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There is an increasing demand for designs in aerospace engineering that guarantee baseline
performance even in limit states, i.e., outside of nominal operating conditions of vehicles. Typ-
ically, the numerical optimization for such risk-averse designs is computationally challenging
because in each iteration of the optimization loop the performances of the designs are estimated
for the rare events corresponding to the limit states. This work proposes a multifidelity ap-
proach to make tractable the optimization of large-scale risk-averse designs that are based on
the conditional value-at-risk (CVaR) as the risk measure. The multifidelity method leverages
low-cost, low-fidelitymodels to speed up theCVaR estimation in each iteration of the risk-averse
optimization to reduce the runtime compared to traditional Monte Carlo estimators that rely
on the high-fidelity models alone. At the same time, the proposed approach makes occasional
recourse to the expensive high-fidelity model to guarantee convergence to design points that
satisfy the high-fidelity optimality conditions. In numerical experiments with an aerostructural
design problem, themultifidelity approach achieves speedups of almost one order of magnitude
compared to a traditional single-fidelity method.

I. Introduction
To meet the ever increasing demands on robustness and reliability in aerospace engineering, it becomes necessary

to optimize for risk-averse designs that guarantee baseline performance even in limit states, i.e., outside of nominal
operating conditions. The objective functions in such risk-averse optimization problems incorporate uncertainties via
random variables and then build on risk measures to quantify the value of the objective in the tails of the distributions
corresponding to limit states. However, estimating risk measures with, e.g., standard Monte Carlo methods typically
requires large numbers of realizations of the random variables per objective function evaluation, at which then a model
of the system has to be evaluated. Thus, if the model is expensive-to-evaluate, then risk-averse optimization quickly
becomes intractable. We present a multifidelity approach [1] that leverages low-cost, low-fidelity models to speed up
risk-averse optimization and that uses occasional recourse to the computationally expensive, high-fidelity model to
establish accuracy guarantees.

Low-fidelity models provide computationally cheap approximations of high-fidelity model outputs. In many
situations, the runtime of low-fidelity models is orders of magnitudes lower than the runtime of high-fidelity models.
Following [1], one distinguishes between three types of low-fidelity models. The first type are data-fit surrogate models
[2, 3], e.g., kriging models [4–8], that are learned from input-output data of the high-fidelity models. Second, there are
projection-based reduced models that solve for the states of the high-fidelity models in low-dimensional solutions spaces
[9–13]. Third, there are simplified-physics models that are derived from high-fidelity models by exploiting domain
knowledge [14]. A typical approach to speed up optimization with low-fidelity models is to construct a low-fidelity
model with one-time high costs that satisfies the accuracy requirements of the problem at hand and then to use the
low-fidelity model to replace the high-fidelity model in the optimization loop. However, just replacing the high-fidelity
model with the low-fidelity model introduces the error of the low-fidelity model into the optimization result. In particular,
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this means that the optimizer converges to a design point that satisifes the optimality conditions with respect to the
low-fidelity model, instead of the high-fidelity model.

Multifidelity methods combine, instead of replace, the high-fidelity model with one or multiple low-fidelity models
[1]. The low-fidelity models are leveraged for speedup and occasional recourse to the high-fidelity model establishes
convergence to an optimum that satisfies the optimality conditions with respect to the high-fidelity model. Thus,
multifidelity methods rely on multiple models and use them in concert to speed up computations while establishing the
same accuracy guarantees as methods that use the high-fidelity model alone. Multifidelity methods have a long tradition
in deterministic optimization. The works [15, 16] establish a multifidelity trust region framework and formulate a
first-order consistency requirement on the low-fidelity model. Another multifidelity method for optimization is efficient
global optimization (EGO) [17, 18], which adapts a low-fidelity Gaussian process model to the high-fidelity model. The
work [3] gives a survey on multifidelity methods in optimization. The survey [1] gives an overview about multifidelity
methods in optimization, uncertainty propagation, and statistical inverse problems.

