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ONLINE ADAPTIVE MODEL REDUCTION FOR NONLINEAR
SYSTEMS VIA LOW-RANK UPDATES∗

BENJAMIN PEHERSTORFER† AND KAREN WILLCOX†

Abstract. This work presents a nonlinear model reduction approach for systems of equations
stemming from the discretization of partial differential equations with nonlinear terms. Our approach
constructs a reduced system with proper orthogonal decomposition and the discrete empirical inter-
polation method (DEIM); however, whereas classical DEIM derives a linear approximation of the
nonlinear terms in a static DEIM space generated in an offline phase, our method adapts the DEIM
space as the online calculation proceeds and thus provides a nonlinear approximation. The online
adaptation uses new data to produce a reduced system that accurately approximates behavior not
anticipated in the offline phase. These online data are obtained by querying the full-order system
during the online phase, but only at a few selected components to guarantee a computationally
efficient adaptation. Compared to the classical static approach, our online adaptive and nonlinear
model reduction approach achieves accuracy improvements of up to three orders of magnitude in
our numerical experiments with time-dependent and steady-state nonlinear problems. The examples
also demonstrate that through adaptivity, our reduced systems provide valid approximations of the
full-order systems outside of the parameter domains for which they were initially built in the offline
phase.
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1. Introduction. Model reduction derives reduced systems of large-scale sys-
tems of equations, typically using an offline phase in which the reduced system is
constructed from solutions of the full-order system, and an online phase in which
the reduced system is executed repeatedly to generate solutions for the task at hand.
In many situations, the reduced systems yield accurate approximations of the full-
order solutions but with orders of magnitude reduction in computational complexity.
Model reduction exploits that often the solutions are not scattered all over the high-
dimensional solution space, but instead they form a low-dimensional manifold that
can be approximated by a low-dimensional (linear) reduced space. In some cases,
however, the manifold exhibits a complex and nonlinear structure that can only be
approximated well by the linear reduced space if its dimension is chosen sufficiently
high. Thus, solving the reduced system can become computationally expensive. We
therefore propose a nonlinear approximation of the manifold. The nonlinear approx-
imation is based on adapting the reduced system while the computation proceeds in
the online phase, using newly generated data through limited queries to the full-order
system at a few selected components. Our online adaptation leads to a reduced sys-
tem that can more efficiently capture nonlinear structure in the manifold, it ensures
computational efficiency by performing low-rank updates, and through the use of new
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data it avoids relying on precomputed quantities that restrict the adaptation to those
situations that were anticipated in the offline phase.

We focus on systems of equations stemming from the discretization of nonlin-
ear partial differential equations (PDEs). Projection-based model reduction employs
Galerkin or Petrov–Galerkin projection of the equations onto a low-dimensional re-
duced space that is spanned by a set of basis vectors. Proper orthogonal decomposi-
tion (POD) is one popular method to construct such a set of basis vectors [41]. Other
methods include truncated balanced realization [33] and Krylov subspace methods
[21, 23]. In the case of nonlinear systems, however, projection alone is not sufficient
to obtain a computationally efficient method, because then the nonlinear terms of
the PDE entail computations that often render solving the reduced system almost
as expensive as solving the full-order system. One solution to this problem is to
approximate the nonlinear terms with sparse sampling methods. Sparse sampling
methods sample the nonlinear terms at a few components and then approximately
represent them in a low-dimensional space. In [3], the approximation is derived via
gappy POD. The Gauss–Newton with approximated tensors (GNAT) method [10]
approximates the nonlinear terms in the low-dimensional space by solving a low-cost
least-squares problem. We consider here the discrete empirical interpolation method
(DEIM) [12], which is the discrete counterpart of the empirical interpolation method
[4]. It samples the nonlinear terms at previously selected DEIM interpolation points
and then combines interpolation and projection to derive an approximation in a low-
dimensional DEIM space. The approximation quality and the costs of the DEIM
interpolant directly influence the overall quality and costs of the reduced system.
We therefore propose to adapt this DEIM interpolant online to better capture the
nonlinear structure of the manifold induced by the solutions of the nonlinear system.

Adaptivity has attracted much attention in the context of model reduction. Of-
fline adaptive methods extend [42, 26] or weight [14, 15] snapshot data while the
reduced system is constructed in the offline phase; however, once the reduced system
is generated, it stays fixed and is kept unchanged online. Online adaptive methods
change the reduced system during the computations in the online phase. Most of the
existing online adaptivity approaches rely on precomputed quantities that restrict the
way the reduced system can be updated online. They do not incorporate new data
that become available online and thus must anticipate offline how the reduced system
might change. Interpolation between reduced systems [1, 17, 34, 46], localization ap-
proaches [20, 18, 2, 36, 19], and dictionary approaches [27, 31] fall into this category
of online adaptive methods.

In contrast, we consider here online adaptivity that does not solely rely on pre-
computed quantities but incorporates new data online and thus allows changes to the
reduced system that were not anticipated offline. There are several approaches that
incorporate new data by rebuilding the reduced system [16, 32, 39, 44, 38, 35, 45, 29];
however, even if an incremental basis generation or an h-refinement of the basis [9] is
employed, assembling the reduced system with the newly generated basis often still
entails expensive computations online. An online adaptive and localized approach
that takes new data into account efficiently was presented in [43]. To increase accu-
racy and stability, a reference state is subtracted from the snapshots corresponding to
localized reduced systems in the online phase. This adaptivity approach incorporates
the reference state as new data online, but it is a limited form of adaptivity because
each snapshot receives the same update.

We develop an online adaptivity approach that adapts the DEIM space and the
DEIM interpolation points with additive low-rank updates and thus allows more com-
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plex updates, including translations and rotations of the DEIM space. We sample the
nonlinear terms at more points than specified by DEIM to obtain a nonzero residual
at the sampling points. From this residual, we derive low-rank updates to the basis of
the DEIM space and to the DEIM interpolation points. This introduces online compu-
tational costs that scale linearly in the number of degrees of freedom of the full-order
system, but it allows the adaptation of the DEIM approximation while the computa-
tion proceeds in the online phase. To avoid the update being limited by precomputed
quantities, our method queries the full-order system during the online phase; however,
to achieve a computationally efficient adaptation, we query the full-order system at
a few components only. Thus, our online adaptivity approach explicitly breaks with
the classical offline/online splitting of model reduction and allows online costs that
scale linearly in the number of degrees of freedom of the full-order system.

Section 2 briefly summarizes model reduction for nonlinear systems. It then
motivates online adaptive model reduction with a synthetic optimization problem and
gives a detailed problem formulation. The DEIM basis and the DEIM interpolation
points adaptivity procedures follow in sections 3 and 4, respectively. The numerical
results in section 5 demonstrate reduced systems based on our online adaptive DEIM
approximations on parametrized and time-dependent nonlinear systems. Conclusions
are drawn in section 6.

2. Model reduction for nonlinear systems. We briefly discuss model re-
duction for nonlinear systems. A reduced system with POD and DEIM is derived
in sections 2.1 and 2.2, respectively. Sections 2.3 and 2.4 demonstrate on a syn-
thetic optimization problem that the approximation quality of the reduced system
can be significantly improved by incorporating data that become available online but
that the classical model reduction procedures do not allow a computationally efficient
modification of the reduced system in the online phase.

2.1. Proper orthogonal decomposition. We consider the discrete system of
nonlinear equations

(2.1) Ay(μ) + f(y(μ)) = 0

stemming from the discretization of a nonlinear PDE depending on the parameter
μ = [μ1, . . . , μd]

T ∈ D with parameter domain D ⊂ R
d. The solution or state

vector y(μ) = [y1(μ), . . . , yN (μ)]T ∈ R
N is an N -dimensional vector. We choose the

linear operator A ∈ R
N×N and the nonlinear function f : RN → R

N such that they
correspond to the linear and the nonlinear terms of the PDE, respectively. We consider
here the case where the function f is evaluated componentwise at the state vector
y(μ), i.e., f (y(μ)) = [f1(y1(μ)), . . . , fN(yN (μ))]T ∈ R

N , with the nonlinear functions
f1, . . . , fN : R → R, y �→ f(y). The Jacobian of (2.1) is J(μ) = A+ Jf (y(μ)) with

Jf (y(μ)) = diag(f ′
1(y1(μ)), . . . , f

′
N (yN (μ)))

and the first derivatives f ′
1, . . . , f

′
N of f1, . . . , fN with respect to y. Note that the

following DEIM adaptivity scheme can be extended to nonlinear functions f with
component functions f1, . . . , fN that depend on multiple components of the state
vector with the approach discussed for DEIM in [12, section 3.5]. Note further that
(2.1) is a steady-state system but that all of the following discussion is applicable also
to time-dependent problems. We also note that we assume well-posedness of (2.1).

