less than 0.01. In this case, both the lift-
to-drag ratio and the drag coefficient constraint are handled
using the multifidelity technique presented in Section 3.

In the first case, the shock-expansion method is the high-
fidelity analysis used to estimate both metrics of interest
and the panel method is the low-fidelity analysis. In the
second case, Cart3D is the high-fidelity analysis and the
panel method is the low-fidelity analysis. The optimal air-
foils are shown in Fig. 3. Table 5 presents the number of
high-fidelity function evaluations required to find the opti-
mal design using SQP, a first-order consistent trust-region
algorithm and the techniques developed in this paper. Again
a significant reduction (about 90%) in the number of high-
fidelity function evaluations, both in terms of the constraint
and the objective, are observed compared with SQP, and
a similar number of high-fidelity function evaluations are
observed when compared with the first-order consistent
trust region approach using finite differences.

5 Conclusion

This paper has presented two algorithms for multifidelity
constrained optimization of computationally expensive
functions when their derivatives are not available. The
first method minimizes a high-fidelity objective function
without using its derivative while satisfying constraints
with available derivatives. The second method minimizes
a high-fidelity objective without using its derivative while
satisfying both constraints with available derivatives and
an additional high-fidelity constraint without an avail-
able derivative. Both of these methods support multiple
lower-fidelity models through the use of a multifidelity
filtering technique without any modifications to the meth-
ods. For the supersonic airfoil design example considered
here, the multifidelity methods resulted in approximately
90% reduction in the number of high-fidelity function
evaluations compared to solution with a single-fidelity
sequential quadratic programming method. In addition, the
multifidelity methods performed similarly to a first-order
consistent trust-region algorithm with gradients estimated
using finite difference approximations. This shows that
derivative-free multifidelity methods provide significant
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opportunity for optimization of computationally expensive
functions without available gradients.

The behavior of the gradient-free algorithms presented
is slightly atypical of nonlinear programming methods. For
example, the convergence rate of these gradient-free algo-
rithms is rapid initially and then slows when close to an
optimal solution. In contrast, convergence for a gradient-
based method is often initially slow and then accelerates
when close to an optimal solution (e.g., as approximate
Hessian information becomes more accurate in a quasi-
Newton approach). Also, gradient-based optimizers typ-
ically find the local optimal solution nearest the initial
design. Although by virtue of the physics involved, the
presented examples have unique optimal solutions, in a gen-
eral problem the local optimum to which these gradient-free
algorithms converge may not be the one in the immediate
vicinity of the initial iterate. An example of this behavior
is the case when the initial iterate is itself a local optimum,
the surrogate model may not capture this fact and the iter-
ate may move to a different point in the design space with a
lower function value.

In the case of hard constraints, or when the objective
function fails to exist if the constraints are violated, it is
still possible to use Algorithm 2. After the initial feasible
point is found, no design iterate will be accepted if the high-
fidelity constraint is violated. Therefore the overall flow of
the algorithm is unchanged. What must be changed is the
technique to build fully linear models. In order to build a
fully linear model, the objective function must be evaluated
at a set of n + 1 points that span R

n . When the objective
function can be evaluated outside the feasible region, the
constraints do not influence the construction of the surro-
gate model. However, when the objective function does not
exist where the constraints are violated, then the points used
to construct the surrogate model must all be feasible and
this restricts the shape of the feasible region. Specifically,
this requirement prohibits equality constraints and means
that strict linear independent constraint qualification must
be satisfied everywhere in the design space (preventing
two inequality constraints from mimicking an equality con-
straint). If these two additional conditions hold, then it will
be possible to construct fully linear models everywhere in
the feasible design space and use this algorithm to optimize
computationally expensive functions with hard constraints.

Lastly, we comment on the applicability of the proposed
multifidelity approach. Though this paper presents no for-
mal convergence theory, and at best that theory will only
apply if many restrictive assumptions hold (for example,
assumptions on smoothness, constraint qualification, and
always using a fully linear surrogate) our numerical experi-
ments indicate the robustness of the approach in application
to a broader class of problems. For example, the Cart3D
CFD model employed in our case studies does not satisfy

the Lipschitz continuity requirements, due to finite conver-
gence tolerances in determining the CFD solution; however,
with the aid of the smooth calibrated surrogates combined
with the trust-region model management, our multifidelity
method is successful in finding locally optimal solutions.
Another example is a high-fidelity optimal solution for
which constraint qualification conditions are not satisfied.
In the algorithms presented, the design vector iterate will
approach a local minimum and the sufficient decrease test
for the change in the objective function value will fail. This
causes the size of the trust region to decay to zero around the
local minimum even though the KKT conditions may not be
satisfied.

In summary, this paper has presented a multifidelity
optimization algorithm that does not require estimating gra-
dients of high-fidelity functions, enables the use of multiple
low-fidelity models, enables optimization of functions with
hard constraints, and exhibits robustness over a broad class
of optimization problems, even when non-smoothness is
present in the objective function and/or constraints. For
airfoil design problems, this approach has been shown to
perform similarly in terms of the number of function eval-
uations to finite-difference-based multifidelity optimization
methods. This suggests that the multifidelity derivative-free
approach is a promising alternative for the wide range of
problems where finite-difference gradient approximations
are unreliable.
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