We propose a multifidelity method for risk-averse optimization. We build on the conditional value-at-risk (CVaR),
which is a common risk measures in financial mathematics [19–22] and engineering applications [23–25]. Estimating
CVaR is computationally demanding for two reasons. First, estimating CVaR typically requires a large number of
model evaluations, which quickly becomes computationally intractable if each model evaluation is expensive. Second,
since CVaR targets rare and low-probability events, standard Monte Carlo estimators of CVaR are often inefficient
because a large number of samples is required to accurately estimate the tail behavior. There are several multifidelity
methods for estimating rare event probabilities, e.g., the work [26, 27] uses general polynomial chaos low-fidelity
models, the work [28] uses reduced-basis models and exploits the availability of error estimators, and [29–31] builds
on a multilevel hierarchy of coarse-grid approximations. In [32], reduced models are used together with importance
sampling to efficiently estimate CVaR. In contrast, the works [33, 34] are applicable to general types of low-fidelity
models. In the context of reliability-based design optimization, there are multifidelity methods [35, 36] that reuse
information from previous iterations to obtain speedups compared to single-fidelity methods [37]. We build on the
multifidelity pre-conditioned cross-entropy (MFCE) method [38], which is based on importance sampling and the
cross-entropy method [39–41] and was developed for estimating rare event probabilities. MFCE preconditions the
underlying estimation problem with low-fidelity models such that only few evaluations of the high-fidelity models are
required at the final step. In this work, we show that MFCE can be used to efficiently estimate the CVaR from model
outputs to reduce the costs of risk-averse optimization. Our numerical results demonstrate speedups of up to two orders
of magnitude compared to single-fidelity approaches that use the high-fidelity model alone.

This paper is organized as follows. Notation to formulate the optimization problems of interest is introduced in
Section II. Section III formulates risk-averse optimization with CVaR and summarizes that risk-averse optimization based
on standard Monte Carlo methods quickly becomes intractable if model evaluations are computationally expensive. The
proposed multifidelity method that leverages low-cost, low-fidelity models to address these computational challenges is
presented in Section IV. Numerical experiments in Section V demonstrate that the proposed approach achieves speedups
between one and two orders of magnitude compared to a standard Monte Carlo estimator that uses the high-fidelity
model alone. Conclusions are drawn in Section VI.

II. Deterministic optimization
In a typical situation, a potentially computationally expensive high-fidelity model of the system of interest is

available, which describes the system behavior for a given design point. Let x ∈ X be a design point in the design
domain X. The high-fidelity model that takes design variables as the input is denoted by f : X → R. The function
value f (x) at a design point x ∈ X is the quantity of interest. The performance of a design x is assessed by the
objective J : X → R. Evaluating J at a design point typically entails at least one evaluation of the model f . The goal of
deterministic optimization is to find the optimal design x∗ ∈ X that solves

min
x∈X

J(x) . (1)

Numerical optimization methods are typically of iterative nature, which means that the optimization can be imagined
as a loop. In each iteration of the loop, at least one evaluation of the objective J, and thus of the high-fidelity model
f , is necessary. Figure 1a depicts the optimization loop. If one evaluation of f incurs costs 0 < c ∈ R and if K ∈ N
iterations are performed by the optimizer, then the total costs of the optimization are at least c × K .
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(a) traditional (deterministic) optimization loop (b) design under uncertainty

Fig. 1 Optimization methods are typically of iterative nature and therefore can be depicted as loops. In each iteration, at least
one evaluation of the objective, and thus of the high-fidelity model, is necessary. In case of risk-averse design, an uncertainty
quantification loop is embedded within each optimization iteration. Thus, the computational costs of risk-averse designs can be
orders of magnitude higher than the costs of traditional (deterministic) design.

III. Risk-Averse Optimization based on the Conditional Value-at-Risk (CVaR)
Consider now the situation where the high-fidelity model f depends on the design variable x ∈ X and, additionally,

on a random variable Ξ : Ω→ Z, with sample space Ω. Thus, the model is a function f : X ×Z → R that maps x
and a realization ξ ∈ Z of the random variable Ξ onto R. This means that the quantity of interest of the high-fidelity
model f (x,Ξ) becomes a random variable. The random variable Ξ models uncertainties in the system, e.g., model
measurement errors, unknown environments conditions, and manufacturing variations. We now consider risk-averse
optimization, where the objective depends on a risk measure that quantifies statistics corresponding to the tails of the
distribution of the random variable f (x,Ξ).