We derive a reduced system of the full-order system (2.1) by computing a re-
duced basis with POD. Let Y = [y(μ1), . . . ,y(μM )] ∈ R

N×M be the snapshot
matrix. Its columns are the M ∈ N solution vectors, or snapshots, of (2.1) with
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parameters μ1, . . . ,μM ∈ D. Selecting the snapshots, i.e., selecting the parameters
μ1, . . . ,μM ∈ D, is a widely studied problem in the context of model reduction. Many
selection algorithms are based on greedy approaches, see, e.g., [42, 40, 8, 37] and es-
pecially for time-dependent problems [25]. We do not further consider how to best
select the parameters of the snapshots here, but we emphasize that the selection of
snapshots can significantly impact the quality of the reduced system. POD constructs
an orthonormal basis V = [v1, . . . ,vn] ∈ R

N×n of an n-dimensional space that is a
solution to the minimization problem

min
v1,...,vn∈RN

M∑
i=1

∥∥∥∥∥∥y(μi)−
n∑

j=1

(vT
j y(μi))vj

∥∥∥∥∥∥
2

2

.

The norm ‖·‖2 is the Euclidean norm. The POD basis vectors in the matrix V ∈ R
N×n

are the n left-singular vectors of Y corresponding to the n largest singular values. The
POD-Galerkin reduced system of (2.1) is obtained by Galerkin projection as

(2.2) Ãỹ(μ) + V Tf(V ỹ(μ)) = 0

with the reduced linear operator Ã = V TAV ∈ R
n×n, the reduced state vector

ỹ(μ) ∈ R
n, and the reduced Jacobian Ã + V TJf (V ỹ(μ))V ∈ R

n×n. For many
problems, the solution y(μ) of (2.1) is well approximated by V ỹ(μ), even if the
number of POD basis vectors n is chosen much smaller than the number of degrees
of freedom N of system (2.1). However, in the case of nonlinear systems, solving
the reduced system (2.2) instead of (2.1) does not necessarily lead to computational
savings because the nonlinear function f is still evaluated at all N components of
V ỹ(μ) ∈ R

N .

2.2. Discrete empirical interpolation method. DEIM approximates the
nonlinear function f in a low-dimensional space by sampling f at only m � N com-
ponents and then approximating all other components. This can significantly speed
up the computation time of solving the reduced system to determine the reduced state
vector ỹ(μ) ∈ R

n.
DEIM computes m ∈ N basis vectors by applying POD to the set of nonlinear

snapshots

(2.3) {f(y(μ1)), . . . ,f (y(μM ))} ⊂ R
N .

This leads to the DEIM basis vectors that are stored as columns in the DEIM basis
U ∈ R

N×m. DEIM selects m pairwise distinct interpolation points p1, . . . , pm ∈
{1, . . . , N} and assembles the DEIM interpolation points matrix P = [ep1 , . . . , epm ] ∈
R

N×m, where ei ∈ {0, 1}N is the ith canonical unit vector. The interpolation points
are constructed with a greedy approach inductively on the basis vectors in U [12,
Algorithm 1]. Thus, the ith interpolation point pi can be associated with the basis
vector in the ith column of the DEIM basis U . The DEIM interpolant of f is defined
by the tuple (U ,P ) of the DEIM basis U and the DEIM interpolation points matrix
P . The DEIM approximation of the nonlinear function f evaluated at the state vector
y(μ) is given as

(2.4) f(y(μ)) ≈ U(P TU)−1P Tf(y(μ)) ,

where P Tf(y(μ)) samples the nonlinear function at m components only. The DEIM
interpolation points matrix P and the DEIM basisU are selected such that the matrix
(P TU)−1 ∈ R

m×m has full rank.
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We combine DEIM and POD-Galerkin to obtain the POD-DEIM-Galerkin re-
duced system

(2.5) Ãỹ(μ) + V TU(P TU)−1P Tf(V ỹ(μ)) = 0 .

We assume the well-posedness of (2.5). The Jacobian is

J̃(μ) = Ã︸︷︷︸
n×n

+V TU(P TU)−1︸ ︷︷ ︸
n×m

J̃f (P
TV ỹ(μ))︸ ︷︷ ︸
m×m

P TV︸ ︷︷ ︸
m×n

,

where we use the fact that the nonlinear function is evaluated componentwise at the
state vector and follow [12] to define

J̃f (P
TV ỹ(μ)) = J̃f (P

Tyr(μ)) = diag(f ′
p1
(yrp1

(μ)), . . . , f ′
pm

(yrpm
(μ)))

with yr(μ) = [yr1(μ), . . . , y
r
N(μ)]T = V ỹ(μ). Solving (2.5) with, e.g., the Newton

method evaluates the nonlinear function f at the interpolation points given by P
only, instead of at all N components. The corresponding computational procedure of
the POD-DEIM-Galerkin method is split into an offline phase where the POD-DEIM-
Galerkin reduced system is constructed and an online phase where it is evaluated. The
one-time high computational costs of building the DEIM interpolant and the reduced
system in the offline phase are compensated during the online phase where the reduced
(2.5) instead of the full-order system (2.1) is solved for a large number of parameters.

2.3. Problem formulation. Let (U0,P 0) be the DEIM interpolant of the non-
linear function f , with m DEIM basis vectors and m DEIM interpolation points, that
is built in the offline phase from the nonlinear snapshots f(y(μ1)), . . . ,f(y(μM )) ∈
R

N with parameters μ1, . . . ,μM ∈ D. We consider the situation where in the online
phase, the application at hand (e.g., optimization, uncertainty quantification, or pa-
rameter inference) requests M ′ ∈ N solutions ỹ(μM+1), . . . , ỹ(μM+M ′ ) ∈ R

n of the
POD-DEIM-Galerkin reduced system (2.5), with parameters μM+1, . . . ,μM+M ′ ∈ D.
Solving the POD-DEIM-Galerkin reduced system requires DEIM approximations of
the nonlinear function at the vectors V ỹ(μM+1), . . . ,V ỹ(μM+M ′ ) ∈ R

N . Note that
for the sake of exposition, we ignore that an iterative solution method (e.g., Newton
method) might also require DEIM approximations at intermediate iterates of the re-
duced state vectors. We define ŷ(μi) = y(μi) for i = 1, . . . ,M and ŷ(μi) = V ỹ(μi)
for i = M + 1, . . . ,M +M ′. Then, the online phase consists of k = 1, . . . ,M ′ steps,
where, at step k, the nonlinear function f (ŷ(μM+k)) is approximated with DEIM. We
therefore aim to provide at step k a DEIM interpolant that approximates f (ŷ(μM+k))
well.

The quality of the DEIM approximation of f (ŷ(μM+k)) depends on how well the
nonlinear function f (ŷ(μM+k)) can be represented in the DEIM basis and how well
the components selected by the DEIM interpolation points represent the overall be-
havior of the nonlinear function at ŷ(μM+k); however, when the DEIM interpolant is
built offline, the reduced state vectors ỹ(μM+1), . . . , ỹ(μM+M ′ ) are not known, and
thus the DEIM basis and the DEIM interpolation points cannot be constructed to
explicitly take the vectors ŷ(μM+1), . . . , ŷ(μM+M ′ ) into account. Rebuilding the in-
terpolant online would require evaluating the nonlinear function at full-order state vec-
tors and computing the singular value decomposition (SVD) of the snapshot matrix,
which would entail high computational costs. We therefore present in the following
a computationally efficient online adaptivity procedure to adapt a DEIM interpolant
with only a few samples of the nonlinear function that can be cheaply computed in
the online phase.
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Fig. 1. The plot in (a) shows the path of the optimization algorithm to the optimum µ̃∗ of
1T
n g̃(µ) with g̃ using m = 100 DEIM basis vectors. The DEIM interpolant g̃ is evaluated at only a

few selected points, but these points are not known when the DEIM interpolant is constructed. The
results in (b) show that if the DEIM interpolant is rebuilt from snapshots corresponding to those
points, the optimization algorithm converges faster to the optimum than with the original DEIM
interpolant built from snapshots corresponding to a uniform grid in the parameter domain D.

2.4. Motivating example. Before presenting our adaptivity approach, we mo-
tivate online adaptive DEIM interpolants by illustrating on a synthetic optimization
problem that incorporating data from the online phase can increase the DEIM approx-
imation accuracy. Let Ω = [0, 1]2 ⊂ R

2 be the spatial domain and let D = [0, 1]2 ⊂ R
2

be the parameter domain of the nonlinear function g : Ω×D → R that is defined as

(2.6) g(x,μ) =
μ1μ2 exp(x1x2)

exp(20‖x− μ‖22)
.

We discretize g in the spatial domain on an equidistant 40×40 grid withN = 1600 grid
points with spatial coordinates x1, . . . ,xN ∈ Ω and obtain the vector-valued function
g : D → R

N with the ith component gi(μ) = g(xi,μ). We are then interested in
the parameter μ∗ that maximizes 1T

Ng(μ), where 1N = [1, . . . , 1]T ∈ R
N . We do not

directly evaluate g but first derive a DEIM interpolant g̃ of g and then search for μ̃∗

that maximizes the approximate objective 1T
n g̃(μ) with 1T

n = [1, . . . , 1]T ∈ R
n.

