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Nomenclature

CL = Lift coefficient
CD = Drag coefficient
Cmref = Pitching moment coefficient about the aerodynamic reference point
CmCG = Pitching moment coefficient about the center of gravity
D = Quantity of interest input space
FX , FZ = Force in the body X/Z axis
GP = Gaussian process
IB, OB = Inboard/Outboard control surface
Iyy = Moment of inertia about the Y axis
M = Mach number
MY = Moment about the body Y axis
ÛQ = Pitch acceleration
R = Real numbers
Rmg/ng = Reaction force due to main/nose gear
Sref = Reference area
ÛU, ÛW = Vehicle acceleration along the X/Z axis

V∞ = Freestream velocity
X = Matrix of training data
∆X[], ∆Z[] = Distance between the center of gravity and the [] gear along the X/Z axis
cref = Reference chord
d = Number of dimensions in input space
f (x) = quantity of interest
f̃ = Surrogate model of quantity of interest
g = Acceleration due to gravity
k(x, x) = Gaussian Process kernel function
`k = Characteristic length of dimension k
m = Vehicle mass
m(x) = Gaussian Process mean function
nδ = Number of control surfaces
q̄ = Dynamic pressure
xaero = Aerodynamic state vector
α = Angle of attack
δi = Deflection of control surface i
θ = Body angle with respect to the ground
µ = Coefficient of rolling friction
µGP = Mean of Gaussian Process
µ̄ = Multifidelity mean estimate
σ = Covariance function scaling hyperparameter
σ2
GP = Variance of Gaussian Process posterior estimate

σ2
f = Fidelity variance

σ2
t = Total variance

σ̄2 = Multifidelity variance estimate

I. Introduction
Early-stage design decisions draw on multiple sources of information, including low- and high-fidelity disciplinary

models, small-scale experiments, historical data, and expert opinion. It is a significant challenge to optimally exploit
this range of multi-information-source data, requiring the designer to manage and control uncertainty while ensuring an
appropriate level of fidelity to inform the design decision at hand. This challenge is amplified in the multidisciplinary
setting, where nonlinear interactions among disciplines may cause uncertainty to manifest in unexpected ways at the
system level. This is true for many aerospace systems, including aircraft, spacecraft, satellites, and more. This paper
develops a methodology that fuses data from disparate information sources, quantifies the uncertainty in the fused
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multi-information-source estimates, and propagates that uncertainty to the system level. As an illustrative example, we
consider the stability and control (S&C) analysis of a Blended-Wing-Body (BWB) aircraft. This is a prime example
where: (1) nonlinear multidisciplinary interactions drive critical early-stage design decisions; (2) evaluating critical
design criteria requires many thousands of aerodynamic evaluations, rendering the use of high-fidelity models alone
computationally prohibitive; (3) critical design criteria involve operating conditions outside the regimes of validity
for typical low-fidelity aerodynamic conceptual design models; and (4) a combination of experimental data and
simulation-based models are typically available to inform design decisions. The key elements of our approach are
shown in Figure 1.
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Fig. 1 Our multifidelity methodology combines multiple information sources and quantifies uncertainty at the
integrated system level.
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The BWB aircraft configuration is envisioned to serve the long-haul cargo transport market [1]. A key design driver
of BWB configurations is the S&C analysis, which assesses control effectiveness and computes the operating center of
gravity limits. Due to the tight coupling among aerodynamics, planform layout, and S&C in a BWB configuration, it is
essential that the S&C constraints be considered early in the conceptual design process. The S&C analysis relies on
accurate estimates of the aircraft’s lift, drag, and pitching moment coefficients [2]. Prior studies of BWB control surface
layouts and controller designs have used calibrated, low-fidelity vortex lattice models to estimate the aerodynamic
coefficients [3, 4]. The calibration step is necessary because vortex lattice predictions degrade in quality for cases with
large angles of attack or large control surface deflections, which are required for S&C analyses. In an ideal setting,
the calibration data are derived from wind tunnel or flight testing. If experimental data are unavailable, high-fidelity
computational fluid dynamics (CFD) models may also be employed, although the large number of aerodynamic
evaluations required makes it computationally prohibitive to use CFD models to cover the full S&C design space, and
CFD models may themselves not be reliable enough for calibration, such as at high angles of attack.

One way to address these challenges is via multifidelity methods that seek to fuse individual models of various
fidelity into a single representation of a given quantity of interest [5, 6]. Hierarchical multifidelity methodologies
assume that each model in a given set falls somewhere on a spectrum from low to high fidelity, and that there exists a
high-fidelity model that represents a “truth” model. Such methods include trust region model management in design
optimization [7–9]. Many hierarchical methods use discrepancy functions to correct low-fidelity models with sparse
high-fidelity data [10–13]. This approach has been used in the literature in the design of a high-speed civil transport [14],
design of a supersonic jet [15, 16], wing design [10], and flight maneuver simulations [17]. Another hierarchical
multifidelity methodology is co-kriging [18], where data from two or more models are combined to train a single
Gaussian process surrogate model. Co-kriging also allows for the use of gradients as a secondary source of information;
examples of its use in the aircraft simulation and design literature include the design of a supersonic jet [19] and for
combining computational and experimental data [20].

In this paper, we use a non-hierarchical multifidelity approach; that is, an approach that represents the fidelity of a
model as a function of where that model is evaluated in the domain [21–23]. This allows the ordering of a set of models
by fidelity to change throughout the domain and does not assume a “truth” model. It also allows for incorporation of
information sources other than computational models (e.g., experimental data) and for quantification of uncertainty
in the fused multifidelity estimates. Our approach uses the notion of fidelity function as proposed in [22] to quantify
our confidence in a particular information source. The main contribution of this paper is to develop the end-to-end
methodology that translates these fidelity functions to practical use in the multidisciplinary design setting. We achieve
this by proposing a methodology that combines the fidelity functions with other sources of uncertainties, uses surrogates
to achieve uncertainty propagation through a coupled multifidelity analysis, and quantifies uncertainty on design
quantities of interest. A second contribution of this paper is to illustrate concretely how a multifidelity formulation
benefits multidisciplinary design through explicit representation of uncertainty. This illustration is achieved via a
challenging problem that goes beyond the academic examples found in much of the existing literature. While specific
conclusions can be drawn only about the selected aircraft example, the results point to generalizable conclusions that are
relevant to other multidisciplinary design problems.

