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Model Reduction for
Large-Scale Applications
in Computational Fluid
Dynamics

K. Willcox∗

1 Introduction
Recent years have seen considerable progress in solution and optimization methods
for partial differential equations (PDEs), leading to advances across a broad range of
engineering applications. Improvements in methodology, together with a substantial
increase in computing power, are such that real-time simulation and optimization
of systems governed by PDEs is now an attainable goal; however, a number of
challenges remains for applications such as real-time control of dynamic processes.
In many cases, computational models for such applications yield very large systems
that are computationally intensive to solve. A critical element towards achieving a
real-time simulation capability is the development of accurate, efficient models that
can be solved sufficiently rapidly to permit control decisions in real time.

Model reduction is a powerful tool that allows the systematic generation of
cost-efficient representations of large-scale systems resulting from discretization of
PDEs. Reduction methodology has been developed and applied for many different
disciplines, including controls, fluid dynamics, structural dynamics, and circuit de-
sign. Considerable advances in the field of model reduction for large-scale systems
have been made and many different applications have been demonstrated with suc-
cess; however, a number of open issues remain, including the reliability of reduction
techniques, guarantees associated with the quality of the reduced models, and va-
lidity of the model over a range of operating conditions. The cost of performing the
reduction may also be an issue if there is a need to adapt the reduced-order model
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in real time.
In this paper, model reduction of computational fluid dynamic (CFD) sys-

tems will be discussed, although the techniques presented are applicable to general
systems of PDEs. Two reduction methods will be discussed: the proper orthogonal
decomposition (POD), and Fourier model reduction (FMR). These methods will
be compared in the context of an active flow control application. Their relative
advantages and disadvantages will be presented, with particular focus on the issues
relevant to real-time implementation. Finally, the paper concludes with a discus-
sion of outstanding issues and the open question of model reduction for nonlinear
systems.

1.1 Problem Statement

The system of PDEs governing a general fluid flow can be discretized in the spatial
domain using a CFD formulation to yield a set of nonlinear ordinary differential
equations (ODEs). For unsteady flows, these ODEs can be linearized about the
steady-state solution to obtain a linear CFD model that is valid for small deviations
of the flow from steady-state conditions. A general linearized CFD model can be
written as

G :
d

dt
x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (1)

where x(t) ∈ Rn contains the n unknown perturbation flow quantities at each point
in the computational grid. For example, for two-dimensional, compressible, inviscid
flow, which is governed by the Euler equations, the unknowns at each grid point
are the perturbations in flow density, Cartesian momentum components and flow
energy. The vectors u(t) and y(t) in (1) contain the system inputs and outputs
respectively. The definition of inputs and outputs will depend upon the problem at
hand. For active control applications, the output might monitor a flow condition
at a particular location which varies in response to a disturbance in the incoming
flow, while inputs describe both actuation mechanisms and flow disturbances.

The linearization matrices A, B, C, and D in (1) are evaluated at steady-state
conditions. In comparison with the nonlinear equations, the system (1) is relatively
efficient since a time discretization, such as backward Euler, can be applied and
the resulting large n × n system matrix factored just once for a time-dependent
calculation. However, the order of the system is still prohibitively high for many
applications, and the cost to solve the system is too large for implementation in
real time. We therefore consider the task of finding a low-order, stable, linear time
invariant (LTI), state-space model

Ĝ :
d

dt
x̂(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t) + D̂u(t) (2)

which approximates well the given stable model (1). Typically, A in (1) is a sparse,
square matrix of very large dimension n > 104, and the desired order k of Ĝ is less
than 50.
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The quality of Ĝ as an approximation of G is defined as the H-Infinity norm
of the difference between their transfer functions:

‖Ĝ−G‖∞ = sup
ω∈R

|Ĝ(jω)−G(jω)|, (3)

which in turn equals the square root of the maximal energy of the difference e = ŷ−y,
given by

‖ŷ − y‖22 =
∫

t

|ŷ(t)− y(t)|2dt. (4)

1.2 Projection Framework

No efficient (polynomial time) solution is known for the problem of minimizing
‖Ĝ − G‖∞ subject to the order and stability constraints imposed on Ĝ. Optimal
Hankel model reduction and balanced truncation are polynomial-time algorithms
that produce suboptimal reduced models with strong guarantees of quality. How-
ever, the computational burden of these methods is such that their direct application
is impractical for n > 103. Instead, most model reduction techniques for large-scale
systems use a projection framework. The full state vector x is represented in a
reduced-space basis

x = V x̂ (5)

where the columns of the matrix V ∈ Rn×k contain k basis vectors. Defining a left
projection space W so that WT V = I, the governing equations (1) can be projected
onto the reduced space to yield an mth-order model of the form