In the offline phase, we neither know the optimal parameter μ∗ nor the path of the
optimization algorithm to the optimum and thus cannot use this information when
constructing the DEIM interpolant. Thus, we build the interpolant from M = 400
snapshots corresponding to the parameters on a 20 × 20 equidistant grid in the pa-
rameter domain D. We run an optimization algorithm, here Nelder–Mead [28], which
evaluates the DEIM interpolant at M ′ parameters μ1, . . . ,μM ′ ∈ D; see Figure 1(a).
The starting point is [0.5, 0.5] ∈ D. To demonstrate the gain of including informa-
tion from the online phase into the DEIM interpolant, we generate new nonlinear
snapshots by evaluating the nonlinear function g at those M ′ parameters and then
construct a DEIM interpolant from them. We rerun the Nelder–Mead algorithm with
the new DEIM interpolant and report the optimization error,

(2.7)
‖μ∗ − μ̃∗‖2

‖μ∗‖2 ,

for the original and the new DEIM interpolant in Figure 1(b). The new interpolant,
which takes online data into account, achieves an accuracy improvement by four or-
ders of magnitude compared to the original DEIM interpolant built from offline data
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Fig. 2. The figure shows the workflow of the online phase of model reduction with online
adaptive DEIM interpolants. The DEIM interpolant is adapted with the samples of the nonlin-
ear function of the previous evaluations. The adaptation requires neither additional snapshots nor
nonlinear function evaluations at full state vectors.

only. This is certainly not a practical approach, because it requires solving the prob-
lem twice, but it shows that the DEIM approximation accuracy can be significantly
improved by incorporating data from the online phase. We therefore present in the
following a more practical way to adapt the DEIM interpolant online.

3. Online basis adaptivity. We adapt the DEIM interpolant at each step k =
1, . . . ,M ′ of the online phase by deriving low-rank updates to the DEIM basis and
the DEIM interpolation points matrix; see Figure 2. The adaptation is initialized at
the first step k = 1 in the online phase with the DEIM interpolant (U 0,P 0) from the
offline phase, from which the adapted interpolant (U1,P 1) is derived. This process is
continued to construct at step k the adapted interpolant (Uk,P k) from (Uk−1,P k−1).
At each step k = 1, . . . ,M ′, the adapted interpolant (Uk,P k) is then used to provide
an approximation of the nonlinear function at the vector ŷ(μM+k) = V ỹ(μM+k).

This section introduces the DEIM basis update. Section 3.1 proposes a residual
relating to the DEIM approximation quality of the nonlinear function. This residual
is exploited in sections 3.2 and 3.3 to construct a basis update. The computational
procedure and its computational complexity are discussed in section 3.4. We close,
with section 3.5, on remarks on the properties of the basis update.

3.1. Residual. A DEIM interpolant (U ,P ) computes an approximation of the
nonlinear function f at a state vector y(μ) by sampling f(y(μ)) at the components
defined by the DEIM interpolation points; see section 2.2. The DEIM approximation
interpolates f(y(μ)) at the DEIM interpolation points, and thus the residual,

U(P TU)−1P Tf (y(μ))− f(y(μ)) ,

is zero at the interpolation points, i.e.,∥∥∥P T
(
U(P TU)−1P Tf (y(μ))− f(y(μ))

)∥∥∥
2
= 0 .

We now extend the set of m interpolation points {p1, . . . , pm} to a set of m+ms

pairwise distinct sampling points {s1, . . . , sm+ms} ⊂ {1, . . . , N} with ms ∈ N and
ms > 0. The first m sampling points s1, . . . , sm coincide with the DEIM interpolation
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points, and the other ms points are drawn randomly with a uniform distribution from
{1, . . . , N}\{p1, . . . , pm}. Note that we remark on the selection of the sampling points
in section 3.5. The corresponding sampling points matrix,

S = [es1 , . . . , esm+ms
] ∈ R

N×(m+ms) ,

is derived similarly to the DEIM interpolation points matrix P ; see section 2.2. The
nonlinear function f(y(μ)) is then approximated by Uc(y(μ)), where the coefficient
c(y(μ)) ∈ R

m is the solution of the overdetermined regression problem

(3.1) STUc(y(μ)) = STf(y(μ)) .

With the Moore–Penrose pseudoinverse (STU)+ ∈ R
m×(m+ms), the solution of (3.1)

is the coefficient

(3.2) c(y(μ)) = (STU)+STf(y(μ)) .

In general, the m+ms sampling points lead to a residual

(3.3) r(y(μ)) = Uc(y(μ))− f(y(μ))

that is nonzero at the sampling points, i.e., ‖STr(y(μ))‖2 > 0.

3.2. Adapting the DEIM basis. For the basis adaptation at step k, we de-
fine a window of size w ∈ N that contains the vector ŷ(μM+k) and the vectors
ŷ(μM+k−w+1), . . . , ŷ(μM+k−1) of the previous w− 1 steps. If k < w, then the previ-
ous w − 1 vectors also include snapshots from the offline phase;1 see section 2.3. For
the sake of exposition, we introduce for each step k a vector k = [k1, . . . , kw]

T ∈ N
w

with ki = M +k−w+ i, such that ŷ(μk1
), . . . , ŷ(μkw

) are the vectors in the window.
At each step k, we generate m + ms sampling points and assemble the corre-

sponding sampling points matrix Sk. The first m sampling points correspond to the
DEIM interpolation points given by P k−1. The remaining sampling points are cho-
sen randomly, as discussed in section 3.1. We then construct approximations of the
nonlinear function f at the vectors ŷ(μk1

), . . . , ŷ(μkw
) with the DEIM basis Uk−1

but with the sampling points matrix Sk instead of P k−1. For i = 1, . . . , w, the coeffi-
cient ck(y(μki

)) ∈ R
m of the approximation Uk−1ck(y(μki

)) of f (ŷ(μki
)) is derived

following (3.2) as

(3.4) ck(y(μki
)) = (ST

k Uk−1)
+ST

k f(ŷ(μki
)) .

The coefficients ck(ŷ(μk1
)), . . . , ck(ŷ(μkw

)) are put as columns in the coefficient ma-
trix Ck ∈ R

m×w.
We then derive two vectors, αk ∈ R

N and βk ∈ R
m, such that the adapted basis

Uk = Uk−1 + αkβ
T
k minimizes the Frobenius norm of the residual at the sampling

points given by Sk

(3.5)
∥∥∥ST

k (UkCk − F k)
∥∥∥2
F
,

where the right-hand side matrix F k = [f (ŷ(μk1
)), . . . ,f(ŷ(μkw

))] ∈ R
N×w contains

as columns the nonlinear function evaluated at the state vectors ŷ(μk1
), . . . , ŷ(μkw

).

1In this case, the ordering of the snapshots affects the online adaptivity process.
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Note that only ST
k F k ∈ R

(m+ms)×w is required in (3.5), and not the complete matrix
F k ∈ R

N×w. Note further that F k may contain snapshots from the offline phase
if k < w; see the first paragraph of this subsection. We define the residual matrix
Rk = Uk−1Ck − F k and transform (3.5) into

‖ST
k Rk + ST

kαkβ
T
kCk‖2F .

Thus, the vectors αk and βk of the update αkβ
T
k ∈ R

N×m are a solution of the
minimization problem

(3.6) argmin
αk∈RN ,βk∈Rm

‖ST
kRk + ST

k αkβ
T
k Ck‖2F .

3.3. Optimality of basis update. We show in this section that an optimal
update αkβ

T
k , i.e., a solution of the minimization problem (3.6), can be computed from

an eigenvector corresponding to the largest eigenvalue of a generalized eigenproblem.
We first consider five auxiliary lemmata and then derive the optimal update αkβ

T
k in

Theorem 3.6. In the following, we exclude the trivial case where the matrices ST
kRk

and Ck have zero entries only.
Lemma 3.1. Let ST

kRk ∈ R
(m+ms)×w and let α ∈ R

m+ms be the left and β ∈ R
w

be the right singular vector of ST
kRk corresponding to the singular value σ > 0. For

a vector z ∈ R
w, we have

(3.7) ‖ST
kRk −αzT ‖2F = ‖ST

kRk −ασβT ‖2F + ‖ασβT −αzT ‖2F .

Proof. We have

‖ST
kRk −αzT ‖2F = ‖ST

k Rk‖2F − 2αTST
k Rkz + ‖αzT ‖2F

and

‖ST
k Rk −ασβT ‖2F = ‖ST

kRk‖2F − 2αTST
kRkσβ + ‖ασβT ‖2F

and

‖ασβT −αzT ‖2F = ‖ασβT ‖2F − 2αTασβTz + ‖αzT ‖2F .

We show

(3.8) −2αTST
kRkz = −2αTST

kRkσβ + 2‖ασβT ‖2F − 2αTασβTz .

Using (ST
kRk)

Tα = σβ and αTα = 1, we find

‖ασβT ‖2F = σ2αTαβTβ = αTST
kRkσβ

and αTασβTz = αTST
kRkz, which shows (3.8) and therefore (3.7).

Lemma 3.2. Let r ∈ N be the rank of ST
k Rk ∈ R

(m+ms)×w, and let σ1 ≥ σ2 ≥
· · · ≥ σr > 0 ∈ R be the singular values of ST

kRk. Let further α′
i ∈ R

m+ms and
β′
i ∈ R

w be the left and the right singular vector, respectively, that correspond to
a singular value σi. Set a = −α′

i ∈ R
m+ms and let b ∈ R

m be a solution of the
minimization problem

(3.9) argmin
b∈Rm

‖σiβ
′
i −CT

k b‖22 ,



A2132 BENJAMIN PEHERSTORFER AND KAREN WILLCOX

then ‖ST
k Rk + abTCk‖2F ≤ ‖ST

kRk‖2F holds, and ‖ST
kRk + abTCk‖2F < ‖ST

k Rk‖2F
holds if ‖Ckβ

′
i‖2 > 0.