A. CVaR risk measure
The risk measure we will focus on in the following is the CVaR. To define CVaR, let us start with the definition of

the value-at-risk (VaR) [22, 42] at level β ∈ (0, 1), VaRβ , which is equal to the β-quantile of the distribution of f (x,Ξ)

VaRβ[ f (x,Ξ)] = min {y ∈ R | P [ f (x,Ξ) ≤ y] ≥ β}.

In case of our model output random variable f (x,Ξ), the VaRβ[ f (x,Ξ)] ∈ R is the value such that f (x,Ξ) is below
VaRβ[ f (x,Ξ)] with probability β which is visualized in Figure 2b.

The CVaRβ[ f (x,Ξ)] (also known as β-superquantile) is the expectation of f (x,Ξ) conditioned on VaRβ[ f (x,Ξ)]

CVaRβ[ f (x,Ξ)] = E
[

f (x,Ξ) | f (x,Ξ) ≤ VaRβ[ f (x,Ξ)]
]
=

∫
Z

Iβ(ξ) f (x, ξ)p(ξ)dξ , (2)

with the indicator function

Iβ(ξ) =

{
1 , f (x, ξ) ≤ VaRβ[ f (x, ξ)]
0 , else

(3)

and density p of Ξ; see [20]. Note that VaRβ[ f (x,Ξ)] and CVaRβ[ f (x,Ξ)] are quantities that depend on the design
point x.

B. CVaR-based optimization
The risk-averse optimization formulation defines an objective function

Jβ(x) = CVaRβ[ f (x,Ξ)] (4)
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Fig. 2 Robust optimization penalizes deviations from the mean behavior, indicated by the standard deviation σ in plot (a). In
contrast, risk-averse optimization emphasizes rare and low-probability events that are in the tails of the distribution, see plot (b). The
VaRβ is the β-quantile of the distribution and CVaRβ is the expectation in the tail conditioned on the VaRβ , which is indicated by the
shaded area in (b).

with the probability level β ∈ (0, 1) to solve
min
x∈X

Jβ(x) . (5)

Since, CVaRβ is the expectation of f (x,Ξ) conditioned on the tail f (x,Ξ) ≤ VaRβ[ f (x,Ξ)], minimizing the CVaR
of f (x,Ξ) minimizes the expectation of f (x,Ξ) in the β-quantile. This means, even in limit states corresponding
to f (x,Ξ) ≤ VaRβ[ f (x,Ξ)], the expectation of f (x,Ξ) is enforced to remain small. The readers are referred to
Refs. [19–21, 23–25] for further discussion on the properties of CVaR and CVaR-based optimization.

C. Monte Carlo estimators of VaR and CVaR
Evaluating the objective Jβ defined in (4) requires estimating CVaRβ[ f (x,Ξ)]. The work [22] proposes a two-step

Monte Carlo estimator: First, a Monte Carlo estimate V̂aRβ[ f (x,Ξ)] of VaRβ[ f (x,Ξ)] is obtained. Then, an estimate
ĈVaRβ[ f (x,Ξ)] of CVaRβ[ f (x,Ξ)] is derived that builds on the estimate V̂aRβ[ f (x,Ξ)].

Consider the estimation of VaRβ[ f (x,Ξ)] first. Let ξ1, . . . , ξm be m realizations of Ξ and evaluate the high-fidelity
model at the realizations, i.e.,

f (x, ξ1), . . . , f (x, ξm) . (6)

Consider now the sorted outputs
f (x, ξ i1 ) ≤ f (x, ξ i2 ) ≤ · · · ≤ f (x, ξ im ) ,

with indices i1, . . . , im ∈ {1, . . . ,m}. Note that such an ordering exists because the range of f is R. Then, following
[22], an estimate of VaRβ[ f (x,Ξ)] is V̂aRβ[ f (x,Ξ)] = f (x, ξ ir ), where r ∈ {1, . . . ,m} such that

r − 1
m
≤ β ≤

r
m
.