Section II of this paper describes the multifidelity methodology, which uses Gaussian process models together with
a quantification of model fidelity that informs the multifidelity model fusion. Section III presents the example of BWB
S&C analysis; it describes the disciplinary models used to estimate center of gravity limits and the quantification of their
uncertainties. The problem formulation includes multiple information sources for estimating the aircraft’s aerodynamic
coefficients. Section IV presents the results of applying the multifidelity modeling and uncertainty quantification to
estimate probability density functions of the performance metrics of interest, namely the fore and aft center of gravity
limits and the center of gravity travel range. Finally, Section V concludes the paper.

II. Modeling for Analysis Under Uncertainty
As discussed in the introduction, the main contribution of this paper is an end-to-end methodology that enables

multifidelity analysis and uncertainty quantification for a coupled multidisciplinary problem, tackling the challenges
of high computational cost and disparate data sources that provide information unevenly over the design space. The
methodology weaves together a number of existing elements from the literature, which are described in this section.
Section II.A presents an overview of Gaussian process regression, which is used to build surrogate models of the analysis
disciplines and provides a platform for synthesizing estimates from multiple information sources. Section II.B presents
the model for representing and combining uncertainties, and Section II.C presents the method for computing fused
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multifidelity estimates. Section II.D details how the elements come together to create the overall proposed methodology.

A. Gaussian process regression
Gaussian processes have gained prominence in the surrogate modeling and machine learning communities due

to their ability to model complex, multidimensional surfaces while simultaneously providing an explicit measure of
confidence in their predictive outputs [24, 25]. We use a standard Gaussian process modeling approach to create
surrogates for each disciplinary model. We summarize the key elements of the approach here in order to set notation.

Given an input spaceD ⊆ Rd and an input vector x ∈ D, we wish to create a surrogate model of the output function
f (x) : D → R. In our setting, the function f represents a scalar quantity of interest that relates to design performance
metrics and constraints. We treat each such quantity of interest separately.

A Gaussian process is a function
g(x) ∼ GP(m(x), k(x, x)) (1)

with mean function m(x) and covariance function k(x, x ′). The mean function describes the trends in the output space
while the covariance function encodes the relationship between two points, x and x ′, in the input space D.

The posterior prediction of the Gaussian process can be explicitly derived. Let X denote a matrix of N training
points,

X =


| | |

x1 x2 · · · xN

| | |

 , (2)

where each x j ∈ D is a training point in the design space. Let f = [ f1, f2, . . . , fN ]T be the column vector containing the
corresponding values of the quantity of interest computed by the function being approximated (that is, fj = f (x j), the
quantity of interest evaluated at the design point x j). The Gaussian process prediction at a test point x∗ ∈ D is given by

µGP(x
∗) = m(x∗) + k(x∗,X)k(X,X)−1 f (3)

σGP(x
∗) = k(x∗, x∗) − k(x∗,X)k(X,X)−1k(X, x∗), (4)

where µGP(x) is the posterior mean and σGP(x) is the posterior standard deviation. In (3) and (4), k(X,X) indicates the
N × N covariance matrix whose i jth entry is given by k(xi, xj).

The models developed in this paper use a zero prior for the mean, m(x) = 0, and the square exponential with
automatic relevance determination for the covariance function:

k(x, x ′) = σ2 exp

(
−

d∑
k=1

| |xk − x ′
k
| |22

2`2
k

)
, (5)

where xk denotes the kth entry of the design vector x. Maximum likelihood regression is used to compute the values of
the hyperparameters σ and `1, . . . , `d .

B. Modeling multiple information sources
For a given quantity of interest f we consider n information sources available to inform its prediction. For each

information source, we construct a Gaussian process model as described in Section II.A using training data generated
from that information source (e.g., simulation data or experimental data). The Gaussian process model for information
source i has mean µGP,i(x) (Eq. 3) and variance σ2

GP,i(x) (Eq. 4). This variance is a quantification of the uncertainty
arising from the surrogate modeling process—it reflects uncertainty in the Gaussian process model prediction away
from a training point.

To characterize the uncertainty due to the underlying information sources themselves, we draw on the definition of a
fidelity function, introduced in [22]. For each information source i = 1, . . . ,n, define the fidelity function σf,i(x). This
fidelity function quantifies our confidence in the underlying information source data, using a standard deviation of the
predictions from the true value of f (x). Note that the probability density function from which σf,i(x) is computed
is usually unknown and in practice is either assumed or inferred from expert opinion. The variance σ2

f,i(x) is a
quantification of the uncertainty associated with the fidelity of information source i.

5



Our approach combines these two estimates of uncertainty, σGP,i and σt,i , to form our overall surrogate for
information source i, which we denote f̃i . The surrogate f̃i(x) has mean µGP,i(x) and total variance

σ2
t,i(x) = σ

2
GP,i(x) + σ

2
f,i(x), (6)

which is computed by summing the Gaussian process and fidelity variances. Note that the Gaussian process standard
deviation, σGP,i , is zero at the training points since the training data are treated as exact observations of the information
source. However, the total variance of f̃i(x) cannot be lower than the fidelity variance. If the surrogate is perfectly
trained, i.e., the Gaussian process standard deviation is zero, the total standard deviation will be equal to the fidelity
standard deviation. This prevents a surrogate from being treated as too reliable simply because it is better trained.
Likewise, including the Gaussian process standard deviation in the total standard deviation prevents badly trained
surrogates, or estimates at points far outside of the training set, from being treated as too reliable, even if the fidelity
variance is small.