Proof. Since a = −α′
i and because of Lemma 3.1, we find

(3.10) ‖ST
kRk + abTCk‖2F = ‖ST

kRk −α′
iσiβ

′
i
T ‖2F + ‖α′

iσiβ
′
i
T −α′

ib
TCk‖2F .

The first term of the right-hand side of (3.10) equals
∑r

j �=i σ
2
j . For the second term

of the right-hand side of (3.10), we have

‖α′
iσiβ

′
i
T −α′

ib
TCk‖2F = ‖σiβ

′
i −CT

k b‖22 ≤ σ2
i ,

because ‖α′
i‖22 = ‖β′

i‖22 = 1. This shows that ‖ST
kRk + abTCk‖2F ≤ ‖ST

k Rk‖2F
because ‖ST

k Rk‖2F =
∑r

j=1 σ
2
j . If ‖Ckβ

′
i‖2 > 0, then the rows of Ck, and thus the

columns of CT
k , cannot all be orthogonal to β′

i, and therefore a b ∈ R
m exists with

‖σiβ
′
i −CT

k b‖22 < σ2
i , which shows ‖ST

kRk + abTCk‖2F < ‖ST
kRk‖2F .

We note that in [22] a similar update as in Lemma 3.2 is used to derive a low-rank
approximation of a matrix.

Lemma 3.3. There exist a ∈ R
m+ms and b ∈ R

m with ‖ST
k Rk + abTCk‖2F <

‖ST
k Rk‖2F if and only if ‖ST

kRkC
T
k ‖F > 0.

Proof. Let ‖ST
k RkC

T
k ‖F = 0, which leads to

‖ST
kRk + abTCk‖2F = ‖ST

kRk‖2F + 2aTST
kRkC

T
k b+ ‖a‖22‖bTCk‖22

= ‖ST
kRk‖2F + ‖a‖22‖bTCk‖22 ,

and thus ‖ST
kRk + abTCk‖2F < ‖ST

kRk‖2F cannot hold. See Lemma 3.2 for the case

‖ST
k RkC

T
k ‖F > 0 and note that the right singular vectors span the row space of

ST
kRk.

Lemma 3.4. Let Ck ∈ R
m×w have rank r < m, i.e., Ck does not have full row

rank. There exists a matrix Zk ∈ R
r×w, with rank r, and a matrix Qk ∈ R

m×r with
orthonormal columns such that

‖ST
kRk + abTCk‖2F = ‖ST

kRk + azTZk‖2F
for all a ∈ R

m+ms and b ∈ R
m, where zT = bTQk ∈ R

r.
Proof. With the rank revealing QR decomposition [24, Theorem 5.2.1] of the

matrix Ck, we obtain a matrix Qk ∈ R
m×r with orthonormal columns and a matrix

Zk ∈ R
r×w with rank r, such that Ck = QkZk. This leads to

‖ST
k Rk + abTCk‖2F = ‖ST

k Rk + abTQkZk‖2F = ‖ST
k Rk + azTZk‖2F .

Lemma 3.5. Let Ck ∈ R
m×w have rank m, i.e., full row rank, and assume

‖ST
k RkC

T
k ‖F > 0. Let β′

k ∈ R
m be an eigenvector corresponding to the largest

eigenvalue λ ∈ R of the generalized eigenvalue problem

(3.11) Ck(S
T
kRk)

T (ST
kRk)C

T
k β

′
k = λCkC

T
k β

′
k ,

and set α′
k = −1/‖CT

k β
′
k‖22ST

kRkC
T
k β

′
k. The vectors α′

k and β′
k are a solution of the

minimization problem

(3.12) argmin
a∈Rm+ms ,b∈Rm

‖ST
kRk + abTCk‖2F .
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Proof. We have ‖bTCk‖2 = 0 if and only if b = 0m = [0, . . . , 0]T ∈ R
m because

Ck has full row rank. Furthermore, since ‖ST
k RkC

T
k ‖F > 0, the vector b = 0m cannot

be a solution of the minimization problem (3.12); see Lemma 3.3. We therefore have
in the following ‖bTCk‖2 > 0. The gradient of the objective of (3.12) with respect to
a and b is

(3.13)

[
2ST

k RkC
T
k b+ 2a‖bTCk‖22

2Ck(S
T
kRk)

Ta+ 2‖a‖22CkC
T
k b

]
∈ R

m+ms+m .

By setting the gradient (3.13) to zero, we obtain from the first m +ms components
of (3.13) that

(3.14) a =
−1

‖bTCk‖22
ST

k RkC
T
k b .

We plug (3.14) into the remaining m components of the gradient (3.13) and find that
the gradient (3.13) is zero if for b the following equality holds:

(3.15) Ck(S
T
kRk)

T (ST
k Rk)C

T
k b =

‖ST
kRkC

T
k b‖22

‖bTCk‖22
CkC

T
k b .

Let us therefore consider the eigenproblem (3.11). First, we show that all eigen-
values of (3.11) are real. The left matrix of (3.11) is symmetric and cannot be the zero
matrix because ‖ST

kRkC
T
k ‖F > 0. The right matrix CkC

T
k of (3.11) is symmetric

positive definite because Ck has full row rank. Therefore, the generalized eigen-
problem (3.11) can be transformed into a real symmetric eigenproblem, for which all
eigenvalues are real. Second, this also implies that the eigenvalues of (3.11) are insen-
sitive to perturbations (well-conditioned) [24, section 7.2.2]. Third, for an eigenvector
b of (3.11) with eigenvalue λ, we have λ = ‖ST

kRkC
T
k b‖22/‖bTCk‖22. Therefore, all

eigenvectors of the generalized eigenproblem (3.11) lead to the gradient (3.13) being
zero if the vector a is set as in (3.14).

If b does not satisfy (3.15) and thus cannot be an eigenvector of (3.11), b cannot
lead to a zero gradient and therefore cannot be part of a solution of the minimization
problem (3.12). Because for an eigenvector b, we have that

‖ST
k Rk+abTCk‖2F = ‖ST

k Rk‖2F −2
‖ST

k RkC
T
k b‖22

‖bTCk‖22
+‖a‖22‖bTCk‖22 = ‖ST

kRk‖2F −λ ,

and because of (3.14), we obtain that an eigenvector of (3.11) corresponding to the
largest eigenvalue leads to a global optimum of (3.12). This shows that α′

k and β′
k

are a solution of the minimization problem (3.12).
Theorem 3.6. If ‖ST

k RkC
T
k ‖F > 0, and after the transformation of Lemma 3.4,

an optimal update αkβ
T
k with respect to (3.6) is given by setting αk = Skα

′
k and

βk = Qkβ
′
k, where α′

k and β′
k are defined as in Lemma 3.5, and where Qk ∈ R

m×r

is given as in Lemma 3.4. If ‖ST
kRkC

T
k ‖F = 0, an optimal update with respect to

(3.6) is αk = 0N ∈ R
N and βk = 0w ∈ R

w, where 0N and 0w are the N - and
w-dimensional null vectors, respectively.

Proof. The case ‖ST
k RkC

T
k ‖F > 0 follows from Lemmata 3.4 and 3.5. The case

‖ST
k RkC

T
k ‖F = 0 follows from Lemma 3.3.
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Algorithm 1. Adapt interpolation basis with rank-one update.

1: procedure adaptBasis(Uk−1, P k−1)
2: Select randomly ms points from {1, . . . , N} which are not points in P k−1

3: Assemble sampling points matrix Sk by combining P k−1 and sampling points
4: Evaluate the components of the right-hand side matrix F k selected by Sk

5: Compute the coefficient matrix Ck, and Ck = QkZk following Lemma 3.4
6: Compute residual at the sampling points ST

kRk = ST
k (Uk−1Ck − F k)

7: Compute an α′
k and β′

k following Lemma 3.5
8: Set αk = Skα

′
k

9: Set βk = Qkβ
′
k

10: Update basis Uk = Uk−1 +αkβ
T
k

11: return Uk

12: end procedure

3.4. Computational procedure. The computational procedure of the online
basis update is summarized in Algorithm 1. The procedure in Algorithm 1 is called
at each step k = 1, . . . ,M ′ in the online phase. The input parameters are the DEIM
basis Uk−1 and the DEIM interpolation points matrix P k−1 of the previous step
k − 1. First, ms random and uniformly distributed points are drawn from the set
{1, . . . , N} ⊂ N such that the points are pairwise distinct from the interpolation
points given by P k−1. They are then combined with the interpolation points into the
sampling points, from which the sampling points matrix Sk is assembled. With the

sampling points matrix Sk, the matrix ST
kF k is constructed. We emphasize that we

only need ST
kF k ∈ R

(m+ms)×w and not all components of the right-hand side matrix
F k ∈ R

N×w. The coefficient matrix Ck is constructed with respect to the basis Uk−1

and the right-hand side ST
kF k. Then the residual at the sampling points ST

kRk is
computed and the update αkβ

T
k is derived from an eigenvector of the generalized

eigenproblem (3.11) corresponding to the largest eigenvalue. Finally, the additive
update αkβ

T
k is added to Uk−1 to obtain the adapted basis Uk = Uk−1 +αkβ

T
k .