The estimator V̂aRβ[ f (x,Ξ)] is a biased estimator of VaRβ[ f (x,Ξ)]. The bias converges to 0 for m → ∞, see, e.g.,
[42–44].

To estimate CVaRβ , define the indicator function

Îβ(ξ) =

{
1 , f (x, ξ) ≤ V̂aRβ[ f (x,Ξ)] ,
0 , else ,

which is based on the estimate V̂aRβ , instead of VaRβ as in (3). Consider now again the realizations ξ1, . . . , ξm that
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have been used in (6) to evaluate the high-fidelity model and estimate

ĈVaRβ[ f (x,Ξ)] =
1
m

m∑
i=1
Îβ(ξ i) f (x, ξ i)p(ξ i) .

The consistency and asymptotic normality of the estimators V̂aRβ and ĈVaRβ are studied in the literature [22, 42].

D. Computational challenges of risk-averse optimization with CVaR
Monte Carlo methods provide one versatile way of estimating the CVaRβ; however, if β � 1, then the V̂aRβ estimator

and the ĈVaRβ estimator derived in Section III.C are inefficient. In case of V̂aRβ , a large number of realizations of Ξ,
and consequentially a large number of model evaluations, are necessary to obtain a reasonable number of realizations
in the β-quantile to obtain an acceptable estimate of VaRβ . Similarly, for β � 1, a large number of realizations is
necessary for the indicator function Îβ in ĈVaRβ to evaluate to 1 sufficiently many times so that an accurate estimate of
CVaRβ is obtained.

IV. Risk-averse optimization with the multifidelity cross-entropy method
We develop a multifidelity approach for risk-averse optimization with CVaR to speed up the estimation of VaR and

CVaR and so make large-scale risk-averse optimization tractable. We build on the MFCE method that was introduced in
[38]. The MFCE method is based on importance sampling, which is a variance reduction approach for Monte Carlo
estimators. In Section IV.A, importance-sampling estimators of VaR and CVaR are briefly reviewed. Section IV.B
describes the multifidelity setting and MFCE to construct the importance sampling estimators of VaR and CVaR.
Section IV.C gives details on the overall procedure for risk-averse optimization with the MFCE estimators of CVaR.

A. Variance reduction with importance sampling for estimating risk measures
Importance sampling is a variance reduction strategy for Monte Carlo estimation. Consider the model output random

variable f (x,Ξ) with density p and define the support of a density p to be supp(p) = {ξ ∈ Z | p(ξ) > 0}. Let p̃ be a
biasing density with supp(p) ⊆ supp(p̃). An importance sampling estimator of V̂aRβ is then V̂aR

(IS)
β [ f (x,Ξ)] = f (x, ξ̃ ir )

with r ∈ {1, . . . ,m} such that
1
m

r−1∑
j=1

p(ξ̃ i j )

p̃(ξ̃ i j )
≤ β ≤

1
m

r∑
j=1

p(ξ̃ i j )

p̃(ξ̃ i j )
,

where ξ̃1, . . . , ξ̃m are m realizations of the biasing random variable Ξ̃ with density p̃ and f (x, ξ̃ i1 ) ≤ f (x, ξ̃ i2 ) ≤ · · · ≤
f (x, ξ̃ im ).

The importance sampling estimator ĈVaR
(IS)
β of CVaRβ is

ĈVaR
(IS)
β [ f (x,Ξ)] =

1
m

m∑
i=1
Îβ(ξ̃ i) f (x, ξ̃ i)

p(ξ̃ i)

p̃(ξ̃ i)
.

We refer to the survey in [22] for details and analyses.
A critical step in importance sampling is the construction of the biasing density such that the importance sampling

estimators have a lower variance than the standard Monte Carlo estimators

V
[
V̂aR

(IS)
β

]
� V

[
V̂aRβ

]
and

V

[
ĈVaR

(IS)
β

]
� V

[
ĈVaRβ

]
.