C. Multifidelity fused estimates
Our multifidelity estimate for the quantity of interest f (x) incorporates all available information sources while

also taking into account the degree of confidence that the designer has in each model. The multifidelity estimate
is constructed using a weighted sum of estimates from each information source, where the weighting is inversely
proportional to the model variance so that high-confidence models are weighted more heavily. This weighting uses
long-established theory on combining probability distributions [26]. The multifidelity mean estimate is given by a
variance-weighted sum of the individual mean estimates:

µ̄(x) = σ̄2(x)
n∑
i=1

µGP,i(x)

σ2
t,i(x)

, (7)

where

σ̄2(x) =

(
n∑
i=1

1
σ2
t,i(x)

)−1

(8)

is the multifidelity estimate of the total variance, computed by taking a weighted sum of the individual, total model
variances.

Equations (7) and (8) follow the theory in [26], assuming that each information source is independent. If the
dependencies among information sources can be reliably estimated (e.g., through modeling the correlations in their
various discrepancies from truth as is done in [27]) then the multifidelity estimates can be modified accordingly, again
using the theory in [26].

D. Multifidelity methodology
Figure 2 depicts the overall end-to-end multifidelity methodology proposed in this paper. This methodology

combines the elements described above—the notion of non-hierarchical multifidelity formulations to fuse disparate
data, the definition of fidelity functions to quantify information source uncertainty, and Gaussian process models to
reduce computational cost—and combines them with a coupled multidisciplinary analysis formulation and uncertainty
propagation via Monte Carlo sampling.

As the example problem presented in the remainder of the paper demonstrates, the proposed approach addresses
many of the challenges discussed in Section I. Yet, the proposed approach has a number of limitations and drawbacks.
First, the definition of the fidelity functions may be difficult. Trusted data sources are invaluable in quantifying the
fidelity, but ultimately the task must inject expert opinion. On the one hand, this provides a way to bring designer
experience to bear in the approach, but on the other hand it introduces subjectivity to the approach. Second, the proposed
approach is based on probabilistic representations of uncertainty. This choice was made because it translates into a
computationally tractable and relatively simple algorithm, and because the probabilistic representations can be justified
based on statistical theory such as the Principle of Maximum Entropy [28] as discussed in more detail in [21]. However,
we note that other ways to represent uncertainty, such as possibility theory, Dempster-Shafer evidence theory, imprecise
probabilities, and interval analysis [29–32], are preferred among some parts of the community. Third, our approach
inherits the computational difficulties associated with Gaussian process regression. In particular, the task of determining
the hyperparameters is often numerically ill-conditioned, especially as the dimension of the parameter space increases.
This can translate into a lack of robustness of the resulting surrogate model.
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Fig. 2 Our multifidelity methodology combines multiple information sources and augments the variance
estimate using expert input and prior knowledge to form the multifidelity estimate.

III. Blended Wing Body Example
Unlike conventional aircraft configurations, the planform of the BWB is driven in large part by the stability and

control (S&C) characteristics of the vehicle [2, 33]. The S&C criteria are highly nonlinear due to the three-dimensional
nature of the aerodynamic flow and the fact that most of the S&C criteria involve stall conditions. Many aerodynamic
analysis methods commonly used for conceptual design are unable to model such flow behaviors, due to their linear
formulation or missing physics. This necessitates the use of more expensive high-fidelity analysis to better evaluate S&C
constraints of a BWB configuration, yet the computational costs of using only high-fidelity models quickly becomes
prohibitive. This section presents an overview of the aerodynamic and S&C models used to analyze an illustrative BWB
example configuration.

A. Geometry
The geometry of the BWB is modeled using the Engineering SketchPad (ESP), a parameterized CAD toolkit [34].

The BWB analyzed in this paper is inspired by the ERA-0009H1 planform [35]. The centerbody airfoils are slightly
reflexed (inverted NACA 4-series) while the wing airfoils are all symmetric NACA 4-series airfoils. Only the wing and
centerbody are modeled, as shown in Figure 3.

The planform, shown in Figure 4, consists of four elements: a centerbody section, a fairing between the centerbody
and panel one of the wing, a two-panel wing, and a winglet. Thirteen control surfaces are cut into the centerbody and
wing. The inner three are denoted as the inboard (IB) control surfaces while those on the outer wing are the outboard
(OB) control surfaces.
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Fig. 3 ESP representation of the BWB geometry used in this work.

IB1IB2L

OB1L
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OB3L

OB4L

OB5L IB2R
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OB2R

OB3R

OB4R

OB5R

Fig. 4 Top view of the BWB planform with the inboard (IB) and outboard (OB) control surfaces denoted.

B. Aerodynamics
The aerodynamic models compute the lift coefficient, CL , drag coefficient, CD , and pitching moment coefficient

about the reference point, Cmref . The aerodynamic outputs are functions of the Mach number M, the angle of attack
α, and the deflections of 7 control surfaces δ1 (IB1), δ2 (IB2), δ3 (OB1), δ4 (OB2), δ5 (OB3), δ6 (OB4), and δ7 (OB5).
Together these inputs make up the vector xaero:

xaero =
[
M α δ1 δ2 δ3 δ4 δ5 δ6 δ7

]T
(9)

Since only the longitudinal S&C characteristics are analyzed in this work, the left and right control surfaces are combined.
Thus, a deflection of δ1 is equivalent to deflecting both OB1L and OB1R in Figure 4. After this simplification, the
analysis has nδ = 7 control surfaces.