Ĝ :
d

dt
x̂(t) = WT AV x̂(t) + WT Bu(t), ŷ(t) = CV x̂(t) + D̂u(t). (6)

The reduction task is then to find a suitable basis W,V so that k << n and
the reduction error, defined by (4), is small. Several methods for computing the
basis exist, including Krylov-subspace methods and the POD.

2 Proper orthogonal decomposition
The POD has been widely used to determine efficient bases for dynamic systems [1].
It was introduced for the analysis of turbulence by Lumley [2], and is also known
as singular value decomposition, Karhunen-Loéve decomposition [3], and principal
component analysis [4]. POD basis vectors are computed empirically using a set of
data that samples the range of relevant system dynamics.

2.1 Time-Domain POD Basis

The basis vectors Ψ are chosen so as to maximize the following cost [5]:

Ψ = arg max
〈|(x, Ψ)|2〉

(Ψ, Ψ)
, (7)
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where (x, Ψ) denotes the scalar product of the basis vector with the field x(θ, t)
which depends on problem geometry θ and time t, and 〈 〉 represents a time-
averaging operation. It can be shown that a necessary condition for (7) to hold
is that Ψ is an eigenfunction of the kernel K defined by

K(θ, θ′) = 〈x(θ, t) x∗(θ′, t)〉, (8)

where x∗ denotes the complex conjugate transpose of x.
Sirovich introduced the method of snapshots as a way of determining the

eigenfunctions Ψ without explicitly calculating the kernel K [6]. The kernel can be
approximated as

K(θ, θ′) =
1
m

m∑

i=1

xi(θ)x∗i (θ
′) (9)

where xi(θ) is the instantaneous system state or “snapshot” at a time ti and the
number of snapshots m is sufficiently large. The eigenvectors of K are of the form

Ψ =
m∑

i=1

βixi, (10)

where the constants βi satisfy the eigenvector equation

Rβ = Λβ (11)

and R is now the correlation matrix

Rij =
1
m

(xi, xj) (12)

which contains the inner product between every pair of snapshots. The magnitude
of the jth eigenvalue, λj , describes the relative importance of the jth POD basis
vector for reconstruction of the data contained in the snapshot ensemble. For a basis
containing the first p POD modes, the least squares error of data reconstruction is
given by the eigenvalues corresponding to the neglected modes:

m∑

i=1

‖xi − x̃p
i ‖22 =

m∑

j=p+1

λj (13)

where x̃p
i is the representation of the ith snapshot, xi, in the pth-order POD basis.

2.2 Frequency-Domain POD Basis

Often, the POD snapshots are obtained from a time simulation of the CFD model.
One issue with this approach is an appropriate choice of input to the simulation.
This input choice is critical, since the resulting basis will capture only those dy-
namics present in the snapshot ensemble. This can be a problematic issue for many
applications, such as flow control design, where the dynamics of the controlled and
uncontrolled systems might differ significantly. An alternative approach is to apply
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the POD in the frequency domain [7]. Rather than selecting a time-dependent input
function, one selects a set of sample frequencies. The corresponding flow snapshots
can then be obtained by solving the frequency domain CFD equations

X(ω) = [jωiI −A]−1
B (14)

where u(t) = ejωit, x(t) = Xejωit, and ωi is the ith sample frequency.
Frequency domain POD approaches typically yield better results; however, the

computational cost of the method is high. The nth-order system given by (14) must
be solved for each frequency selected. In a typical CFD application, a large number
of frequency points is required to obtain satisfactory models. In particular, for
three-dimensional applications, the cost of this approach can be prohibitive. While
not discussed in this paper, Krylov-based reduction techniques are computationally
more efficient than the POD. These techniques are widely used in integrated circuit
applications, and have also been applied to CFD systems. It can be shown that the
approach of using the Arnoldi method with multiple interpolation points has strong
connections to the frequency-domain POD approach [8].