B. Constructing biasing densities with the cross-entropy method and MFCE
The cross-entropy method is an iterative process to construct biasing densities [39–41]. Let Q = {p̃v | v ∈ D} be a

set of parametrized densities p̃v with parameters v ∈ D in the parameter domain D. A common choice for Q is the set
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Fig. 3 The cross-entropy method iteratively refines an initial density until a biasing density q̃ is found with minimal Kullback-Leibler
distance to the zero-variance density q̃0.

of multivariate Gaussian random variables, where the parameters v are the mean and the covariance matrix. Let p̃0 be
the zero-variance biasing density such that

V[ĈVaR
(IS)
β ] = 0 ,

which is known up to a normalizing constant [41]. The cross-entropy method derives an approximation p̃ ∈ Q in
the set Q of the zero-variance biasing density p̃0. The cross-entropy method solves for the biasing density p̃ ∈ Q
that has minimal distance with respect to the Kullback-Leibler divergence from the zero-variance density p̃0. The
corresponding optimization problem is solved iteratively, as shown in Figure 3. The optimization problem in each step
of the cross-entropy method can be solved analytically for a wide selection of sets Q of parametrized densities; see, e.g.,
[39–41].

Let f̃ (1), . . . , f̃ (k) : X × Z → R be k ∈ N low-fidelity models with evaluation costs w̃1, . . . , w̃k that are lower
than the evaluation costs w of the high-fidelity model f . The MFCE method [38] leverages the low-fidelity models
f̃ (1), . . . , f̃ (k) to speed up the construction of biasing densities compared to the cross-entropy method that relies on the
high-fidelity model f alone. The MFCE method is an extension of the cross-entropy method that solves for a biasing
density p̃(i) with the low-fidelity models f̃ (i) for i = 1, . . . , k first, and then uses these biasing densities to precondition
the optimization problem in the final step when using the high-fidelity model to obtain p̃. Once the biasing density p̃ has
been found, the high-fidelity model is used to derive an estimate of VaR and CVaR. We denote the MFCE estimators of
VaRβ and CVaRβ as V̂aR

(MF)
β and ĈVaR

(MF)
β , respectively. We refer to [38] for details on the MFCE method

C. Multifidelity risk-averse optimization with MFCE
MFCE provides an efficient way of estimating VaR and CVaR for a given β, if low-fidelity models are available. We

combine the multifidelity estimation of VaR and CVaR into an optimization loop to speed up risk-averse optimization
under uncertain. Thus, instead of the Monte Carlo estimator discussed in Section III.C, MFCE is run to estimate VaR
and subsequently CVaR. This means that the objective function is

J(MF)
β (x) = ĈVaR

(MF)
β [ f (x,Ξ)] ,

with the MFCE estimator ĈVaR
(MF)
β of CVaRβ . We then plug J(MF)

β in a standard optimization routine to compute
x̂∗ ∈ X that solves

min
x∈X

J(MF)
β (x) . (7)

In the following, we will use derivative-free optimizers to solve (7), which typically are robust with respect to small
magnitude noise. This robustness is important for us because of the variance of the estimators of CVaRβ when evaluating
the objective function J(MF)

β . We use implicit filtering [45], for which a Matlab implementation exists.
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V. Numerical results
The numerical examples in this section demonstrate our multifidelity approach for risk-averse optimization. All

runtime measurements are performed with Matlab 2017b on compute nodes with Intel Xeon E5-1660v4 and 64GB
RAM. The parameters of MFCE are chosen as described in [38, Section 4]. The implementation [45] imfil is used
with its default configuration. Section V.A shows speedups of up to two orders of magnitude for a benchmark example
from heat transfer. Section V.B presents a coupled aero-structural optimization problem. The objective is to minimize
fuel burn under uncertain flight conditions. We report speedups of up to one order of magnitude compared to risk-averse
optimization with standard Monte Carlo estimation that uses the high-fidelity model alone.

A. Elliptic problem
We first consider a one-dimensional heat problem with two design variables and two uncertain parameters.