Four aerodynamic information sources are used to analyze the BWB: a vortex lattice model, a CFD implementation
of the Euler equations, a CFD implementation of the RANS equations, and a notional database of wind tunnel data. No
truth model is available for the aerodynamic quantities as estimated by each information source; therefore, each quantity
from each model is assigned a fidelity function. As described in Section II.B, these fidelity functions quantify expert
opinion about the predictive capability of the information sources with respect to the BWB configuration being analyzed.
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Vortex Lattice Aerodynamic Model
The vortex lattice code used for the present work is Athena Vortex Lattice (AVL)∗. The AVL representation of the

BWB and an example solution are shown in Figure 5. A constant viscous drag of 85 counts is added across all points to
align the AVL prediction of the drag with that of the RANS prediction at 4 degrees angle of attack at Mach 0.2. The

(a) Bound vortex representation. (b) Spanwise delta coefficient of pressure slices.

Fig. 5 AVL half planform and solution.

AVL fidelity functions are defined for the AVL estimates of CL , CD and Cmref . The fidelity standard deviations are
chosen to have linear growth proportional to the value of the quantities of interest, representing a decrease in confidence
in AVL estimates with increasing angle of attack:

3σAVL
f,CL
(xaero) = 0.1|CL | + 0.1 (10)

3σAVL
f,CD
(xaero) = 0.8CD (11)

3σAVL
f,Cmref

(xaero) = 0.1|Cmref | + 0.1 (12)

Note that these fidelity functions are constructed for the purpose of the present example, based on expert opinion and
other available estimates of the aerodynamic coefficients. These fidelity functions should be considered illustrative;
other choices are possible.

Euler Aerodynamic Model
The Euler solver used in this work is the SU2 CFD code [36]. The mesh generation uses ESP for the surface and

AFLR3 for the volume meshes†. Figure 6 shows an example pressure coefficient solution for a Mach number of 0.2 and
an angle of attack of 5 degrees. To account for viscous effects, a constant drag offset of 40 counts is applied. This value
was chosen to bring the Euler prediction of the CD up to the RANS prediction at a Mach number of 0.2 at 4 degrees
angle of attack.

Like the AVL fidelity functions, the Euler fidelity functions are chosen to have linear growth proportional to the
value of the quantities of interest, again representing increasing uncertainty with increasing angle of attack:

3σEuler
f,CL
(xaero) = 0.07|CL | + 0.07 (13)

3σEuler
f,CD
(xaero) = 0.5CD (14)

3σEuler
f,Cmref

(xaero) = 0.07|Cmref | + 0.07 (15)

∗AVL v3.36 http://web.mit.edu/drela/Public/web/avl/
†http://www.simcenter.msstate.edu/software/downloads/doc/aflr3/index.html
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(a) ESP unstructured surface mesh. (b) Pressure coefficientCp

Fig. 6 Euler mesh and solution for Mach 0.2, 5 degrees angle of attack.

RANS Aerodynamic Model
The RANS solver used in this work is the SU2 CFD code [36]. The mesh generation again uses ESP for the surface

and AFLR3 for the volume meshes‡. We used a Reynolds number of 85 million and the Negative Spalart-Allmaras
turbulence model. Figure 7 shows an example pressure coefficient solution for a Mach number of 0.2 and an angle of
attack of 4 degrees.

The fidelity functions are again chosen such that the fidelity is linearly proportional to the value of the quantities of
interest:

3σRANS
f,CL
(xaero) = 0.05|CL | + 0.05 (16)

3σRANS
f,CD
(xaero) = 0.1CD (17)

3σRANS
f,Cmref

(xaero) = 0.05|Cmref | + 0.05 (18)

‡http://www.simcenter.msstate.edu/software/downloads/doc/aflr3/index.html
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(a) ESP unstructured surface mesh. (b) Pressure coefficientCp

Fig. 7 RANS mesh and solution for Mach 0.2, 5 degrees angle of attack.

Notional Wind Tunnel Aerodynamic Data
The fourth source of aerodynamic information available for the S&C analysis is a wind tunnel database. Here we use

notional but representative wind tunnel data, constructed to represent design points that might reasonably be available
from a wind tunnel test campaign. The wind tunnel fidelity functions are chosen to be constant for all points in the
aerodynamic design space, representing a constant level of confidence in the (notional) data:

3σWT
f,CL
(xaero) = 0.01 (19)

3σWT
f,CD
(xaero) = 5 × 10−4 (20)

3σWT
f,Cmref

(xaero) = 0.01 (21)

In this case, the fidelity functions can be thought of as quantifying experimental noise and error.

Aerodynamic Force Calculation
The aerodynamic coefficients are computed in the stability reference frame. The side force, yawing moment, and

rolling moment are ignored since the considered S&C cases involve only longitudinal motion. The forces and moments
are converted into the body frame (as shown in Figure 8) using the following equations:

FXaero = (CL sinα − CD cosα) Srefq̄ (22)
FZaero = − (CL cosα + CD sinα) Srefq̄ (23)

CmCG = Cmref +
FZaero (xCG − xref) − FXaero (zCG − zref)

Srefcrefq̄
(24)

MYaero = CmCGSre f crefq̄ (25)

Here Sref is the planform area, cref is the mean aerodynamic chord, q̄ is the dynamic pressure, and (x, y, z)ref is the
location at which the pitching moment Cmref was computed by the aerodynamic code. The forces in the body frame due
to the aerodynamics are denoted by FXaero and FZaero in the x and z directions, respectively. To compute the pitching
moment, the moment coefficient about the reference point, Cmref , is transferred to the center of gravity (x, y, z)CG. Note
that both locations are computed in the body frame. The resulting pitching moment coefficient about the center of
gravity is denoted by CmCG . This coefficient is then used to compute the moment about the center of gravity due to the
aerodynamic forces MYaero .
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C. Stability and Control
The goal of the S&C analysis is to compute the flight center of gravity limits and to characterize the controllability

of the aircraft. In this work only the longitudinal stability criteria are analyzed. These criteria compute the forward and
aft center of gravity limits for the BWB as well as the location of the main landing gear along the longitudinal axis of
the vehicle.