2.3 POD Reduced-Order Model

Once the set of POD basis vectors has been computed, using time- or frequency-
domain snapshots, the reduced-order model is obtained using the projection (5). It
is important to note that, while the POD basis is optimal in the sense that it provides
the most efficient representation of the data contained in the snapshot ensemble, one
can make no statement regarding the quality of the resulting reduced-order model.
No estimate or bound for the reduction error is available. Since the POD basis
is orthonormal, that is W = V , the projection Â = V T AV preserves definiteness;
however, in general, this is not sufficient to preserve stability. In practice, unstable
models are often generated, and some trial and error is required to determine an
appropriate snapshot ensemble and basis size.

The POD is a useful reduction technique and has been shown to yield satis-
factory results for a wide range of applications (see, for example, [9]); however, its
lack of rigorous guarantees should not be overlooked.

2.4 Balanced POD

The concept of a balanced realization of a system was first introduced by Moore
[10]. The underlying idea is to take account of both the inputs and outputs of the
system when determining which states to retain in the reduced-state representation,
but to do so with appropriate internal scaling. The controllability and observability
gramians of the linear system (1) are defined respectively as

Wc =
∫ ∞

0

eAtBB∗eA∗tdt (15)

and
Wo =

∫ ∞

0

eA∗tC∗CeAtdt. (16)
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The above matrices describe the controllable and observable subspaces of the linear
system (1). These two subspaces can be interpreted geometrically as described in
[11]. The controllable subspace is that set of states which can be obtained with
zero initial state and a given input u(t), while the observable subspace comprises
those states which as initial conditions could produce a certain output y(t) with no
external input.

To obtain a balanced realization of the system (1), a state transformation is
chosen so that the controllability and observability gramians are diagonal and equal.
This transformation can be computed by first calculating the matrix Wco = WcWo,
and then determining its eigenmodes:

Wco = T−1ΛT (17)

The columns of T then contain the basis vectors which describe the balancing
transformation. The eigenvalues λi contained in the diagonal matrix Λ are positive,
real numbers, and σi =

√
λi are known as the Hankel singular values of the system.

These values are independent of the particular realization of the system and describe
the importance of the corresponding state for transmission of input to output. In
a balanced truncation, only those states are retained which correspond to large
Hankel singular values. A bound on the error of the kth-order balanced reduced
model, Ĝk, is given by the Hankel singular values of the truncated modes

||G− Ĝk||∞ ≤ 2
m∑

i=k+1

σi (18)

Approximate Balanced Realization via the Method of Snapshots

For large systems, it is not practical to explicitly compute the gramians using (15)
and (16); however, it can be shown that there is a strong connection between the
controllability gramian and the POD kernel function [12, 13]. By noting that for
a SISO system the quantity xδ(t) = eAtB is simply the impulse response of the
system (set u(t) = δ(t) in (1)), the controllability gramian can also be written

Wc =
∫ ∞

0

xδ(t)x∗δ(t)dt (19)

and compared with the POD kernel function K defined by (9). Similarly, the
observability gramian can be written as

Wo =
∫ ∞

0

xδ(t)x∗δ(t)dt (20)

where xδ(t) = eA∗tC∗ is the impulse response of the dual SISO system which is
given by

G :
d

dt
x(t) = A∗x(t) + C∗u(t), y(t) = B∗x(t) (21)
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By considering general, non-impulsive inputs, the POD computes the most
controllable modes of the system within a certain restricted range of dynamics.
It is a natural extension to consider a POD analysis which determines the most
observable modes. Furthermore, to obtain a balanced representation of the system,
concepts from a traditional control balanced realization can then be used. The
direct POD method can be used to obtain approximations to the system gramians
for small systems [12]. For large-scale systems, the POD method of snapshots can
be used to approximate the gramians in a computationally efficient manner that
does not require computation of large n× n matrices [13].

By obtaining snapshots of the primal and dual systems (1) and (21), and per-
forming the POD method of snapshots analysis to determine the POD basis vectors,
p eigenmodes of the controllability and observability kernel functions are obtained,
respectively. Let the eigenvectors of the controllability kernel K be contained in
the columns of the matrix V , with corresponding eigenvalues on the diagonal en-
tries of the matrix Λc. Similarly, let the eigenvectors of the observability kernel be
contained in the columns of the matrix X, with corresponding eigenvalues on the
diagonal entries of the matrix Λo. Low-rank approximations to the controllability
and observability gramians can then be made as follows:

W p
c = V ΛcV

∗ (22)
W p

o = XΛoX
∗, (23)

where the superscript p denotes a pth order approximation.
Through use of an efficient eigenvalue solver, the eigenmodes of the product

W p
c W p

o can then be calculated using only matrix-vector multiplications, hence the
large matrices W p

c and W p
o need never be explicitly formed.