1. Problem setup
Consider the PDE with random coefficients

−∇ · (a(Ξ, x, v)∇u(Ξ, x, v)) = 1 , v ∈ V , (8)
u(Ξ, x, 0) = 0 , (9)

∂nu(Ξ, x, 1) = 0 , (10)

where V = (0, 1) ⊂ R is the spatial domain and ∂V = {0, 1} is the boundary of V. The solution function
u : Z ×X ×V → R is defined on the Cartesian product of the setZ, the design domain X, and the closure V̄ of the
spatial domainV. Equation (9) imposes homogeneous Dirichlet boundary conditions on the left boundary v = 0 and
equation (10) imposes homogeneous Neumann boundary conditions on the right boundary v = 1. The coefficient is

a(Ξ, x, v) =
2∑
i=1

exp (ξi) exp
(
−0.5

|v − xi |
0.0225

)
,

where x = [x1, x2]
T ∈ X is the design variable and Ξ = [ξ1, ξ2]

T is a random vector. The design domain is

X = [0.1, 0.4] × [0.6, 0.9] ⊂ R2 ,

and the components of the random vector Ξ are independent and distributed normally with mean 1 and variance 0.1.

2. High- and low-fidelity models
Problem (8)–(10) is discretized with linear finite elements on an equidistant grid in V̄ with mesh width h(`) = 2−`

with ` ∈ N. The high-fidelity model f corresponds to level ` = 8. The quantity of interest is the value of u at the right
boundary, i.e.,

f (x,Ξ) = u(8)(Ξ, x, 1) ,

where u(8) is the finite-element approximation of u on a grid with mesh width h(8). Additionally, we build four low-fidelity
models f̃ (1), . . . , f̃ (4) corresponding to levels ` = 4, . . . , 7.

3. Multifidelity risk-averse optimization
Consider now the optimization problem

min
x∈X

CVaRβ[ f (x,Ξ)] ,

where f is the high-fidelity model defined in Section V.A.2. We consider two estimators of CVaRβ . We first have

the single-fidelity estimator ĈVaR
(HF)
β that uses the high-fidelity model f alone. The estimator ĈVaR

(HF)
β is obtained

by running MFCE with the high-fidelity model alone, which means that the biasing density is constructed from the
high-fidelity model using the cross-entropy method. Second, we have the multifidelity estimator ĈVaR

(MF)
β that uses the

high-fidelity model f and the four low-fidelity models f̃ (1), . . . , f̃ (4) for constructing the biasing density. Thus, MFCE
is run with the models f , f̃ (1), . . . , f̃ (4).
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Fig. 4 Heat example: The probability level is set to β = 10−7. Plots (a)-(c) show the value of the objective function for the
single-fidelity and the multifidelity approach. The costs of the multifidelity approach seem lower than the costs of the single-fidelity
approach that uses the high-fidelity model alone. The relative mean-squared error plotted in (d) shows that the multifidelity approach
achieves a speedup of up to two orders of magnitude in this example.

Figure 4 reports result for risk-averse optimization with ĈVaR
(HF)
β and ĈVaR

(MF)
β for probability level β = 10−7.

Figure 4a shows the value of the objective function, i.e., either ĈVaR
(HF)
β or ĈVaR

(MF)
β , during iterations of the

optimization process. The number of samples is set to m = 103. The reported results are the average over 10 runs.
The results indicate that the multifidelity approach locates the optimum with a lower runtime than the single-fidelity
approach that uses the high-fidelity model alone. Similar observations are made in Figure 4b and Figure 4c where
m = 104 and m = 105 samples, respectively, are used.

Next, we compare the value of objective function at the final iteration for the single- and the multifidelity approach.
We optimize with the estimator ĈVaR

(HF)
β that uses the high-fidelity model and take m = 5 × 105 samples. We obtain a

design point x̂∗ at which we evaluate the objective ĈVaR
(HF)
β [ f (x̂∗,Ξ)] using m = 5 × 105 samples and store the value.