We assume that the aircraft is symmetric about the xz plane, quasi-rigid, and fixed mass. Under these assumptions,
and only considering accelerations along the pitch axis, the equations of motion in the body axes simplify to the
following, as derived in Ref. [37]:

m( ÛU + g sin θ) = FXaero + FXthrust + FXgear (26)
m( ÛW − g cos θ) = FZaero + FZthrust + FZgear (27)

ÛQIyy = MYaero + MYthrust + MYgear (28)

Here m denotes the mass of the vehicle, ÛU is the acceleration along the xbody axis, ÛW is the acceleration along the
zbody axis, g is the acceleration due to gravity, θ is the angle between the ground and the chord line, ÛQ is the rotational
acceleration about the y axis, and Iyy is the moment of inertia about the y axis. The aerodynamic forces and moments,
FXaero , FZaero , and MYaero are computed using Equations (22), (23), and (25). The landing gear forces and pitching
moment are given by FXgear , FZgear , and MYgear . When the aircraft is in the air the gear forces and moment are set to zero.

For the ground-based criteria a three component landing gear configuration is used: a nose gear and two main gear.
A diagram of the axis systems is shown in Figure 8.

zbody

xbody

zstability

xstability

~V∞

xground

zground

θ = α

main gear

Rmg

nose gear

Rng

∆Zmg

∆Xmg

∆Zng

∆Xng

Fig. 8 Axis systems for the BWB S&C analysis on the ground along with the gear reaction forces Rmg and Rng.
Note this figure is not to scale.

The main gear are modeled as symmetric about the xz plane at a distance ∆Xmg along xbody and ∆Zmg along zbody
from the center of gravity. Similarly, the nose gear is a distance ∆Xng along the xbody axis and ∆Zng along the zbody axis
from the center of gravity. Note that the center of gravity is assumed to be between the nose and main gear, and therefore
the distances are taken to be the absolute values of the moment arms between the gear and CG location. By considering
only longitudinal motion, the equations of motion in the ground axes, (x, y, z)ground, simplify to the following, as derived
in Ref. [38]:

m ÛUground =
∑

FXground − µ
(
Rng + Rmg

)
(29)

m
(
− ÛQ∆Xmg cos θ − g

)
=

∑
FZground −

(
Rng + Rmg

)
(30)

ÛQIyy =
∑

MY + Rng
(
∆Xng − µ∆Zng

)
− Rmg

(
∆Xmg + µ∆Zmg

)
(31)

In the above equations, ÛUground is the acceleration along xground, Rng is the magnitude of the reaction force of the nose
gear, Rmg is the magnitude of the total reaction force of the main gear, and µ is the rolling friction coefficient. The
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summations are taken over the external forces and moments computed in the body axes. For the BWB these these
include the aerodynamic forces given in Equations (22), (23), and (25).

The longitudinal S&C criteria originate from the United States Federal Aviation Regulations (FAR) Part 25. There
are four criteria, two for the forward center of gravity limit, one for the aft limit, and one to set the main gear location
along the longitudinal axis of the vehicle. We now briefly describe each criterion.

Fly-To-Stall
The fly-to-stall criterion requires that the control system be able to achieve stall. It is evaluated by trimming the

aircraft at 1.13 and 1.3 times the stall speed and then flying it to stall with the control devices. The objective of the
criterion is to find the furthest forward center of gravity limit such that the aircraft can be controlled to stall. The speed
that produces the furthest aft limit is used as the critical speed.

Stall Recovery
After the aircraft flies to stall it must be able to recover at a specified rotation rate. The FAR requires “prompt”

recovery, which has been interpreted to mean a recovery rotation rate of at least -5 deg/s2 [39]. The objective of this
criterion is to find the furthest aft center of gravity limit where this rotation requirement is met. The criterion is evaluated
at both 1.13 and 1.3 times the stall speed, and with no thrust, idle thrust, and full thrust in order to determine which case
is the most critical.

Nose-Wheel Steering
The nose-wheel steering criterion sets the longitudinal location of the main gear. Using Ref. [40], the main gear are

placed such that at a minimum 6% of the aircraft’s weight is on the nose gear at maximum takeoff weight. For this
criterion, the center of gravity is placed at the aft limit as determined by the free flight cases. The computed main gear
location is then propagated through the rest of the ground based analyses. This is done to create the widest possible
center of gravity travel range.

Nose-Wheel Liftoff
The nose-wheel liftoff criterion specifies the pitch-up rotation rate of the aircraft during takeoff. A minimum rotation

rate of 3 deg/s2 is required when the pitch control surfaces are fully deflected to give an upward rotation§. The computed
center of gravity is a forward limit and may be further aft than the fly-to-stall limit.

IV. Results
We now demonstrate our multifidelity methodology on the S&C analysis of the BWB presented in Section III. The

four aerodynamic models from Section III.B are used to build multifidelity surrogates for each of the aerodynamic
coefficients. The uncertainties in the resulting predictions are then propagated through the S&C analysis to determine
the impact of imperfect aerodynamic data on the S&C analysis.

A. Aerodynamic Surrogates
Gaussian process surrogates are built for the aerodynamic analysis, one for each quantity of interest as computed by

each model. The surrogates take in the vector xaero (Equation 9) as input and estimate the output quantities CL (lift
coefficient), CD (drag coefficient), and Cmref (pitching moment coefficient about the reference point). The number and
location of the training data are chosen to reflect the computational expense of the aerodynamic model that generated
the training data.

AVL
Latin hypercube sampling [41] is used to select 1200 sample points for surrogate training for AVL using the input

variable bounds listed in Table 1. The training bounds are chosen to be slightly larger than the expected inputs to the
model during the S&C analysis.

