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Abstract

A linear reduced-order aerodynamic model is developed for aeroelastic analysis of turbomachines. The
basis vectors are constructed using a block Arnoldi method. Although the model is cast in the time domain
in state-space form, the spatial periodicity of the problem is exploited in the frequency domain to obtain
these vectors efficiently. The frequency domain proper orthogonal decomposition is identified as a special
case of the Arnoldi method. We show an application where the aerodynamic model is coupled with a simple
structural model that has two degrees of freedom for each blade. The technique is applicable to viscous and
three-dimensional problems as well as multi-stage problems with inlet and exit disturbance flows, although
here results are presented for two-dimensional, inviscid flow through a 20-blade single-stage rotor. In this
case, the number of states of the model is on the order of 10 per blade passage, making it appropriate for
control applications. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

With the current trend towards increased operating speeds and more flexible blading, aero-
elasticity has become a critical consideration in the design of compressors. Understanding and
predicting aeroelastic phenomena are crucial to ensuring that a compressor will operate within
stability boundaries, and thus has a large impact on the design process. Appropriate blade design,
together with strategies for controlling the onset of instabilities, can significantly impact the stable
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operating range, potentially leading to better compressor performance. In addition, under-
standing high cycle fatigue is important to prolong engine lifetimes.

Aeroelastic phenomena involve a complicated interaction between the aerodynamics and the
structural dynamics of the blades. Typically, very simple aerodynamic models have been used for
aeroelastic analyses of turbomachinery. The flow is usually assumed to be two-dimensional and
potential [1]. These methods are useful near design conditions but inadequately predict the flow
off-design, as blade loading effects become important [2]. The simple models are also inapplicable
to transonic flows where shock dynamics play a significant role in determining the aerodynamic
response. Transonic flow in a blade passage can be determined by numerically solving the un-
steady Euler or Navier—Stokes equations using computational fluid dynamics (CFD) methods,
however such techniques are generally too computationally expensive to use for unsteady ana-
lyses, especially if the full rotor and more than one blade row need to be considered. More efficient
methods for time-varying flow can be obtained if the disturbances are small, and the unsteady
solution can be considered to be a small perturbation about a steady-state flow [3]. In this case, a
set of linearized equations is obtained which can be time-marched to obtain the flow solution at
each instant. However for control applications, any of the CFD based techniques will generate
models with a prohibitively high number of states.

Reduced-order modelling for linear flow problems is now a well-developed technique and is
reviewed in Ref. [4]. The basic idea is to project the high-fidelity CFD solutions onto a set of basis
functions which span the flow solution space efficiently. Models are obtained which retain
the high-fidelity aerodynamics of the CFD analysis, but which have a greatly reduced number of
states. One possibility for a basis is to compute the eigenmodes of the system. This can lead to
efficient models and the eigenmodes themselves often lend physical insight to the problem. How-
ever, typical problem sizes are on the order of tens of thousands of degrees of freedom per blade
passage even in two dimensions, and solution of such a large unsymmetric eigenproblem is in itself
a very difficult task. The proper orthogonal decomposition technique (POD) has been developed
as an alternate method of deriving the basis functions [5,6] and has been widely applied to many
different problems. An efficient frequency domain use of the POD has been developed for solution
of turbomachinery flows [7]. Since the basis vectors are obtained from solutions of the system, the
reduced-order model produced by the POD is only applicable to flows very similar to those
considered in the construction of the model. This raises an issue if the model is to be applied in a
control framework, as we expect the dynamics to differ between the controlled and uncontrolled
systems, even if the linearization assumption still applies [8].