The balancing algorithm can therefore be summarized as:
1. Use method of snapshots to obtain p POD eigenmodes (V, Λc) for the

primal system.
2. Use method of snapshots to obtain p POD eigenmodes (X, Λo) for the dual

system.
3. Calculate the low-rank approximations W p

c = V ΛcV
∗ and W p

o = XΛoX
∗.

4. Obtain the eigenvectors of the product W p
c W p

o to determine the balancing
transformation T .

Once again, it is important to note the limitations of this reduction approach.
Balanced truncation is a rigorous method for small systems that yields reduced-
order models with strong guarantees of quality and a computable error bound given
by (18). The approximate method using the POD draws upon a strong analogy
with balanced truncation and has been shown to work effectively for many cases;
however, as for the conventional POD, this method does not offer rigorous error or
stability guarantees.

In the next section, a different approach to model reduction of large-scale
systems that does not use a projection framework will be described. This method
has associated with it a rigorous, although non-computable, error bound.
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3 Fourier Model Reduction
The FMR method is described in [14] and uses discrete-time Fourier coefficients of
the CFD system to form a reduced-order model with a rigorous error bound. Many
coefficients can be calculated, which results in a very accurate representation of the
system dynamics, but only a single factorization of the large system is required.
As shown in Figure 1, FMR can be combined with an efficient second reduction
step using explicit formulae for balanced truncation, which allows use of the Hankel
singular values to rigorously select the number of reduced states. FMR yields very
accurate, low-order models when the original transfer function is smooth, and thus
is an attractive method for reduction of CFD systems.

G

O(104)

Ĝm

O(102)

G̃k

O(101)

- -FMR BT/OHMR

Figure 1. Two-step model reduction process: FMR with rigorous but non-
computable error bound followed by balanced truncation (BT) or optimal Hankel
model reduction (OHMR).

3.1 Fourier Series of Discrete Time Systems

Consider the discrete-time (DT) model g corresponding to the system (1), which is
defined by the difference equations

g : x(t + 1) = ax(t) + bu(t), y(t) = cx(t) + du(t) (24)

where a, b, c, d are the DT matrices. The transfer function

g(z) = d + c(zI − a)−1b (25)

has the Fourier decomposition

g(z) =
∞∑

k=0

gkz−k (26)

where
g0 = d, gk = cak−1b (k = 1, 2, . . .) (27)

The Fourier expansion converges exponentially for |z| > ρ(a), where ρ(a) denotes
the spectral radius of a, defined as the maximal absolute value of its eigenvalues.
Note that the first m Fourier coefficients gk are easy to calculate using the “cheap”
iterative process

gk = chk−1, hk = ahk−1 (k = 1, . . . , m), where h0 = b. (28)



i

i

“WillcoxSandia04” — 2008/1/9 — 12:42 — page — #9 i

i

i

i

i

i

Let ĝm denote the mth-order approximation of g based on the Fourier series
expansion:

ĝm(z) =
m∑

k=0

gkz−k (29)

The following simple result provides an estimate of the approximation error

‖g − ĝm‖∞ = max
|z|=1

|g(z)− ĝm(z)| (30)

which ties it to the smoothness of G as follows.

Theorem 1. For q = 1, 2, . . .

‖g − ĝm‖2∞ ≤ m1−2q

2π(2q − 1)

∫ π

−π

|g(q)(ejτ )|2dτ, (31)

where g(q) is the qth derivative of g with respect to τ .
Proof: see [14].

3.2 Fourier Series of Continuous Time Systems

Consider the full continuous time LTI system model G defined by the system (1),
where u(t), y(t) are scalar input and output. It will be assumed that G is stable,
i.e. that all roots of the characteristic equation det(sI − A) = 0 have negative real
part, and that C(sI −A)−1B remains bounded as s →∞.

Let ω0 > 0 be a fixed positive real number. The transfer function

G(s) = D + C(sI −A)−1B (32)

has the Fourier decomposition

G(s) =
∞∑

k=0

Gk

(
s− ω0

s + ω0

)k

(33)

This decomposition is suggested in [15] and an approximate FFT algorithm is used
to calculate the Fourier coefficients Gk. In [14], an efficient iterative procedure is
proposed to directly calculate the Fourier coefficients as follows.