§https://web.archive.org/web/20170301222042/http://adg.stanford.edu/aa241/%0AAircraftDesign.html
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Input Bounds Units
Mach [0,0.4] None
α [0,30] degrees
δ1 [−45,45] degrees
δ2 [−45,45] degrees
δ3 [−45,45] degrees
δ4 [−45,45] degrees
δ5 [−45,45] degrees
δ6 [−45,45] degrees
δ7 [−45,45] degrees

Table 1 Input variable bounds for the AVL aerodynamic surrogates.

Surrogate models of the AVL estimates for the lift, drag, and pitching moment coefficient without control surface
deflections are shown in Figure 9. Both the fidelity (σf) and Gaussian process (σGP) standard deviations are shown.
The Gaussian process standard deviation confidence interval is tight for all three coefficients due to the large number
of training data. The uncertainty along the α domain is dominated by the fidelity standard deviation computed in
Equations 10, 11, and 12, respectively. This behavior is expected due to the low-fidelity nature of AVL. Figure 9d
visualizes the pitching moment design space by plotting the pitching moment about various center of gravity locations,
given as percentages of the mean aerodynamic chord (MAC).

Euler
The Euler training points are chosen to reflect expected control surface deflections, angles of attack, and Mach

numbers during the S&C analysis. The BWB is analyzed with the Euler CFD model at M = 0.2 and M = 0.35 for
angles of attack of 0, 5, 7, 9, 10, 11, 12, and 13 degrees. Further, five control surface groups are defined, as listed in
Table 2. Each group is deflected at ±10, 20, 30, and 40 degrees in addition to the undeflected case.

Group Surfaces
1 δ1, δ2

2 δ1, δ2, δ3

3 δ1, δ2, δ3, δ4

4 δ1, δ2, δ3, δ4, δ5

5 δ1, δ2, δ3, δ4, δ5, δ6, δ7

Table 2 Control surface groups for Euler training data.

The M = 0.2 cases are reused for M = 0.0 in the training of the Euler surrogate models, since Mach numbers of less
than 0.2 are expected during the S&C analysis and the M = 0.2 cases are considered to be incompressible. Of the 656
cases run, 536 converged to a satisfactory density residual value of 10−7. After removal of the non-converged cases and
reusing the Mach 0.2 data to represent Mach 0.0, the training set for the Euler surrogates contains 855 points.

The resulting lift, drag, and pitching moment coefficient polars are shown in Figure 10 for a Mach number of 0.2
with no control surface deflections. The total predicted standard deviation is dominated by the fidelity through the
middle of the domain, where the Euler data was most heavily concentrated. At the edges of the α domain the Gaussian
process standard deviation dominates, as there are few training points in these areas.

RANS Estimates
The RANS model is used to analyze the BWB at M = 0.2 for 0, 4, 8, 12, 16, and 20 degrees angle of attack. The

control surface groups listed in Table 3 are deflected at ±40 degrees in addition to the undeflected case. The data are
reused for M = 0.0 and M = 0.3, as all three Mach numbers are considered to be incompressible. This results in a
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Fig. 9 Surrogate model estimates of the AVL aerodynamic coefficients at Mach 0.20 with ±3σf and ±3σGP
confidence bounds with no control surface deflections.

training set of 90 points. The fidelity functions given in Equations 16, 17, and 18 model the trust we have in the data at
each point.

Group Surfaces
1 δ1, δ2, δ3, δ4

2 δ1, δ2, δ3, δ4, δ5

Table 3 RANS control surface groups used to build the surrogate model.

Slices of the lift, drag, and pitching moment coefficients are shown in Figure 11 for a Mach number of 0.2 with no
control surfaces deflected. At this slice of the Mach dimension, the Gaussian process standard deviation is the largest
contributor to the uncertainty over the majority of the α domain, with dips only at the training points. The CmCG space,
however (Figure 11d), has almost constant uncertainty across the α domain.

15



0 2 4 6 8 10 12 14 16 18 20 22

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

α [degrees]

C
L

±3σf
±3σGP

(a)CL

0 2 4 6 8 10 12 14 16 18 20 22
0

0.05

0.1

0.15

0.2

0.25

0.3

α [degrees]

C
D

±3σf
±3σGP

(b)CD

0 2 4 6 8 10 12 14 16 18 20 22

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

α [degrees]

C
m
re
f

±3σf
±3σGP

(c)Cmref

0 2 4 6 8 10 12 14 16 18 20 22

−0.4

−0.2

0

0.2

0.4

α [degrees]

C
m

C
G

20% MAC

40% MAC

60% MAC

(d)CmCG

Fig. 10 Surrogate model estimates of the Euler aerodynamic coefficients at Mach 0.20 with ±3σf and ±3σGP
confidence bounds with no control surface deflections.

Wind Tunnel
The wind tunnel data are constructed to reflect a typical wind tunnel entry. The training data are comprised of

notional measurements at Mach 0.0, 0.2, and 0.3 for 0, 12, 16, and 20 degrees angle of attack and three control surface
deflections. The control surface groups listed in Table 4 are deflected at 0 and ±40 degrees. In total, 40 points are in
the training set. Noise and error in the wind tunnel measurements are modeled using the fidelity functions given in
Equations 19, 20, and 21.

Group Surfaces
1 δ1, δ2, δ3, δ4

2 δ1, δ2, δ3, δ4, δ5

Table 4 Notional wind tunnel control surface groups used to build the surrogate model.

Slices of the lift, drag, and pitching moment coefficients are shown in Figure 12 for a Mach number of 0.2 with
no control surfaces deflected. At this slice of the Mach dimension, the Gaussian process standard deviation is the
largest contributor to the uncertainty over the majority of the α domain—that is, we have high confidence in the data
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Fig. 11 Surrogate model estimates of the RANS aerodynamic coefficients at Mach 0.20 with no control surface
deflections. Confidence bounds of ±3σf and ±3σGP are shown.

themselves, but since the data are relatively sparse, points where no training data is present have a large uncertainty.
This is especially seen at low values of α.