In this paper an Arnoldi-based method is developed which provides an alternative to both the
eigenmode and the POD approaches. The Arnoldi algorithm can be used to generate basis vectors
which form an orthonormal basis for the Krylov subspace [9]. The full set of Arnoldi vectors
spans the same solution space as the system eigenvectors, however the Arnoldi vectors are much
easier to compute since each vector requires only a single system solve, while the eigenvectors
must be obtained via an iterative process. An efficient reduced set of basis vectors can be con-
structed by considering both inputs and outputs of interest. Padé-based reduced-order models
have been developed for linear circuit analysis using the Lanczos process [10]. This approach
matches as many moments of the system transfer function as there are degrees of freedom in the
reduced system. While the Arnoldi vectors match only half the number of moments as the Padé
approximation, they preserve system definiteness and therefore often preserve stability [11].
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Generation of reduced-order models from the two-dimensional linearized Euler equations will
be considered here, however the approach is extendable to three-dimensional and viscous models
if the underlying CFD model were available. Spatial periodicity of the problem is exploited in the
frequency domain to obtain the reduced-space basis efficiently. However the model itself will be
developed in the time domain and cast in state-space form, and the resulting reduced-order model
will have roughly 10 states per blade passage. Simulation in the time domain allows for arbitrary
forcing to be considered. It also enables the aerodynamics to be easily incorporated within a
global engine model or coupled to an active control model. The small size of the reduced-order
model makes it amenable to control design and mistuning analyses, and also allows for the full
rotor to be considered and for the analysis of multi-stage problems.

In Section 2 of this paper the underlying CFD model will be described. Some techniques for
deriving reduced-order models will be discussed in Section 3 and the reduction algorithm using the
Arnoldi method will be presented and compared to the POD approach which is identified as a
particular case of the Arnoldi method. Model reduction results will be presented in Section 4 for a
20-blade transonic rotor. The performance of the aerodynamic model will be compared to both
the linearized CFD simulation and the POD method by considering a forced response problem.
The aerodynamic reduced-order model will also be coupled to a simple two degree of freedom
structural model for each blade and the coupled aeroelastic system behaviour investigated. Fi-
nally, in Section 5 we present some conclusions.

2. Computational model
2.1. Non-linear model

Consider an arbitrary two-dimensional time-varying control volume Q(¢) with boundary I'(¢).
The Euler equations governing the unsteady, two-dimensional flow of an inviscid compressible
fluid can be written in integral form as

Q/dedy—i-y{ (Fn, + Gn,)dI' =0, (1)
ot Jo r

where n, and n, are unit vectors pointing out of Q, W is the unknown vector of conserved
variables given by

W= (p,pu,pv,e)T (2)

and F and G are the inviscid flux vectors given by

p(u (—x,) | P((U —yt))
_ | pt+pulu—x _ pUL = Vi
F= pu(u — x,) ¢= p+pv(v—y) (3)
pu+e(u—x,) pv+e(v—y)

Here p, u, v, p and e denote density, cartesian velocity components, pressure and total energy
respectively. x;, and y, are the speeds in the x- and y-directions with which the boundary I'(¢)
moves. Also, for an ideal gas the equation of state becomes
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1
e:y’%ﬁri (u* + %), (4)
where y is the ratio of specific heats.

To obtain a rectilinear two-dimensional representation of the cascade, the rotor is unwrapped
in the circumferential direction as shown in Fig. 1. For the uppermost and lowermost blades in the
cascade representation, the boundaries extending upstream from the leading edge and down-
stream from the trailing edge are periodic. Since they coincide in physical space, a condition is
enforced that the flow along the upper periodic boundary is the same as that along the lower
periodic boundary. The governing equations are discretized using a finite volume formulation on
an unstructured triangular grid covering this computational domain and approximations to the
unknown flow vector W are sought at the vertices of that grid. For an interior vertex j, Eq. (1) can
be written as

d
3 i) +/F.(an+Gny)dF:O, (5)

where 7} is the volume consisting of all the triangles having vertex j, I'; is the boundary of V; and
W; represents the average value of W over volume V;. The integral in Eq. (5) is evaluated by
considering weighted summations of flux differences across each edge in the control volume [12].

yy 9 .7

Fig. 1. Rectilinear two-dimensional representation of cascade. (1) Inlet boundary, (2) exit boundary, (3) blade surfaces
and (4) periodic boundaries.
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At boundary vertices, some of the flow variables are prescribed via appropriate boundary con-
ditions. These prescribed quantities are contained within the vector U,, while the remaining
unknown flow quantities are contained in the vector U. For interior nodes the components of the
unknown vector U are the conservative flow variables (2), while for boundary nodes a coordinate
transformation to other appropriate flow quantities is performed. The particular transformation
depends on which flow quantities are to be specified via the boundary condition at that node.

Evaluation of Eq. (5) at each node combined with appropriate variable transformations leads
to a large set of non-linear ordinary differential equations for the unknown flow vector U, which
can be written as

(11—[;+R(U,Ub,x) =0, (6)
where R(U, Uy, X) represents the non-linear flux contributions which are a function of the problem
geometry X, the flow solution U and the boundary conditions Uy,.