Algorithm 1 has linear runtime complexity with respect to the number of degrees
of freedom N of the full-order system. Selecting the sampling points is in O(msm)
and assembling the matrix Sk is in O(N(m + ms)). The costs of assembling the
coefficient matrix are in O((m +ms)

3w), which do not include the costs of sampling
the nonlinear function. If the nonlinear function is expensive to evaluate, then sam-
pling the nonlinear function can dominate the overall computational costs. In the
worst case, the nonlinear function is sampled at w(m+ms) components at each step
k = 1, . . . ,M ′; however, the runtime results of the numerical examples in section 5
show that in many situations these additional costs are compensated for by the online
adaptivity that allows a reduction of the number of DEIM basis vectors m without
loss of accuracy. We emphasize once more that the nonlinear function is only sampled
at the m+ms components of the vectors ST

k ŷ(μk1
), . . . ,ST

k ŷ(μkw
) ∈ R

m+ms and not

at all N components of ŷ(μk1
), . . . , ŷ(μkw

) ∈ R
N ; cf. the definition of the coefficients

in (3.4). Computing the vectors ST
k ŷ(μk1

), . . . ,ST
k ŷ(μkw

) ∈ R
m+ms from the reduced

state vectors ỹ(μk1
), . . . , ỹ(μkw

) ∈ R
n is in O((N +mn)w). The transformation de-

scribed in Lemma 3.4 relies on a QR decomposition that requires O(mw2) operations
[24, section 5.2.9]. The matrices of the eigenproblem (3.11) have size m×m, the left-
hand side matrix is symmetric, and the right-hand side matrix is symmetric positive
definite. Therefore, the costs to obtain the generalized eigenvector are O(m3) [24,
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p. 391]. Since usually m � N,ms � N as well as w � N , it is computationally
feasible to adapt the DEIM basis with Algorithm 1 during the online phase.

3.5. Remarks on the online basis update. At each step k = 1, . . . ,M ′, new
sampling points are generated. Changing the sampling points at each step prevents
overfitting of the basis update to only a few components of the nonlinear function.

The greedy algorithm to select the DEIM interpolation points takes the growth of
the L2 error of the DEIM approximation into account [12, Algorithm 1, Lemma 3.2].
In contrast, the sampling points in our adaptivity scheme are selected randomly,
without such an objective; however, the sampling points serve a different purpose
than the DEIM interpolation points. First, sampling points are only used for the
adaptation, whereas ultimately the DEIM interpolation points are used for the DEIM
approximation; see the adaptivity scheme outlined at the beginning of section 3.
Second, a new set of sampling points is generated at each adaptivity step, and therefore
a poor selection of sampling points is quickly replaced. Third, many adaptivity steps
are performed. An update that targets the residual at a poor selection of sampling
points is therefore compensated for quickly. Fourth, the adaptation is performed
online, and therefore a computationally expensive algorithm to select the sampling
points is often infeasible. The numerical experiments in section 5 demonstrate that
the effect of the random sampling on the accuracy is small compared to the gain
achieved by the adaptivity.

Theorem 3.6 guarantees that the update αkβ
T
k is a global optimum of the mini-

mization problem (3.6); however, the theorem does not state that the update is unique.
If multiple linearly independent eigenvectors corresponding to the largest eigenvalue
exist, all of them lead to the same residual (3.5) and thus lead to an optimal update
with respect to (3.6).

The DEIM basis computed in the offline phase from the SVD of the nonlinear
snapshots contains orthonormal basis vectors. After adapting the basis, the orthonor-
mality of the basis vectors is lost. Therefore, to obtain a numerically stable method,
it is necessary to keep the condition number of the basis matrix Uk low, e.g., by
orthogonalizing the basis matrix Uk after several updates or by monitoring the con-
dition number and orthogonalizing if a threshold is exceeded. Note that monitoring
the condition number can be achieved with an SVD of the basis matrix Uk, with costs
O(Nm2 + m3), and thus this is feasible in the online phase. Our numerical results
in section 5 show, however, that even many adaptations lead to only a slight increase
of the condition number, and therefore we do not orthogonalize the basis matrix in
the following. Furthermore, in our numerical examples, the same window size is used
for problems that differ with respect to degrees of freedom and type of nonlinearity,
which shows that fine-tuning the window size to the current problem at hand is often
unnecessary.

4. Online interpolation points adaptivity. After having adapted the DEIM
basis at step k, we also adapt the DEIM interpolation points. The standard DEIM
greedy method is too computationally expensive to apply in the online phase, because
it recomputes all m interpolation points. We propose an adaptivity strategy that
exploits that it is often unnecessary to change all m interpolation points after a single
rank-one update to the DEIM basis. Section 4.1 describes a strategy that selects at
each step k = 1, . . . ,M ′ one interpolation point to be replaced by a new interpolation
point. The corresponding efficient computational procedure is presented in section 4.2.

4.1. Adapting the interpolation points. Let k be the current step with the
adapted DEIM basis Uk, and let Uk−1 be the DEIM basis and P k−1 be the DEIM
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interpolation points matrix of the previous step. Further let {pk−1
1 , . . . , pk−1

m } ⊂
{1, . . . , N} be the interpolation points corresponding to P k−1. We adapt the interpo-
lation points by replacing the ith interpolation point pk−1

i by a new interpolation point
pki ∈ {1, . . . , N} \ {pk−1

1 , . . . , pk−1
m }. We therefore construct the adapted interpolation

points matrix

(4.1) P k = P k−1 + (epk
i
− epk−1

i
)dT

i

from the interpolation points matrix P k−1 with the rank-one update (epk
i
−epk−1

i
)dT

i ∈
R

N×m. The N -dimensional vectors epk
i
∈ {0, 1}N and epk−1

i
∈ {0, 1}N are the pki th

and pk−1
i th canonical unit vectors, respectively. The vector di ∈ {0, 1}m is the ith

canonical unit vector of dimension m. The update (epk
i
− epk−1

i
)dT

i replaces the ith

column epk−1
i

of P k−1 with epk
i
and thus replaces point pk−1

i with point pki .

Each column of P k−1, and thus each interpolation point, is selected with respect
to the basis vector in the corresponding column in Uk−1. The standard DEIM greedy
procedure ensures this for P 0 built in the offline phase [12, Algorithm 1], and the
following adaptivity procedure ensures this recursively for the adapted DEIM inter-
polation points matrix P k−1. We replace the point pk−1

i corresponding to the basis
vector that was rotated most by the basis update from Uk−1 to Uk. We therefore
first compute the dot product between the previous and the adapted basis vectors

(4.2) diag(UT
kUk−1) .

If the dot product of two normalized basis vectors is one, then they are colinear and
the adapted basis vector has not been rotated with respect to the previous vector at
step k − 1. If it is zero, they are orthogonal. We select the basis vector uk ∈ R

N of
Uk that corresponds to the component of (4.2) with the lowest absolute value. Note
that after the adaptation, the adapted basis vectors are not necessarily normalized
and therefore need to be normalized before (4.2) is computed. The new interpolation
point pki is derived from uk following the standard DEIM greedy procedure. It then
replaces the interpolation point pk−1

i . All other interpolation points are unchanged,
i.e., pkj = pk−1

j for all j = 1, . . . ,m with j �= i.

4.2. Computational procedure. Algorithm 2 summarizes the computational
procedure to adapt the DEIM interpolation points at step k. The inputs are the
DEIM basis Uk−1 and the DEIM interpolation points matrix P k−1 as well as the
adapted DEIM basis Uk. The algorithm first selects the index i of the column of
the basis vector that was rotated most by the basis update. This basis vector is
denoted as uk ∈ R

N . Then, the DEIM interpolant (Ûk, P̂ k) is built using available

information from Uk and P k−1. The basis Ûk ∈ R
N×(m−1) contains all m − 1

columns of Uk except for the ith column. The matrix P̂ k is assembled similarly
from the interpolation points matrix P k−1. The DEIM approximation ûk of uk is
constructed with the interpolant (Ûk, P̂ k). The interpolation point pki is set to the
component with the largest absolute residual |ûk − uk| ∈ R

N . If pki is not already
an interpolation point, the DEIM interpolation points matrix P k is constructed with
the update (4.1), else P k = P k−1.

The runtime costs of Algorithm 2 scale linearly with the number of degrees of
freedom N of the full-order system (2.1). The dot product between the normalized

basis vectors is computed in O(Nm). The matrices Ûk and P̂ k are assembled in
O(Nm), and the DEIM approximation ûk is derived in O(m3). Computing the
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Algorithm 2. Adapt interpolation points after basis update.