Multifidelity Aerodynamic Models
Using the methodology developed in Section II, the four aerodynamic models described above are combined into a

multifidelity surrogate model for each quantity. To illustrate the methodology, α polars of the lift coefficient CL as
predicted by all four information sources and the multifidelity methodology are shown in Figure 13 at a Mach number of
0.2 and with no control surfaces deflected and in Figure 14 for Mach 0.2 with the four inboard-most control surfaces
(δ1, δ2, δ3, and δ4) deflected downward 20 degrees. At all points along the α axis the multifidelity model reflects the
most trusted of the four available aerodynamic information sources. In both cases, the AVL uncertainty is quite large
compared to the other available models, so its predictions are weighted lightly in the multifidelity estimate. The wind
tunnel model is relied upon in the post-stall region, while the Euler model is relied upon in the upper ranges of the
pre-stall α dimension. The RANS model confirms the Euler predictions along the pre-stall portion of the α domain,
reducing the total uncertainty in regions where a RANS data point is present. As the wind tunnel model becomes
unreliable due to the increasing Gaussian process uncertainty in Figure 14 (i.e., regions where wind tunnel data are
unavailable), the RANS model fills the gaps and becomes the primary source.
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Fig. 12 Surrogate model estimates of the notional wind tunnel aerodynamic coefficients at Mach 0.20 with no
control surface deflections. Confidence bounds of ±3σf and ±3σGP are shown.

Multifidelity models for all four aerodynamic coefficients are shown in Figure 15 at Mach 0.2 with no control surface
deflections and in Figure 16 at Mach 0.2 with the four inboard-most control surfaces deflected downward by 20 degrees.
The dips in the standard deviations of the estimates occur in regions where the RANS data are present. In addition,
the post-stall curves for both cases closely resemble those of the notional wind tunnel data. This indicates that though
the multifidelity surrogate is generating a compromise surface, it naturally reflects the trends of the highest fidelity
information source.
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Fig. 13 Formation of the multifidelity CL estimate by combining AVL, Euler, RANS, and notional wind tunnel
data at Mach 0.2 with no control surface deflections.
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Fig. 14 Formation of the multifidelity CL estimate by combining AVL, Euler, RANS, and notional wind tunnel
data at Mach 0.2 with δ1, δ2, δ3, and δ4 deflected at 20 degrees.
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Fig. 15 Multifidelity aerodynamic coefficient estimates at Mach 0.20 with ±3σf and σGP confidence bounds
with no control surface deflections.
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Fig. 16 Multifidelity aerodynamic coefficient estimates at Mach 0.2 with δ1, δ2, δ3, and δ4 deflected 20 degrees
downward.
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B. Definition of Uncertain Inputs and Parameters
The goal of the S&C analysis under uncertainty is to determine the impact that the uncertainties in CL , CD , and Cmref

have on the S&C CG limits. To represent the uncertain aerodynamic data, the S&C analysis under uncertainty is defined
by four uncertain inputs: the lift coefficient CL polar, the drag coefficient CD polar, the pitching moment coefficient
about the aerodynamic reference Cmref polar, and the point at which stall occurs, which is represented by a maximum lift
coefficient value CLstall . The stall point CLstall is treated as uncertain due to the inability of most computational models,
including those used in this study, to accurately predict the point at which the flow separates from the body. Even wind
tunnel testing may not accurately capture the stall point, especially if it is preliminary in nature or limited in scope, as is
the case in the present work.

The uncertainty in each of these aerodynamic quantities is derived from the models developed in Section III. For a
given set of inputs xaero, each multifidelity Gaussian process surrogate issues a prediction that has a normal distribution,
with mean µ̄(x) (Eq. 7) and standard deviation σ̄(x) (Eq. 8). For CL and Cmref , we use these normal distributions directly.
For CD , we modify the distribution to avoid drawing negative drag values (low probability but still possible with the
normal distribution). Instead, we use the mean and standard deviation of the drag surrogate to define a triangular
distribution with lower bound

CD,lower = max
(
60 × 10−4, µ̄CD − 3σ̄CD

)
, (32)

upper bound
CD,upper = µ̄CD + 3σ̄CD , (33)

and most probable point µ̄CD . The stall lift coefficient CLstall is assigned a uniform distribution, with equal probability
of taking on any value between 0.6 and 0.7:

CLstall ∼ U [0.6,0.7] . (34)

For each S&C analysis, we draw one value for CLstall , one CL polar, one CD polar, and one Cmref polar using these
distributions. Noting that the mean and standard deviations vary over the input space xaero, we draw a consistent
polar by sampling the quantile of each distribution. For example, drawing a quantile of 0.5 would define the CL polar
surface following the mean value over the input space, while drawing a quantile of 0.95 would define a CL polar surface
following the mean plus two standard deviation level over the input space, etc. This polar surface is then held constant
throughout a single analysis of the four S&C criteria, with a new polar being drawn for each random realization in the
Monte Carlo simulation presented in the next subsection.

C. Results
Once the uncertain inputs are defined, an uncertainty propagation study is undertaken to determine the distributions

of the S&C quantities of interest. The uncertainty propagation study draws 10,000 independent realizations of the
aerodynamic quantities CLstall , CL , CD and Cmref as described above, and computes the S&C criteria for each realization.
The free flight allocation uses surfaces δ1, δ2, δ3, and δ4 for both trim and control. The takeoff allocation uses δ1, δ2,
δ3, δ4, and δ5 for both trim and control. The maximum deflection is chosen to be ±40 degrees from the undeflected
configuration.