We consider unsteady motion in which each blade can move with two degrees of freedom. For
blade i the bending displacement (plunge) is denoted by /4; and torsion about an elastic axis (pitch)
by o;. In general, blade shape deformations could also be included. The grid geometry x depends
directly on the positions of the individual blades, that is for » blades

X:X(hl,Otl,]’lz,OCz,...,hr,OCr). (7)
At the passage inlet and exit we prescribe constant flow conditions, however flows with unsteady

disturbances in the passages could be considered in an analogous way. For the specified quan-
tities, we can therefore write

Ub = Up(q7 q)7 (8)
where q is a vector containing the plunge and pitch displacements for each blade
q; = [hr o], %)

and U,(q,q) contains the appropriate prescribed quantities.
2.2. Linearized model

Steady-state solutions can be evaluated by driving the non-linear residual R(U, Uy, x) in Eq. (6)
to zero, however to integrate the full non-linear equation in time for unsteady flows is compu-
tationally expensive, especially if the disturbances considered have circumferential variation. If we
limit ourselves to the consideration of small amplitude unsteady motions, the problem can be
considerably simplified by linearizing the equations. We assume that the unsteady flow and grid
geometry are small perturbations about a steady state

U(x,?) = UX) + U'(x,?)
Up(x,1) = Up(X) + Uy (x, 1) (10)
x(1) =X+ X(¢),

and that the blade motions q and q are small. Performing a Taylor expansion about steady-state
conditions, for the unknown flow variables the non-linear residual in Eq. (6) can be written
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R __
R(U,Uy,x) =~ R(U, Uy, X) + (U, Uy, X)X (11)

R —— _ D
(U Ub, )U +6—IJb(U,Ub,X)Ub +a_X

U
Using the fact that R(U,U,,X) =0 and assuming that the perturbations are small so that

quadratic and higher order terms in U’, U, and x’' can be neglected, the linearized form of
Eq. (6) is

dU  ©oR OR OR

+—-U+_—-—U +—x=0 12

@ taus Tau, Tt Y (12)

where all derivatives are evaluated at steady-state conditions. Note that due to the linear as-

sumption, the grid is not actually deformed for unsteady calculations, however the final term on

the left-hand side of Eq. (12) represents the first order effects of grid motion. Likewise, the
boundary conditions can be linearized to obtain

ou, oU
U, = —Lq. 13
9 47 5q 8 (13)
We can further simplify the system by condensing Uy, out of Eq. (12) using Eq. (13) and writing
the grid displacement as a linear function of blade displacement

X =Tq, (14)

where T is a constant transformation matrix. The final set of ordinary differential equations then
becomes

dU’  oR C R OR U, o 3y,
ox  0U, oq

— —U’ - 15
dr q U, @q (15)

which can be written equivalently as

du’ ,

T AU’ + Bu. (16)
Hereu = [q q]T is the input vector containing the displacement and velocity of each blade, and the
matrix B contains the appropriate forcing terms of Eq. (15).

To determine the unsteady response of the cascade, the inputs u(¢) are specified (note that in an
aeroelastic analysis these inputs would be provided by the structural model as discussed in Section
4) and the large system (16) is time-marched to determine the resulting flow. Often we are not
interested in obtaining the actual flow itself, but in relevant output quantities. These are typically
the forces and moments acting on the blades, but could be any feature of the response. We define
an output vector y as

y=CU, (17)

which for the analysis presented here contains the aerodynamic force and moment acting on each
blade. C is a matrix containing the geometric contributions to the force calculation.



K. Willcox et al. | Computers & Fluids 31 (2002) 369-389 375

3. Reduction using congruence transforms

The idea behind developing a reduced-order aerodynamic model is to project the large space
used by a high-fidelity CFD model, such as that described in the previous section, onto a lower
dimensional space which is characterized by a set of basis vectors. If these vectors are chosen so as
to accurately span the solution space, the model behaviour can be captured with just a few states.
In this way a low-order, high-fidelity aerodynamic model can be obtained. There are several
options available for selecting the basis vectors, a few of which will be outlined here. It is desirable
to choose an orthogonal set of vectors, as the resulting congruent transformation preserves the
system definiteness, and therefore often preserves system stability.