Consider the identity

G(s) = g(z) = d + c(zI − a)−1b for z =
s + ω0

s− ω0

which allows one to apply the observations and theorem from the previous sub-
section to this case. Note that by comparing (26) and (33), it can be seen that
Gk = gk. The Fourier coefficients are therefore given by the following formulae

G0 = d, Gk = cak−1b (k = 1, 2, . . .) (34)
d = D + C(ω0I −A)−1B (35)

a = (ω0I + A)(ω0I −A)−1 (36)
c = 2ω0C(ω0I −A)−1 (37)

b = −(ω0I −A)−1B (38)
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which are relatively straightforward to obtain using algebraic manipulations as de-
scribed in [14].

3.3 Reduced Model Construction

To construct an mth-order reduced model, one first calculates the Fourier coeffi-
cients, g0, g1, ..., gm. The DT reduced model is then given by

ĝ : x̂[t + 1] = âx̂[t] + b̂u[t]

ŷ[t] = ĉx̂[t] + d̂u[t], (39)

where

â =




0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .

0 0 0
. . .




b̂ =




1
0
0
...


 (40)

ĉ = [ g1 g2 . . . gm ] d̂ = g0.

It should be noted that, if the original system g is stable, then the reduced system
ĝ is also guaranteed to be stable. This is due to the orthogonality properties of the
Fourier expansion; taking a truncated number of Fourier terms, as in equation (29),
automatically results in a stable approximation of a stable system.

Different alternatives could be chosen for the DT system representation. The
controller canonical form above was selected, as in [15], for the purpose of an efficient
second step of reduction. As shown in Figure 1, an effective approach is to use the
efficient iterative procedure to calculate several hundred coefficients, resulting in
an intermediate reduced model of the form (39). A second reduction step using
balanced truncation can now be performed easily, since the expressions for the
gramians are known explicitly. For the DT reduced model (39), the controllability
matrix is the identity matrix and the observability matrix is the Hankel matrix that
has ĉ as its first row. The balancing vectors can therefore be obtained by computing
the singular vectors of the mth-order Hankel matrix

Γ =




g1 g2 g3 . . . gm−1 gm

g2 g3 g4 . . . gm 0
g3 g4 g5 . . . 0 0
...

...
...

...
...

gm−1 gm 0 . . . 0 0
gm 0 0 . . . 0 0




. (41)

The Hankel singular values, σi, i = 1, 2, ..., m, of the intermediate reduced system
are given by the singular values of Γ and can be used to quantitatively guide the
second reduction step via the error bound given in (18).
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3.4 FMR Algorithm

The FMR algorithm is summarized in the following steps.

1. Choose a value of ω0. The value of ω0 should reflect the frequency range
of interest. The nominal value is unity; however, if the response at high
frequencies is of interest, a higher value of ω0 should be chosen. One can
visualize the transformation from continuous to discrete time as a mapping of
the imaginary axis in the s−plane to the unit circle in the z−plane. The value
of ω0 then describes the compression of frequencies around the unit circle.

2. Calculate m + 1 Fourier coefficients using (34)-(38). Using the iterative pro-
cedure, any number of coefficients can be calculated with a single nth-order
matrix factorization.

3. Using (41), calculate the mth-order Hankel matrix. Calculate its singular
values and singular vectors. Note that in the general case of p inputs and q
outputs, each entry gk will be a block of size q × p.

4. Using balanced truncation, construct a kth-order DT system, g̃. The value
of k is chosen according to the distribution of Hankel singular values of the
intermediate system.

5. Convert the kth-order, DT reduced model to a continuous-time model using
the relationships

Â = ω0 (â− I)−1 (â + I) , (42)

B̂ = 2ω0 (â− I)−1
b̂, (43)

Ĉ = −ĉ (â− I)−1
, (44)

D̂ = d̂− ĉ (â− I)−1
b̂ (45)