1: procedure adaptInterpPoints(Uk−1, P k−1, Uk)
2: Normalize basis vectors
3: Take dot product diag(UT

kUk−1) between the basis vectors of Uk and Uk−1

4: Find the index i of the pair of basis vectors which are nearest to orthogonal
5: Let uk ∈ R

N be the ith column of the adapted basis Uk

6: Store all other m− 1 columns of Uk in Ûk ∈ R
N×(m−1)

7: Store all other m− 1 columns of P k−1 in P̂ k ∈ R
N×(m−1)

8: Approximate uk with DEIM interpolant (Ûk, P̂ k) as

ûk = Ûk(P̂
T

k Ûk)
−1P̂

T

k uk

9: Compute residual |ûk − uk| ∈ R
N

10: Let pki be the index of the largest component of the residual
11: if epk

i
is not a column of P k−1, then

12: Replace interpolation point pk−1
i of the ith basis vector with pki

13: Assemble updated interpolation points matrix P k with (4.1)
14: else
15: Do not change interpolation points and set P k = P k−1

16: end if
17: return P k

18: end procedure

residual |ûk − uk| ∈ R
N and finding the component with the largest residual has

linear runtime costs in N . Assembling the adapted interpolation points matrix P k is
in O(N) because only one column has to be replaced.

5. Numerical results. We present numerical experiments to demonstrate our
nonlinear model reduction approach based on online adaptive DEIM interpolants. The
optimization problem introduced in section 2.3 is revisited in section 5.1, and the time-
dependent FitzHugh–Nagumo system is discussed in section 5.2. Section 5.3 applies
online adaptive DEIM interpolants to a simplified model of a combustor governed by
a reacting flow of a premixed H2-Air flame. The reduced system is evaluated at a
large number of parameters to predict the expected failure of the combustor.

All of the following experiments and runtime measurements were performed on
compute nodes with Intel Xeon E5-1620 and 32GB RAM on a single core using a
MATLAB implementation. The nonlinear functions in this section can all be evaluated
componentwise; see section 2.1.

5.1. Synthetic optimization problem. In section 2.4, we introduced the func-
tion g : D → R

N and the parameter μ∗ ∈ D, which is the maximum of the objective
1T
Ng(μ). We built the DEIM interpolant g̃ of g and searched for the maximum μ̃∗ ∈ D

of the approximate objective 1T
n g̃(μ) to approximate μ∗. The reported optimization

error (2.7) showed that an accuracy of about 10−2 is achieved by a DEIM inter-
polant with 20 DEIM basis vectors built from nonlinear snapshots corresponding to
parameters at an equidistant 20× 20 grid in the parameter domain D.

Let us now consider online adaptive DEIM interpolants of g. We set the window
size to w = 50 and the number of sampling points to ms = 300, and we do not
orthogonalize the DEIM basis matrix Uk after the adaptation. Note that we need a
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Fig. 3. Optimization problem. The results in (a) show that our online adaptive DEIM inter-
polant with m = 5 DEIM basis vectors (solid, blue) improves the optimization error of the static
DEIM interpolant with m = 5 basis vectors (dashed, red) by five orders of magnitude. The online
adaptive interpolant achieves a similar accuracy as a static interpolant with m = 100 basis vectors
(dash-dotted, green). The reported error of the online adaptive interpolant is the mean error over
ten runs. The bars indicate the minimal and the maximal error over these ten runs. The plot in
(b) shows that for an accuracy of about 10−6, the online runtime of the optimization method with
the online adaptive DEIM interpolant is lower than the runtime with the static interpolant.

large number of samplesms here because the function g has one sharp peak and is zero
elsewhere in the spatial domain Ω. Note that ms = 300 is still less than the number
of degrees of freedom N = 1600. The optimization with Nelder–Mead consists of
k = 1, . . . , 500 steps. In each step k, the intermediate result μM+k found by Nelder–
Mead is used to initiate the adaptation of the DEIM interpolant following sections 3
and 4. The adapted DEIM interpolant is then used in the subsequent iteration of the
Nelder–Mead optimization method. We compare the optimization error (2.7) obtained
with the adaptive interpolants to the error of the static interpolants. The static
interpolants are constructed in the offline phase and are not adapted during the online
phase; see section 2.3. The online adaptive DEIM interpolants are initially constructed
in the offline phase from the same set of snapshots as the static interpolants.

Figure 3(a) summarizes the optimization error (2.7) corresponding to the static
and the online adaptive DEIM interpolants. To account for the random selection of the
sampling points, the optimization based on the adaptive DEIM interpolant is repeated
ten times, and the mean, the minimal, and the maximal optimization error over these
ten runs are reported. After 500 updates, the online adaptive DEIM interpolant with
five DEIM basis vectors achieves a mean error below 10−6. This is an improvement
of five orders of magnitude compared to the static DEIM interpolant with five DEIM
basis vectors. The static DEIM interpolant requires 100 basis vectors for a comparable
accuracy. The spread of the optimization error due to the random sampling is small if
considered relative to the significant gain achieved by the online adaptation here. In
Figure 3(b), we report the online runtime of the Nelder–Mead optimization method.
For the static DEIM interpolant, the runtime for 65, 70, 75, 80, 85, 90, 95, 100 DEIM
basis vectors is reported. For the adaptive interpolant, the runtime corresponding to
200, 250, and 300 samples is reported. The runtime of the optimization procedure
with the static DEIM interpolants quickly increases with the number of DEIM basis
vectors m. The optimization procedure based on our proposed online adaptive DEIM
interpolants is fastest and leads to the most accurate result in this example. Figure 4
shows the approximate objective 1T

n g̃(μ) with an online adaptive DEIM interpolant.
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(a) without adaptation (b) after 25 adaptivity steps

(c) after 75 adaptivity steps (d) after 200 adaptivity steps

Fig. 4. Optimization problem. The plots show the approximate objective function 1T
n g̃(µ) with

the online adaptive DEIM interpolant g̃ with ms = 300 sample points and m = 5 DEIM basis
vectors. The interpolant adapts to the function behavior near the optimal parameter µ∗ ∈ D marked
by the cross.

The blue cross indicates the optimum μ∗. After 75 updates, the online adaptive
interpolant approximates the nonlinear function g well near the optimum μ∗.

5.2. Time-dependent FitzHugh–Nagumo system. We consider the
FitzHugh–Nagumo system to demonstrate our online adaptive approach on a time-
dependent problem. The FitzHugh–Nagumo system was used as a benchmark model
in the original DEIM paper [12]. It is a one-dimensional time-dependent nonlinear
system of PDEs modeling the electrical activity in a neuron. We closely follow [12]
and define the FitzHugh–Nagumo system as

ε∂ty
v(x, t) = ε2∂2

xy
v(x, t) + f(yv(x, t)) − yw(x, t) + c ,

∂ty
w(x, t) = byv(x, t)− γyw(x, t) + c

with spatial coordinate x ∈ Ω = [0, L] ⊂ R, length L ∈ R, time t ∈ [0, T ] ⊂ R, state
functions yv, yw : Ω × [0, T ] → R, the second derivative operator ∂2

x in the spatial
coordinate x, and the first derivative operator ∂t in time t. The state function yv and
yw are voltage and recovery of voltage, respectively. The nonlinear function f : R → R

is f(yv) = yv(yv − 0.1)(1− yv) and the initial and boundary conditions are

yv(x, 0) = 0, yw(x, 0) = 0 , x ∈ [0, L] ,
∂xy

v(0, t) = −i0(t) , ∂xy
v(L, t) = 0, t ≥ 0 ,

with i0 : [0, T ] → R and i0(t) = 50000t3 exp(−15t). We further set L = 1, ε =
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Fig. 5. FitzHugh–Nagumo system. The plots show that adapting the DEIM interpolant of the
FitzHugh–Nagumo reduced system at every 200th time step in the online phase improves the overall
accuracy of the solution of the reduced system by up to two orders of magnitude. The online runtime
is not dominated by the DEIM approximation here, and thus the online adaptive DEIM interpolants
improve the runtime only slightly.

0.015, T = 1, b = 0.5, γ = 2, and c = 0.05. More details on the implementation
of the FitzHugh–Nagumo system, including a derivation of the linear and nonlinear
operators, can be found in [11].

We discretize the FitzHugh–Nagumo system with finite differences on an equidis-
tant grid with 1024 grid points in the spatial domain and with the forward Euler
method at 106 equidistant time steps in the temporal domain. The full-order system
with the state vector y(t) ∈ R

N has N = 2 × 1024 = 2048 degrees of freedom. We
derive a POD basis V ∈ R

N×n and a POD-DEIM-Galerkin reduced system following
[12]. The POD basis and the DEIM interpolant are built from M = 1000 snapshots,
which are the solutions of the full-order system at every 1000th time step. The state
vector y(t) is approximated by V ỹ(t), where ỹ(t) ∈ R

n is the solution of the reduced
system.

We report the average of the relative L2 error of the approximation V ỹ(t) at
every 1000th time step but starting with time step 500. Thus, the error is measured
at the time steps halfway between those at which the snapshots were taken. We again
consider static and online adaptive DEIM interpolants. The static interpolants are
built in the offline phase and are not adapted online. The online adaptive DEIM
interpolants are adapted at every 200th time step. The window size is w = 5 to
reduce the computational costs of the online adaptation. The DEIM basis matrix is
not orthogonalized after an adaptation. We set the number of POD basis vectors to
n = 10. The experiment is repeated ten times, and the mean, the minimal, and the
maximal averaged relative L2 errors over these ten runs are reported. The results in
Figure 5(a) show that adapting the DEIM interpolant online improves the accuracy
by up to two orders of magnitude compared to the static interpolant. The accuracy
of the solution obtained with the adaptive reduced system is limited by the POD
basis, which stays fixed during the online phase. The spread of the error due to the
random selection of the sampling points is small. We report the online runtime of the
forward Euler method for DEIM basis vectors 2, 4, 6, and 8 in Figure 5(b). It can be
seen that the runtimes corresponding to the static interpolants increase only slightly
as the number of DEIM basis vectors is increased. This shows that, for this problem,
the runtime is not dominated by the DEIM approximation and explains why online
adaptivity improves the runtime only slightly here.
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Fig. 6. Combustor. The figure shows the geometry of the spatial domain of the combustor
problem.