If the set of ¢ orthonormal basis vectors are contained in the columns of the matrix ¥, a gth
order approximation to the perturbation solution can be made by assuming

U =7V, (18)

where z(¢) is the reduced-order aerodynamic state vector. Substituting this representation of U’
into the linearized governing equations (16) and premultiplying the system by VqT, we obtain the
reduced-order system

dz

= V!4V + V) Bu. (19)
Writing the reduced-order matrices as 4, = VqTA V,and B, = VqTB, it is clear from Eq. (19) that the
definiteness of the original system has been preserved. This can be seen by considering an arbi-
trary vector v, then

vidy=v" VqTA Vv = (VqV)TA(VqV)T. (20)

So the reduced system matrix 4, has the same definiteness as the original matrix 4. A negative
definite matrix implies that all the eigenvalues have negative real part and the aerodynamic system
is stable. In this case, if the original system is stable, so will be the reduced-order model. We note
that this property is not preserved in transforms of the form 4, = WqTA V,, where W, and ¥, are bi-
orthogonal.

3.1. Eigenmode representation

An obvious choice might be to compute the eigenmodes of the large matrix 4 and to form the
basis with the eigenvectors whose eigenvalues fall within the frequency range of interest. This
approach has been taken for many problems, especially in structural dynamics where the matrices
are generally symmetric and the eigenmodes are easy to compute. In fluid problems however, the
eigenmodes of the very large matrix 4 are much more difficult to compute. Even in two dimen-
sions it was found that for the full Euler equations the matrix was badly conditioned and that the
eigenmodes suffered from non-normality problems [13]. In addition, for a non-symmetric prob-
lem, both the right eigenvectors ¥, and the left eigenvectors ¥, must be computed, and the re-
duced matrix representation is of the form A4, = WqTA V,. Although this is not a congruent
transformation, a basis is obtained which preserves system stability, since the eigenvalues of
the reduced-order model are a subset of the original system eigenvalues.
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3.2. Proper orthogonal decomposition

The POD is a popular alternative to the eigenmode approach for determining a reduced-space
basis. Typically, a time simulation of the system for a characteristic unsteady flow is performed
and instantaneous solutions or snapshots are obtained at selected times. These snapshots are then
combined to produce an orthogonal set of basis vectors which represents the perturbation solu-
tion U’ in some optimal way. More specifically, the basis vectors ¥ are chosen so as to maximize
the following cost [5]:

(U, @)) (.

T 0@ (PY) @)

where (U', W) denotes the scalar product of the basis vector ¥ with the field U'(x,7) and { )
represents a time-averaging operation.

A POD approach to developing reduced-order models for turbomachinery problems is pre-
sented in Ref. [7] and is summarized here. To avoid performing a time simulation of the large
linearized system (16), the forcing is decomposed into spatial and temporal Fourier modes, and
advantage is taken of the fact that the governing equations are linear to consider each of these
modes separately. The temporal variation of the forcing can be viewed as a superposition of
harmonic components each at a frequency . This harmonic displacement of the N blades, u, can
then be thought of as comprising a superposition of N travelling wave modes [14]. This can be
written for blade k as

N-1
U, = ﬁrei((')t+(k71)ar) (22)
r=0
where the u, are complex coefficients. Here, o, is given by
r2m
o="3 (23)

and is the interblade phase angle for the rth travelling wave. It describes the phase difference
between the motion of a given blade and its neighbour [3]. Note that this does not mean we are
restricted to consideration of sinusoidal motions, since by superposing these modes, any arbitrary
disturbance in space and time may be represented.

Consider the component of blade motion at temporal frequency w; and spatial frequency o;.
The corresponding motion of the first blade can be written as

ujl‘k(t) _ Wl'keiwkt’ (24)

where ﬁ{k contains the magnitudes of the blade position and velocity. The motion of any blade r
can then be written in terms of the motion of the first blade as

u{k(t) — l—lil'kei(r—l)ajeimkt_ (25>
The corresponding flow solution in each passage will also be harmonic of the form