To examine the impact of the multifidelity data, the S&C criteria are independently computed using the AVL, Euler,
RANS, and wind tunnel derived surrogate models as well as with the multifidelity surrogates. Due to the nonlinear
nature of the S&C analysis, some of the cases are not able to find satisfactory locations for the center of gravity to
balance the aircraft. In particular, the Fly-to-Stall criterion computed using the Euler derived surrogate models has
a 90% failure rate, so 693 samples were collected. Other criteria as computed using the Euler, RANS, and notional
wind tunnel derived surrogate models face similar difficulties, with failure rates of about 50%. These high failure rates
are due to the nonlinear nature of the S&C criteria as well as the high degree of coupling between the aerodynamic
coefficients within the S&C analysis.

Direct comparisons of the means and the ±2 standard deviations of the S&C criteria as computed using 4000
samples are shown in Figure 17. The multifidelity standard deviations are the smallest of the four aerodynamic models.
This is expected as the multifidelity surrogates incorporate all of the available data, thereby lowering the variance of
their predictions. Additionally, the multifidelity mean is a combination of the individual fidelity means weighted by their
standard deviation, as is expected. The multifidelity mean values are also the smallest of several of the cases, indicating
that the reduced variance of the aerodynamic coefficient estimates has led to a reduction in the tails of the S&C criteria
distributions.
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Fig. 17 Comparison of the S&C criteria means with ±2σ confidence bounds as predicted using each aerody-
namic source individually and the multifidelity estimates. All cases are represented using 4000 samples except
the Euler Fly-To-Stall case, which uses 693 samples.

To illustrate the difference between the individual and multifidelity models, the samples of each criterion using the
lowest-fidelity (AVL) and the multifidelity data are shown in Figures 18 and 19, respectively. Using the AVL derived
surrogate models, for all four criteria the range of possible CG and main gear locations is quite large, on the order of at
least 25 feet and more than 70 feet for the Nose-Wheel Liftoff criterion. The large uncertainty in the AVL model due to
its low-fidelity nature has resulted in high-variance outputs. In contrast, the multifidelity derived CG and main gear
locations, in Figure 19, have much smaller ranges, on the order of 20 feet at most.

The forward and aft limit probability density histograms are shown in Figure 20 for both the AVL and multifidelity
predictions. Note that the aft limit histograms are the same as the stall recovery histograms in Figures 18b and 19b,
since stall recovery is the only aft CG criterion. The forward limit histograms are computed by taking the maximum
of the Fly-To-Stall and Nose-Wheel Liftoff CG limit locations for each sample. Note that for both cases, the forward
limit histograms are similar to the Fly-To-Stall criterion histograms, indicating that this is the critical criterion for the
majority of the samples.

By subtracting the forward limit samples from the aft limit samples, CG travel range histograms can be computed.
The CG travel range results are important as they give insight into the overall controllability of the design. A large,
positive CG travel range is desirable as it increases the flexibility of the operator in loading the aircraft with fuel and
cargo and enlarges the flight maneuver envelopes. On the other hand, a small, or negative, CG travel range indicates that
the aircraft will be difficult or impossible to load and control. Therefore, estimating the CG range with confidence is a
key indicator for closing the design.

The CG travel range histograms are shown in Figures 20e and 20f. The AVL derived results are concentrated around
positive 5 feet but have a long tail out into the negative CG range. In contrast, the multifidelity derived results are
tighter, concentrating the majority of the probability mass between 0 and 4 feet of CG range, with a small number of
samples having a negative CG range. These results directly show the impact of using multifidelity estimates on the S&C
analysis. By incorporating all of the available data, the variance of our estimates of the S&C criteria are reduced, and
the probability of the CG range being negative is reduced significantly.

These results also draw attention to the fact that the S&C analysis is only one part of a much larger system. For
example, in practice the Nose-Wheel Liftoff criteria can be made less critical (to a point) by allowing the aircraft to
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Fig. 18 Probability density histograms of each S&C criteria as estimated using 10,000 samples of the AVL
aerodynamic data. All distances are given in feet.

over-speed on takeoff. This could allow the CG range to increase by relaxing the Nose-Wheel Liftoff criterion constraints,
thereby making it a non-critical forward limit criterion and allowing the S&C analysis to close. However this can only
be done if the uncertainty in the Nose-Wheel Liftoff range can be overcome through over-speeding on takeoff, which
is not guaranteed. Allowing the aircraft to over-speed impacts the field length constraint analysis, as over-speeding
increases the landing and takeoff field lengths. This in turn impacts braking, weight, and other performance requirements
which the aircraft must meet. Thus, a balance must be struck between allowing for some uncertainty in the analysis of
Nose-Wheel Liftoff and the design of the rest of the system.
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(b) Stall Recovery (aft CG location)
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(c) Nose-Wheel Liftoff (forward CG location)
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(d) Nose-Wheel Steering (main gear position)

Fig. 19 Probability density histograms of each S&C criteria as predicted using 10,000 samples of the multifi-
delity aerodynamic data. All distances are given in feet.
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(a) Forward Limit – AVL
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(b) Forward CG Limit – MF
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(f) CG Range – MF

Fig. 20 Histograms of the forward and aft CG limits as well as the resulting CG range as computed using only
the AVL data (left) and with the multifidelity (MF) models (right).
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V. Conclusion
The work presented in this paper has shown the ability of a multifidelity methodology to bring high-fidelity data into

an engineering analysis to reduce uncertainty in the output quantities of interest. By using all of the data available
from all possible sources, even if for only a few points in a small segment of the analysis space, better decisions can be
made due to the increased confidence in the predictive power of a multifidelity model as compared to a single-fidelity
data source. Where more data are available for a given quantity of interest, uncertainty in the estimates of its value
can be reduced, thereby reducing magnitude of the variances propagated to downstream quantities of interest. The
BWB example illustrates this effect. When using only low-fidelity data, as is customary in a conceptual design phase,
the estimates made regarding the CG limits and main gear location have a larger variance and in some cases a much
different distribution than those estimated using the multifidelity models. While this paper illustrates the power of the
multifidelity approach for an aircraft conceptual design problem, the methodology is broadly applicable and addresses
challenges that arise more generally in design of multidisciplinary engineering systems.
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