We repeat this process ten times and take the average of the corresponding objective values as our reference value JRef.
We then optimize with m samples with the high-fidelity model alone and with the multifidelity approach. Again, this
process is repeated 10 times to obtain the objective values JMF

i and JHFi for the runs i = 1, . . . , 10. With

e(MF) =
1
10

10∑
i=1

(
J(Ref) − J(MF)

i

J(Ref)

)2

, e(HF) =
1
10

10∑
i=1

(
J(Ref) − J(HF)i

J(Ref)

)2

, (11)

we denote the relative mean-squared errors, which are reported in Figure 4d for m ∈ {103, 5×103, 104}. The multifidelity
approach achieves a speedup of about two orders of magnitude compared to the single-fidelity method that uses the
high-fidelity model alone. Figure 5 shows the analogous results for the probability level β = 10−8, which indicates that
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Fig. 5 Heat example: The probability level is set to β = 10−8. The plots (a)-(c) show the convergence history of the multifidelity
and the single-fidelity approach. A speedup of up to two orders of magnitude is obtained with the multifidelity approach with respect
to the relative mean-squared error in the objective value compared to the single-fidelity approach, see plot (d).

our approach achieves a comparable performance as in Figure 4 for probability level β = 10−7.

B. Risk-averse aero-structural design problem
In this section, we consider a coupled aero-structural design problem to determine the geometry of a wing with the

objective to minimize fuel burn. We apply our multifidelity risk-averse optimization approach to minimize fuel burn at
limit states.

1. Problem setup
Our high-fidelity model corresponds to a coupled aero-structural analysis∗ [46] that utilizes a vortex-lattice method

and a 6 degrees of freedom 3-dimensional spatial beam model. The code simulates aerodynamic and structure analyses
using lifting surfaces. The code is built in the framework of OpenMDAO [47], which is a platform for systems analysis
and multidisciplinary optimization. An illustration of a wing is given in Figure 6. We consider wing meshes with
5 evenly spaced spanwise and 2 chordwise points, which is the standard configuration in the code. The design is
parametrized by three design variables. The first two design variables control the thickness of the structural spar and the
third design variable controls the twist variation along the span. The ranges of the design variables are given in Table 1.
The random variable Ξ describes uncertain flight conditions as follows. The random variable Ξ = [ξ1, ξ2, ξ3] has three
components, where ξ1 describes the angle of attack, ξ2 Mach number, and ξ3 air density. The distribution of Ξ is a

∗Code available at https://github.com/johnjasa/OpenAeroStruct/
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Fig. 6 Illustration of a wing that can be analyzed with the OpenAeroStruct code. Figure from OpenAeroStruct documentation∗.

Table 1 Aero-structural design problem: The three-dimensional design variable x = [x1, x2, x3]
T controls the thickness and the

twist of the wing configuration.

notation design variable lower bound upper bound
x1 thickness at location 1 0.01 0.25
x2 thickness at location 2 0.01 0.25
x3 twist -2 10

mixture distribution of 2 normal distributions with mean µ1 = [5, 0.38, 0.80]T and covariance

Σ1 =


0.01 0 0

0 0.001 0
0 0 0.001


and mean µ2 = [5, 0.38, 0.84]T and covariance

Σ2 =


0.01 0 0

0 0.001 0
0 0 0.006

 ,
respectively. The rest of the parameters of OpenAeroStruct are set to their default values. The high-fidelity model
f : X ×Z → R returns the fuel burn for a design variable x and a realization ξ ∈ Z of Ξ.

2. Low-fidelity model
A spline interpolant of the function f with respect to the uncertain parameters serves as a low-fidelity model.

Consider the high-fidelity model restricted to a design point x ∈ X, i.e., fx(ξ) = f (x, ξ). Given x ∈ X, we construct a
spline interpolant of fx . Let n ∈ N and consider an equidistant grid with n grid points in each direction in the domain

[4.5, 5.5] × [0.2, 0.6] × [0.3, 1.25] ⊂ R3 .