Ujr'k(t) _ ﬁjl‘kei(r—l)oyeiwkt7 (26)
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with the same spatial frequency o; because all blades have the same aerodynamic shape and so the
Jjth spatial forcing only excites the jth spatial acrodynamic response. Here the vector U, represents
the unknown perturbation flow variables associated with blade r. In addition, since each U’
contains a single spatial frequency, if the response of the first blade is known, then the response of
all subsequent blades can be determined by using Eq. (26). The governing equations can therefore
be discretized on a single blade passage making the computation much more efficient than a time
domain calculation. The linearized Euler equations (16) can now be cast in the frequency domain
on a single passage as

liw, — 4,]U" = Bu}, (27)
where 4; represents the original matrix 4 for just one passage, but modified to allow for a complex
periodicity condition which captures the effect of neighbouring blade passages without directly
including them in the model [13]. Specifically, the complex periodicity condition enforces the fact
that the flow along the upper periodic boundary is the same as that along the lower periodic
boundary but shifted in phase by the interblade phase angle ;.

Resulting solutions of the frequency domain CFD equations (27) provide an image of the flow
at each temporal frequency wy, for each spatial frequency o;. The real and imaginary parts of this
image form the snapshots for the POD analysis. Although far more efficient than a POD analysis
in the time domain, this approach requires the factorization of the matrix [ic;, — 4;| for each pair
of frequencies. For a typical bladed disk, the cost of generating the snapshots can be high if a large
frequency range is to be considered. Another issue with the POD approach is that it is necessary to
arbitrarily specify a set of sample frequencies. Typically some knowledge will be available on the
range of frequencies expected to be present in the system response, and the POD will be sampled
over this range. However it is also necessary to choose exactly which frequencies will be sampled
within this range. If samples are placed too far apart, important system dynamics may be missed;
if they are placed too closely together, a large number of matrix factorizations and solves is
necessary and so the cost of generating the model becomes high.

3.3. Arnoldi-based model order reduction

An approach which can be thought of as a compromise between the eigenmode and POD
methods is developed in this section. While the basis is easy to compute, some of the issues as-
sociated with the sampling requirements in the POD are addressed. Our basic goal is to obtain
a reduced system which has many fewer states than the original system, can be computed with
a reasonable cost, but which still represents the original system’s dynamics accurately. One ap-
proach to ensuring accurate representation of system dynamics is to try to match the transfer
functions of the reduced and the original systems. Several different matching criteria are possible.
Here we describe a process based on matching moments of the transfer function.

Consider first a single input, single output system

U =4U +bu, y=c'U. (28)
The transfer function between input u(¢) and output y(z) is

H(s) =c"(sf —4)'b, (29)
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which can also be represented as a rational function

N(s)
D(s)’

H(s) = (30)

where the numerator N(s) and denominator D(s) are both polynomials in s. A gth order Padé
approximation to the transfer function is defined as

Hy(s) = by 159t + -+ bis + by (1)
B gt ta, st e as + 1

The 2g coefficients of the Padé approximation, a;, b;, can be selected so as to match the first 2¢
terms in a McLaurin expansion of the transfer function (29). We can write

H(s)=— Z mys, (32)
=0
where
mye = c'4~*Dp (33)

is the kth moment of H(s). A gth order Padé approximation can be constructed via the Lanczos
process and will match the first 2¢g moments of H(s) [10].

An alternative approach is to use the Arnoldi method to generate a set of vectors which spans
the gth order Krylov subspace defined by

A 4(4,b) = span{4~'b,4?b,..., 4 b}. (34)

The set of ¢ Arnoldi vectors matches ¢ moments of the system transfer function, that is half the
number matched by the Padé approximation, however since the Arnoldi approach has the ad-
vantage of generating a congruent transformation, in many cases it generates models with
guaranteed stability. It is possible to reduce systems with multiple inputs using the block Arnoldi
method. For example, if we consider a system with two inputs u; and u,,

U/ :AU/ +b11/l1 —|—b2u2, (35)
then the block Arnoldi method is used to generate vectors which span the Krylov subspace
e%/q(A, b],bz) = Span{A_lb1,A_lb2,A_2b1,A_zbz, . ,A_qbl,A_qbz}. (36)