5.3. Expected failure rate. In this section, we compute the expected failure
rate of a combustor with Monte Carlo and importance sampling. We employ a POD-
DEIM-Galerkin reduced system to speed up the computation. Reduced systems have
been extensively studied for computing failure rates and rare event probabilities [6,
5, 30, 13]; however, we consider here POD-DEIM-Galerkin reduced systems based
on online adaptive DEIM interpolants that are adapted while they are evaluated by
the Monte Carlo method during the online phase. Online adaptivity is well-suited for
computing failure rates because it adapts the reduced system to the failure boundaries
where a high accuracy is required. Note that those regions are not known during the
offline phase.

5.3.1. Combustor model. Our simplified model of a combustor is based on
a steady premixed H2-Air flame. The one-step reaction mechanism underlying the
flame is

2H2 +O2 → 2H2O ,

where H2 is the fuel, O2 is the oxidizer, and H2O is the product. Let Ω ⊂ R
2 be the

spatial domain with the geometry shown in Figure 6, and let D ⊂ R
2 be the parameter

domain. The governing equation is a nonlinear advection-diffusion-reaction equation

(5.1) κΔy(μ)− ω∇y(μ) + f(y(μ),μ) = 0 ,

where μ ∈ D is a parameter and where y(μ) = [yH2 , yO2 , yH2O, T ]
T contains the mass

fractions of the species, H2, O2, and H2O, and the temperature. The constant κ =
2.0cm2/sec is the molecular diffusivity and ω = 50cm/sec is the velocity in x1 direc-
tion. The function f(y(μ),μ) = [fH2(y(μ),μ), fO2(y(μ),μ), fH2O(y(μ),μ), fT (y(μ),
μ)]T is defined by its components

fi(y(μ),μ) = −νi

(
ηi
ρ

)(
ρyH2

ηH2

)2 (
ρyO2

ηO2

)
μ1 exp

(
− μ2

RT

)
, i = H2,O2,H2O ,

fT (y(μ),μ) = QfH2O(y(μ),μ) .

The vector ν = [2, 1, 2]T ∈ N
3 is constant and derived from the reaction mechanism,

ρ = 1.39 × 10−3 gr/cm3 is the density of the mixture, η = [2.016, 31.9, 18]T ∈ R
3

are the molecular weights in gr/mol, R = 8.314472J/(mol K) is the universal gas
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(a) parameter µ = [5.5× 1011, 1.5× 103] (b) parameter µ = [1.5× 1013, 9.5× 103]

Fig. 7. Combustor. The plots show the temperature in the spatial domain Ω for two parameters
near the boundary of the parameter domain D.

constant, and Q = 9800K is the heat of reaction. The parameter μ = [μ1, μ2] ∈ D is
in the domain D = [5.5×1011, 1.5×1013]× [1.5×103, 9.5×103] ⊂ R

2, where μ1 is the
preexponential factor and μ2 is the activation energy. With the notation introduced in
Figure 6, we impose homogeneous Dirichlet boundary conditions on the mass fractions
on Γ1 and Γ3, and homogeneous Neumann conditions on the temperature and mass
fractions on Γ4,Γ5, and Γ6. We further have Dirichlet boundary conditions on Γ2 with
yH2 = 0.0282, yO2 = 0.2259, yH2O = 0, yT = 950K and on Γ1,Γ3 with yT = 300K.

The PDE (5.1) is discretized with finite differences on an equidistant 73× 37 grid
in the spatial domain Ω. The corresponding discrete system of nonlinear equations
has N = 10, 804 degrees of freedoms and is solved with the Newton method. The state
vector y(μ) ∈ R

N contains the mass fractions and temperature at the grid points.
Figure 7 shows the temperature field for parameters μ = [5.5 × 1011, 1.5 × 103] and
μ = [1.5 × 1013, 9.5 × 103]. We follow the implementation details in [7], where a
POD-DEIM-Galerkin reduced system [12] is derived.

5.3.2. Combustor: Region of interest. We demonstrate our online adap-
tivity procedures by adapting the DEIM interpolant to a region of interest DRoI =
[2× 1012, 6× 1012]× [5× 103, 7× 103] ⊂ D. We therefore first construct a POD basis
with n = 30 basis vectors from snapshots corresponding to parameters at an 10× 10
equidistant grid in the whole parameter domain D and derive a DEIM interpolant
with the corresponding nonlinear snapshots and m = 15 DEIM basis vectors. We
then adapt the DEIM interpolant online at state vectors corresponding to parameters
drawn randomly with a uniform distribution from the region of interest DRoI. After
each adaptivity step, the reduced system is evaluated at parameters stemming from
a 24 × 24 equidistant grid in D from which 3 × 3 parameters are in the region of
interest DRoI. We report the relative L2 error of the temperature with respect to the
full-order solution at the parameters in DRoI.

Figure 8(a) shows the error of the temperature field computed with a POD-
DEIM-Galerkin reduced system based on an online adaptive DEIM interpolant versus
the adaptivity step. Reported is the mean L2 error over ten runs, where the bars
indicate the minimal and the maximal error. The window size is set to w = 50.
Online adaptivity improves the accuracy of the solution of the POD-DEIM-Galerkin
reduced system by about three orders of magnitude in the region of interest after 3000
updates. The random selection of the sampling point leads only to a small spread
of the error here. The online runtimes corresponding to static and online adaptive
DEIM interpolants are reported in Figure 8(b). The static interpolants are built in
the offline phase from the same set of nonlinear snapshots as the adaptive interpolants
but they are not changed in the online phase. The reported runtimes are for 10,000
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Fig. 8. Combustor. The figure in (a) shows that adapting the DEIM interpolant to the region
of interest DRoI improves the relative L2 error of solutions with parameters in DRoI by up to three
orders of magnitude. The plot in (b) shows that our online adaptive approach is more efficient than
the static interpolant with respect to the online runtime.
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Fig. 9. Combustor. The condition number of the basis matrix increases only slightly after 10,000
adaptivity steps. It is therefore not necessary to orthogonalize the basis online in this example.

online steps. In the case of a static DEIM interpolant, each step consists of solving the
POD-DEIM-Galerkin reduced system for a given parameter and computing the error.
In the case of adaptivity, in addition to solving the POD-DEIM-Galerkin reduced
system and computing the error, the DEIM interpolant is adapted. For the static
DEIM interpolants, the runtimes are reported for 10, 20, and 30 DEIM basis vectors.
For the online adaptive DEIM interpolants, the number of DEIM basis vectorsm = 15
is fixed, but the number of samples ms is set to 40, 60, and 80. Overall, the reduced
systems based on the online adaptive DEIM interpolants lead to the lowest online
runtime with respect to the L2 error in the region of interest DRoI.

After an online basis update, the orthogonality of the basis vectors is lost. Figure 9
shows that even after 10,000 updates, the condition number of the DEIM basis matrix
is still low, and thus it is not necessary to orthogonalize the basis during the online
adaptation here. Note that the eigenproblem (3.11), from which the updates are
derived, is well-conditioned; see Lemma 3.5.

5.3.3. Combustor: Extended and shifted parameter domains. We now
consider an online adaptive reduced system of the combustor problem that is built
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Fig. 10. Combustor. Online adaptive reduced systems provide valid approximations of the full-
order solutions also for parameters outside of the domain Doffline for which they were initially built.
Accuracy improvements over static reduced systems by up to three orders of magnitude are achieved.

from snapshots with parameters in a domain Doffline ⊂ D in the offline phase but
which is then evaluated at parameters outside of Doffline in the online phase. We set
Doffline = [2×1012, 6×1012]× [5×103, 7×103] ⊂ D and build a POD-DEIM-Galerkin
reduced system from snapshots with parameters coinciding with an equidistant 10×10
grid in Doffline. The number of POD basis vectors is set to n = 30. In the case of
online adaptive DEIM interpolants, the window size is w = 50, and the number of
samples is ms = 60; see section 5.3.2.

Consider now the online phase, where the reduced system is used to approximate
the full-order solutions with parameters at the equidistant 24×24 grid in the domains

Di
E =

[
2× 1012, 6× 1012 + iδμ1

]× [
5× 103, 7× 103 + iδμ2

]
with δμ = [9×1011, 2.5×102]T ∈ R

2 and i = 0, . . . , 10. At each step i = 0, . . . , 10, the
domain is equidistantly extended. Figure 10(a) reports the relative L2 error of the
temperature field obtained with a static, a rebuilt, and an online adaptive reduced
system with m = 15 DEIM basis vectors. The static interpolant is fixed and is not
changed in the online phase. For the rebuilt interpolant, a DEIM basis is constructed
from snapshots corresponding to parameters at an equidistant 10 × 10 grid in the
domain Di

E in each step i = 0, . . . , 10. The online adaptive reduced system is adapted
5000 times at step i with respect to the domain Di

E ; see section 5.3.2. The results
show that the static reduced system quickly fails to provide valid approximations of
the solutions of the full-order system as the domain is extended. In contrast, the
online adaptive approach is able to capture the behavior of the full-order system
also in the domains D1

E , . . . ,D10
E that cover regions outside of Doffline. An accuracy

improvement by about one order of magnitude is achieved. This is about the same
accuracy improvement that is achieved with the interpolant that is rebuilt in each
step; however, our online adaptive interpolant avoids the additional costs of rebuilding
from scratch. Note that the full-order system becomes harder to approximate as the
domain is increased, and thus also the errors corresponding to the online adaptive
and the rebuilt reduced system grow with the size of the domain.