To construct the spline interpolant f̃x , the high-fidelity model fx is evaluated at all grid points and a spline interpolant is
constructed with the Matlab function griddedInterpolant and the option ’spline’. Thus, the costs of constructing
the low-fidelity model are n3 × w, if one evaluation of the high-fidelity model has costs w. The low-fidelity model f̃x is
about five orders of magnitude cheaper to evaluate than the high-fidelity model f .
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Fig. 7 Coupled aero-structural optimization: The probability level is set to β = 10−5. Plots (a) and (b) show the convergence history
of the single-fidelity approach that uses the high-fidelity model alone and the multifidelity approach. Plot (c) shows the relative
mean-squared error of the objective value achieved after a fixed computational budget. For the same budget, the multifidelity approach
achieves an objective value with a lower relative mean-squared error than the single-fidelity approach that uses the high-fidelity
model alone.

3. Multifidelity risk-averse optimization in aero-structural design problem
Our goal is to minimize the CVaRβ of the fuel burn for different probability levels β. We estimate CVaRβ with the

single-fidelity estimator ĈVaR
(HF)
β that uses the high-fidelity model alone and the multifidelity estimator ĈVaR

(MF)
β as in

Section V.A. In case of the multifidelity estimator, in each evaluation of the objective function, the low-fidelity model
needs to be constructed for the current design point x before it can be evaluated. We use n = 5 grid points in each
dimension to derive the spline interpolant. Thus, in each evaluation of the objective function, the low-fidelity model is
first built from n5 = 125 high-fidelity model evaluations.

Figure 7 reports results for probability level β = 10−5. Figure 7a reports the average convergence history over five
runs of the single-fidelity and the multifidelity approach for m = 103 samples. The results indicate that the multifidelity
approach has a lower runtime than the single-fidelity approach. Similar results are obtained for m = 104 as reported in
Figure 7b.

To compute the relative mean-squared error, we first derive a reference value using the high-fidelity model alone
with m = 103 samples and by iterating the optimization until imfil stops with default configuration. The result of the
optimization is a design point x̂∗ at which we evaluate CVaR with ĈVaR

(HF)
β using the high-fidelity model alone and

m = 103 samples. We repeat this process five times and the average of the CVaR estimates is our reference value J(Ref).
We then optimize with the multifidelity approach until imfil stops and obtain the objective value J(MF)

i for i = 1, . . . , 5
runs. We measure the average runtime of computing J(MF)

i . We take these average costs as the cost budget for the
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Fig. 8 Coupled aero-structural optimization: The plots in (a) and (b) show the objective value versus the costs for probability
level β = 10−6. Note that in plot (a) the value of the objective corresponding to the single-fidelity approach with the high-fidelity
model alone is approximately 1012 in the first two iterations and therefore truncated from the plot. Plot (c) shows the runtime of the
multifidelity risk-averse optimization versus the relative mean-squared error.

optimization with the high-fidelity model alone, i.e., we stop the optimization when the costs of evaluating the objective
functions exceeds this cost budget and obtain objective values J(HF)i for i = 1, . . . , 5 runs. The relative mean-squared
error is then computed as in (11) over the five runs. The results are reported in Figure 7c for m = 103 and m = 104

samples. The plot shows that our approach achieves speedups of a factor 2-3 compared to using the high-fidelity model
alone. Figure 8 reports results for probability level β = 10−6, where our multifidelity approach achieves speedups of
almost one order of magnitude.

VI. Conclusions
This work presented a multifidelity approach for risk-averse optimization. The proposed approach leverages low-cost,

low-fidelity models to obtain speedups compared to single-fidelity methods that use a high-fidelity model alone. At the
same time, the proposed approach makes occasional recourse to the high-fidelity model to guarantee that the optimality
conditions with respect to the high-fidelity model are satisfied. In the presented numerical examples, speedups of up to
two orders of magnitude are obtained. We conclude with two remarks on the wide scope of the proposed approach.
First, the numerical results demonstrate that the proposed approach is applicable with off-the-shelf low-fidelity models
such as spline interpolants. Many standard scientific-computing software packages, e.g., Matlab and scipy, implement
routines for deriving spline interpolants, which reduces the implementation effort of the proposed approach compared
to other approaches that require specific types of low-fidelity models. Second, the optimizer is used as a black box,
which means that the proposed approach can be integrated into existing code frameworks in a non-intrusive way without

12



entailing in-depth changes to the optimization code.
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