We also note that it is not necessarily the first ¢ moments which must be matched. If we were to
consider a Taylor series expansion of the transfer function about some non-zero value of s, a
model could be obtained which would give a better approximation of the system dynamics for
higher frequencies near the chosen value s. These multiple frequency point Arnoldi methods are
described in Ref. [15].
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In order to calculate the basis, we consider input vectors which correspond to a particular blade
having a unit displacement or velocity and all other blades fixed. Although vectors must be
constructed for each of the N blades being perturbed in turn, the calculation need only be per-
formed once, with the remaining N — 1 vectors constructed through symmetry considerations.
Once again, we can use linearity to decompose this forcing into a set of orthogonal modes each
containing a single spatial frequency, and the calculation for each of these modes can be per-
formed on a single blade passage. For expansions of the transfer function about s = i, solutions
of the complex frequency domain equations (27) must be obtained. The resulting solutions are
then combined via an inverse Fourier transform to obtain the first blade basis vector. Vectors for
subsequent blades are computed through use of symmetry. Further simplification can be obtained
by noting that for expansions about s = 0, the set of Arnoldi vectors for spatial frequencies ¢ and
—o are complex conjugates of one another. The algorithm for the single input, single output case
expanded about w; is shown below.

Algorithm 3.1. (Arnoldi method)

arnoldi (input 4,b,w,qr, N; output V)

{
for (j=1;j <=N;j++) {
Factor [iw, — 4]
Solve [iw —Ajlvi =b
for (k= Lk <quk++){
Solve [iwy — A;]w = v,
for (i=lLi<=kji++) {
h=wly,
W =W — hv;
b
Vi+1 :ﬁ
b
Vi=[vi...v]
}
}

Given the complete set of basis vectors ¥, we substitute the projection of U Eq. (18) into the
governing equations (16) and (17) to obtain the reduced-order system (19) which can be written as

% =A,z+Bu, y=C.az. (37)
dr

The choice of ¢, in the above algorithm is an open question. In the examples presented in the
following section, we have selected the number of basis vectors by comparison with known
solutions. The value of g; is chosen to be sufficiently high so that the CFD result is captured by
the reduced-order model with a desired level of accuracy.
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One can see the similarities between the POD approach and the multiple frequency point
Arnoldi method. In fact, solving the system (27) at J frequencies to obtain the POD snapshots
results in an identical data set as taking J frequency points and computing a single Arnoldi vector
at each point (the subsequent orthogonalization procedure differs between the two methods). Very
efficient models could be constructed by considering a range of frequencies and using the POD
analysis to choose the basis vectors, but also computing more than one vector at each frequency as
in the Arnoldi approach. One must evaluate the relative gain in choosing a higher number of
frequency points, since by far the most expensive part of the calculation is the factorization of the
matrix in solving the linear system. In the Arnoldi approach, the matrix is computed and factored
just once for each w; and o;, but as outlined in the Algorithm 3.1, g, vectors are obtained per
factorization. As mentioned previously, for the POD a different matrix must be factored for every
solve.

4. Results

Reduced-order models have been developed for subsonic and transonic cascades operating with
general unsteady blade motion. A DFVLR L030-4 transonic rotor which operates at a steady-
state inlet Mach number of 0.82 was analyzed in unsteady plunging motion for a 20-blade con-
figuration. Fig. 2 shows the grid for two passages of this rotor. The steady-state solution is shown
in Fig. 3. The CFD computational grid for 20 passages would have 71940 grid points, which
corresponds to 287 760 unknowns. Clearly a time-domain computation of this size is very ex-
pensive, however we will show that the cascade dynamics can be accurately captured by the re-
duced-order model with less than 10 states per blade passage. Several examples will be considered.
The first three are for the aerodynamic model alone (structural motion is prescribed). Of these, the
first and second examples, although unrealistically simplified, are chosen so that CFD simulation
results can be obtained and used to evaluate the accuracy of the reduced-order model. Finally, an
example will be presented which illustrates the coupling between the aerodynamic reduced-order
model and a structural model.

4.1. Aerodynamic reduced-order model for transonic cascade

Forced response of the cascade to a pulse input is a good assessment of the model’s capability,
since a pulse contains a continuous spectrum of temporal frequencies. Comparison of reduced-
order modelling predictions with results from the full simulation code (if these results were
available) would determine how many modes are required to accurately capture the system dy-
namics. The input takes the form

h(t) = he 8t=n), (38)

where g is a parameter which determines how sharp the pulse is and thus the value of the highest
significant frequency present.
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Fig. 2. Computational domain for two blade passages, DFVLR transonic rotor. 3597 nodes, 7040 triangles per blade
passage.