Figure 10(b) shows the accuracy results for the static, the rebuilt, and the online
adaptive reduced system if the parameter domain is shifted instead of extended. The
shifted domains are

Di
S =

[
2× 1012 + iδμ1, 6× 1012 + iδμ1

]× [
5× 103 + iδμ2, 7× 103 + iδμ2

]
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for i = 0, . . . , 10. The number of DEIM basis vectors is m = 10. The online adaptive
reduced system provides approximations that are up to three orders of magnitude
more accurate than the approximations obtained by the static system. The adap-
tive interpolant achieves about the same accuracy as the rebuilt interpolant again.
Note that the full-order system becomes simpler to approximate as the domain is
shifted toward the upper-right corner of the parameter domain D, and thus the errors
corresponding to the online adaptive and the rebuilt system decrease.

The rebuilt and the online adaptive DEIM interpolant achieve a similar accuracy
in Figures 10(a) and 10(b). In Figure 10(b), the online adaptive DEIM interpolant
achieves a slightly higher accuracy than the rebuilt interpolant. This underlines that
rebuilding the interpolant from scratch, from snapshots corresponding to the shifted
domain, does not necessarily lead to an optimal DEIM interpolant with respect to ac-
curacy. For the experiment presented in Figure 10(a), the online adaptive interpolant
performs slightly worse than the rebuilt interpolant. Overall, the differences between
the rebuilt and the online adaptive interpolant are small here, almost insignificant,
and thus a more extensive study is necessary for a general comparison of rebuilt and
online adaptive DEIM interpolants. Also note that other approaches based on re-
building the DEIM interpolant might be feasible in certain situations. For example,
the DEIM bases could be enriched with new basis vectors at each adaptivity step;
however, note also that this would lead to a different form of adaptivity than what we
consider here, because we keep the number of DEIM basis vectors fixed in the online
phase.

5.3.4. Combustor: Expected failure rate. We now compute the expected
failure rate of the combustor modeled by the advection-diffusion-reaction equation
of section 5.3.1. We assume that the combustor fails if the maximum temperature
exceeds 2290K in the spatial domain Ω. This is a value near the maximum temperature
obtained with the parameters in the domain D. We then define the random variable

T =

{
1 , if temperature > 2290K ,

0 , else ,

where we assume that the parameters μ ∈ D are drawn from a normal distribution
with mean

(5.2) [8.67× 1012, 5.60× 103] ∈ D

and covariance matrix

(5.3)

[
2.08× 1024 8.67× 1014

8.67× 1014 6.40× 105

]
.

Drawing the parameters from the given normal distribution leads to solutions with
a maximum temperature near 2290K. The indicator variable T evaluates to one if a
failure occurs, and to 0 else. We are therefore interested in the expected failure rate
E[T ].

We construct a POD-DEIM-Galerkin reduced system with n = 10 POD basis
vectors and m = 4 DEIM basis vectors from the M = 100 snapshots of the full-order
system with parameters stemming from an 10 × 10 equidistant grid in D. We solve
the reduced system instead of the full-order system to speed up the computation.
Note that we use fewer POD and DEIM basis vectors here than in sections 5.3.2
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(a) static DEIM interpolant (b) online adaptive DEIM interpolant

Fig. 11. Combustor. With the reduced system based on the static DEIM interpolant 11,761 out
of 50,000 data points are misclassified. Online adaptivity reduces the number of misclassified points
to 326.

and 5.3.3 to reduce the online runtime of the up to one million reduced system solves.
The failure rate E[T ] is computed with Monte Carlo and with Monte Carlo enhanced
by importance sampling. The biasing distribution of the importance sampling is
obtained in a preprocessing step by evaluating the reduced system at a large number
of parameters and then fitting a normal distribution to the parameters that led to a
temperature above 2280K.

In Figure 11, we plot parameters drawn from the normal distribution with mean
(5.2) and covariance matrix (5.3) and color them according to the maximum tem-
perature estimated with the reduced system. The black dots indicate misclassified
parameters, i.e., parameters for that the reduced system predicts a failure but the
full-order system does not, and vice versa. The reduced system with a static DEIM
interpolant with four DEIM basis vectors leads to 11,761 misclassified parameters out
of 50,000 overall parameters. This is a misclassification rate of about 23 percent.

Let us now consider a reduced system with an online adaptive DEIM interpolant.
We adapt the interpolant after every 25th evaluation. The number of samples is
set again to ms = 60, and the window size is w = 50. The misclassification rate
of 23 percent obtained with the static interpolant drops to 0.65 percent if online
adaptivity is employed. This shows that the DEIM interpolant quickly adapts to
the nonlinear function evaluations corresponding to the parameters drawn from the
specified distribution of μ. We evaluate the root-mean-square error (RMSE) of the
expected failure rate predicted by the reduced system with a static DEIM interpolant
and by a reduced system with an online adaptive interpolant. The RMSE is computed
with respect to the expected rate obtained from one million evaluations of the full-
order system. The averaged RMSEs over 30 runs are reported in Figure 12. In the
case of the static DEIM interpolant, the reduced system cannot predict the expected
rate if only four DEIM basis vectors are used. Even with six DEIM basis vectors,
the RMSE for the static interpolant does not reduce below 10−3. A static DEIM
interpolant with eight DEIM basis vectors is necessary so that the number of samples
used in the computation of the mean limits the RMSE rather than the accuracy of
the POD-DEIM-Galerkin reduced system. In the case of the online adaptive DEIM
interpolant, an RMSE between one and two orders of magnitude lower than with the
static reduced system is achieved if the accuracy of the POD-DEIM-Galerkin reduced
system limits the RMSE. This can be seen particularly well for Monte Carlo enhanced
by importance sampling. Note that the same POD-DEIM-Galerkin reduced system
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Fig. 12. Combustor. The plots in (a) and (b) show that the RMSE of the expected failure E[T ]
can be reduced by up to almost two orders of magnitude if the reduced system is adapted online. In
(c), the number of DEIM basis vectors is increased such that the RMSE is limited by the number
of samples used for the mean computation rather than by the accuracy of the POD-DEIM-Galerkin
reduced system. Therefore, improving the accuracy of the POD-DEIM-Galerkin reduced system by
using the online adaptive DEIM interpolant cannot improve the RMSE. The expected failure is
computed with Monte Carlo and Monte Carlo enhanced by importance sampling (IS).

and the same setting for the adaptive DEIM interpolant as in section 5.3.2 is used.
Therefore, the runtime comparison between the static and adaptive DEIM interpolant
shown in Figure 8(b) applies here too.

6. Conclusions. We presented an online adaptive model reduction approach for
nonlinear systems where the DEIM interpolant is adapted during the online phase. We
have shown that our DEIM basis update is the optimal rank-one update with respect
to the Frobenius norm. In our numerical experiments, the online adaptive DEIM
interpolants improved the overall accuracy of the solutions of the reduced systems by
orders of magnitude compared to the solutions of the corresponding reduced systems
with static DEIM interpolants. Furthermore, our online adaptivity procedures have a
linear runtime complexity in the number of degrees of freedom of the full-order system
and thus are faster than rebuilding the DEIM interpolant from scratch.

Our adaptivity approach shows that it is unnecessary to solve the full-order sys-
tem or to fully evaluate it in order to adapt the reduced system in the online phase.
We directly adapt the reduced system with data that are generated by sampling the
nonlinear function at a few additional components. A natural extension of our adap-
tivity approach would be to include other data such as the reduced state vector during
Newton iterations or time stepping. Our approach is particularly useful for situations
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in which it may be desired to solve the reduced system for parameters that lead to
a solution outside the span of the snapshots generated in the offline phase. This is
often the case in outer loop applications—optimization, inverse problem and control—
where the ultimate solution path may be difficult to anticipate before the problem
is solved. The adaptivity also offers a path to robustness of the reduced system by
mitigating against a potential poor choice of snapshots in the initial construction of
the reduced system.

A topic of future research is an indicator that helps to decide how many sampling
points should be used. Depending on the computational costs of the indicator, it
would then also become feasible to decide adaptively during the online phase how
many sampling points should be used at the current adaptivity step. Also of interest
could be replacing the random selection of the sampling points with a deterministic
algorithm. In the offline phase, randomly selecting snapshots has been successfully
replaced with greedy algorithms; see, e.g., [42, 40, 25, 8]. The sampling points in our
adaptivity scheme, however, are repeatedly generated during the online phase, and
therefore the challenge will be deriving an algorithm that is computationally feasible
to be run many times in the online phase.
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