As mentioned, it would be very expensive to perform a time simulation of the linearized CFD
code on the full rotor. However, if all blades are supplied with the same pulse input, a motion
results in which only an interblade phase angle of zero is present. This problem can be solved
using the linearized simulation code with just a single passage, thus providing the data to assess
the performance of the reduced-order model when a range of forcing frequencies is present. Two
Arnoldi reduced-order models were constructed using basis vectors calculated only about s = 0
(o = 0 in Algorithm 3.1). These models contained four and six modes for the interblade phase
angle under consideration (q; = 4 and ¢; = 6 respectively in Algorithm 3.1). The calculated non-
dimensional vertical component of force response on each blade as a function of time is depicted
in Fig. 4. It shows that excellent agreement is obtained with only a handful of states in the reduced-
order model. Even in this highly limited case of a single interblade phase angle, the simulation
code has 14 388 unknowns and so the reduced-order model represents a significant improvement.

This same case was considered using a reduced-order model constructed with the POD tech-
nique described in Ref. [7]. The POD samples were made at 10 equally spaced reduced frequencies
over the range k£ = 0 to £ = 1.22 for each interblade phase angle. This frequency range spans the
important content of the pulse for a value of g = 0.01. The response calculated with the POD
reduced-order model is also shown in Fig. 4. Although the POD response is more accurate than
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Fig. 3. Pressure contours for steady inviscid transonic flow. M = 0.82, o = 58.5°.
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Fig. 4. Pulse response for Arnoldi and POD reduced-order models and linearized simulation code. ¢ = 0°, g = 0.01,

M =0.82.

the Arnoldi response with four modes, with six modes the Arnoldi model is very close to the
linearized simulation response, while the POD slightly underpredicts the force at both peaks.
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For this problem, a total of two hundred matrix factorizations were performed to obtain the
POD snapshots (10 sample frequencies for each of 20 interblade phase angles). In comparison,
just 11 matrix factorizations were required for the Arnoldi reduced-order model since all vectors
were computed about s = 0. The Arnoldi-based model is an order of magnitude cheaper to obtain
than the POD model, and also does a better job of predicting the response. In addition, the POD
reduced-order model is restricted to responses containing frequencies within the (arbitrary)
sample range. The Arnoldi-based model contains no such restriction, although more modes will
be required if flows containing higher frequencies are to be modelled. In this case, one might
choose to use a multiple frequency point method as described earlier. The reduced-order models
obtained using the POD method are very sensitive to the choice of sample frequencies. As
mentioned previously, it is necessary to ensure not only that the correct range is sampled, but also
that enough samples are performed over this range, or the system dynamics will not be accurately
captured. Because more than one vector is computed at each frequency in the Arnoldi method,
the dynamics can be captured without considering many frequency points (one can liken the
Arnoldi approach to computing higher-order ‘“‘derivatives” at each frequency point). An ap-
propriate choice of frequency points can reduce the required size of the reduced-order models, but
i1s not necessarily required to capture system dynamics, as the example presented here demon-
strates.

The reduced-order model was also used to calculate forced response of the 20-blade cascade to
sinusoidal motion at an interblade phase angle of 90°. The linearized CFD solution can be ob-
tained for this flow using just a single passage in the frequency domain. The calculated force on
the first blade is shown as a function of time in Fig. 5. The results for the reduced-order model
with 12, 16 and 20 states for this interblade phase angle are compared to those obtained from the
CFD frequency domain code. (Note that the frequencies ¢ and —o are considered together when
the model is constructed, so these correspond respectively to 6, 8 and 10 states per blade passage.)
The results obtained with 20 modes in the reduced-order model are virtually indistinguishable
from the CFD. The required size of the Arnoldi reduced-order model for this case is a little larger
than that found to be necessary for the POD approach, which typically used around 12 modes for
a purely sinusoidal motion. However, the POD snapshots were generated using sinusoidal mo-
tions, so we expect them to predict such a response very efficiently. As seen with the pulse response
described above, the Arnoldi approach does a much better job with general inputs as there is no
assumed relation between position and velocity when forming the modes.

A case was then considered where just one blade was forced with the pulse input, while all
others were held fixed. This motion contains all possible interblade phase angles. The response for
each blade was computed using the Arnoldi reduced-order model with 196 aerodynamic states.
The inputs and response of each blade are shown in Fig. 6. This computation was far too ex-
pensive to be carried out with the linearized simulation code. It is clear from the plot that the
largest force is generated on the disturbed blade and its nearest neighbours, as might be expected
intuitively. We can see that beyond the two closest blades the force generated is very small.

4.2. Structural coupling

For analysis of forced response, the blade motion inputs u; are specified and the system (37) is
time-marched to determine the resulting acrodynamic response. For a coupled analysis, equations
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Fig. 5. Forced response of first blade to sinusoidal motion using Arnoldi reduced-order model and CFD frequency

domain code. ¢ = 90°, v = 0.5, M = 0.82.

of motion describing the structural states must be included in the reduced-order model. We might
be interested in investigating the stability of the coupled system, or in determining the overall
response to a perturbation in blade position. The structural model could be a complicated system
(for example a reduced-order structural model derived from a finite element analysis) or a simple
model (for example a very low-order mass-spring model). We consider here a simple mass-spring-
damper structural model where each blade can move in plunging motion with a natural frequency
of w, as shown in Fig. 7. For plunge only, the structural equations of motion for each blade with

mass m and chord ¢ can be written as

i) = [ e [1] 2]t (9)

or in matrix form,

i = Su+ Ty. (40)

In the above, the reduced frequency is defined in terms of the plunge natural frequency
k = wy,c/V, { is the structural damping coefficient and y = 4m; /npc? is the blade mass ratio. C) =
v; 1s the lift coeflicient for blade j, and M and V" are the inlet Mach number and axial velocity
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Fig. 6. Pulse displacement input at blade 3 (dashed line) and blade lift force response (solid line) for Arnoldi reduced-
order model. 196 aerodynamic states, g = 0.01, M = 0.82.
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Fig. 7. Typical section structural model for plunging motion of blade i.
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respectively. This structural model is then coupled to the aerodynamic reduced-order state-space
system (37). The coupled system is as follows:

HEEEAIH! (@1)

At each timestep the structural and aerodynamic equations are thus solved simultaneously to
determine the blade position and velocity and the aerodynamic forces acting.

The eigenvalues of the coupled system (41) for a reduced frequency of £ = 0.25, no structural
damping and a mass ratio of u = 100 are shown in Fig. 8. We observe some movement of the
original aerodynamic eigenvalues due to interaction with the structure, and also the introduction
of 40 structural modes with frequencies around the natural frequency M = 0.205. A zoom of
these structural eigenvalues is shown in Fig. 9.

A time-marching simulation of the coupled system was run with £k = 0.25 and { = 0. An ini-
tial plunge displacement was applied to one of the blades, then the coupled structural and
aerodynamic response for the entire rotor was computed. Fig. 10 shows the resulting displace-
ment and lift force for each blade. Clearly the disturbed blade (blade 3) exhibits the largest re-
sponse. The resulting motion is decaying, although slowly since the coupled system is lightly
damped.
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Fig. 9. Zoom of structural eigenvalues. M = 0.82, u =100, k =0.25, { =0.

5. Conclusions

A new method of producing reduced-order models for turbomachinery has been demonstrated.
This method provides an excellent alternative to the eigenmode and POD approaches to reduced-
order modelling. The basis vectors are constructed efficiently by applying the Arnoldi method to
the frequency domain governing equations, while development of the model in the time domain
allows for ease of coupling to actuation and control models and provides a convenient framework
for integration within more global engine models. The framework developed is particularly suited
to the analysis of mistuned rotors where the interblade phase angles do not decouple and the
entire rotor must be considered. It is also straightforward to extend this approach to viscous and
three-dimensional flows if the underlying CFD model is available.

The Arnoldi basis has the benefits of an eigenmode approach in that it models the dynamics of
the original high-order system, but it is much more straightforward to compute. The Arnoldi-
based models are much cheaper to compute than those constructed using the POD since one
matrix factorization can be used to obtain many basis vectors, and are in general applicable to a
wider range of flows. It is also possible to use Arnoldi methods with multiple frequency points to
obtain efficient models which are valid for flows containing higher frequencies, however the
models obtained are less sensitive than POD-based models to the choice of sample frequencies. In
addition, outputs of interest can be included in the criterion for selecting the basis vectors, and
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Fig. 10. Coupled system response to an initial plunge displacement input at blade 3: blade displacement (dashed line)
and blade lift force (solid line). u = 100, £ = 0.25, { = 0.

further improvement can be obtained by post-processing the resulting reduced-order models using
a truncated balanced realization.
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