The error bounds corresponding to the above algorithm are given in (31) and
(18) for the first and second stages of the reduction, respectively. The Hankel
singular values of the intermediate system provide a straightforward, quantitative
means to choose k, the size of the final reduced model; however, the error bound
given in (31) is not readily computable. One way to determine the appropriate
number of Fourier coefficients, m, is to monitor the magnitudes of the coefficients,
gk, which tend to decrease quickly with increasing index k. A tolerance on the
coefficient magnitude can thus be used to set a stopping criterion for the iterative
procedure. Note that the exact distribution of coefficients will depend upon the
transfer function under consideration. For near resonant systems, the magnitudes
of the Fourier coefficients will not decrease quickly and many coefficients will be
needed to gain an accurate representation. For such systems, other algorithms,
such as the POD or Krylov-subspace methods, may yield better results.
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4 Active Flow Control of a Supersonic Diffuser
Figure 2 shows the contours of Mach number at steady-state conditions inside the
fixed geometry of a supersonic diffuser that operates at a freestream Mach num-
ber of 2.2. In steady-state operation, a shock forms downstream of the throat. In
practice, the incoming supersonic flow is subject to perturbations, such as atmo-
spheric density disturbances. Such perturbations in the flow may cause the shock
to move upstream of the throat, and eventually to be expelled from the diffuser.
This phenomenon, known as inlet unstart, causes huge losses in engine performance
and thus is highly undesirable. In order to prevent inlet unstart for this diffuser,
an active control mechanism of the shock is required.

Figure 2. Contours of Mach number for steady flow through supersonic
diffuser. Steady-state inflow Mach number is 2.2.

Figure 3 presents a schematic of the actuation mechanism. Incoming flow
with possible disturbances enters the inlet and is sensed using pressure sensors.
The controller then adjusts the bleed upstream of the throat in order to control
the position of the shock and to prevent it from moving upstream. In simulations,
it is difficult to automatically determine the shock location. The average Mach
number at the diffuser throat provides an appropriate surrogate that can be easily
computed. A CFD model provides an accurate representation of the complicated
flow dynamics, but is not suitable for controller design purposes.

Figure 3. Supersonic diffuser active flow control problem setup.

The governing equations considered are the two-dimensional unsteady Euler
equations, linearized about steady-state conditions. The CFD model considered
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Figure 4. Transfer function from bleed actuation to average throat Mach
number for supersonic diffuser. Results from CFD model (n = 11, 730) are compared
to FMR, POD and Arnoldi models with k = 10 states.

here has 3078 grid points and 11,730 unknowns and is described in [16]. The first
transfer function of interest is that between bleed actuation and average Mach
number at the throat. Bleed occurs through small slots located on the lower wall
between 46% and 49% of the inlet overall length. Frequencies of practical interest
lie in the range f/f0 = 0 to f/f0 = 2, where f0 = a0/h, a0 is the freestream speed
of sound and h is the height of the diffuser.

Figure 4 shows the magnitude and phase of this transfer function as calculated
by the CFD model and three reduced-order models each of size k = 10. The FMR
model was calculated by using 201 Fourier coefficients (calculated at the cost of
a single CFD matrix inversion) with ω0 = 5 to construct the Hankel matrix in
(41). This 200th-order system was then further reduced to ten states using explicit
balanced truncation. The POD model was obtained by computing 41 snapshots at
21 equally-spaced frequencies from f/f0 = 0 to f/f0 = 2. For comparison, a tenth-
order Arnoldi-based model, derived using the methodology in [16], is also shown in
Figure 4.

It can be seen from Figure 4 that the FMR model matches the CFD results
well over the entire frequency range plotted, with a small discrepancy at higher
frequencies. The Arnoldi model matches well for low frequencies, but shows consid-
erable error for f/f0 > 1.3. The POD model has some undesirable oscillations at
low frequencies, and strictly is only valid over the frequency range sampled in the
snapshot ensemble (f/f0 < 2).

The performance of the POD and Arnoldi models can be improved by in-
creasing the size of the reduced-order models. Figure 5 shows the results using 30
Arnoldi vectors and 15 POD basis vectors. The agreement at low frequencies is now
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Figure 5. Transfer function from bleed actuation to average throat Mach
number for supersonic diffuser. Results from CFD model (n = 11, 730) are compared
to FMR with k = 10 states, POD with k = 15 states, and Arnoldi with k = 30 states.

very good for all models, but the POD and Arnoldi models still show discrepancy
at higher frequencies. The POD model could be further improved by including
more snapshots in the ensemble; however, each additional frequency considered re-
quires an nth-order complex matrix inversion. The Arnoldi model could be further
improved by increasing the size of the basis; however, this was found to result in
unstable reduced-order models. This result highlights one of the major problems
with the commonly used POD and Krylov-based reduction techniques. Because no
rigorous statement about model quality can be made, the reduction becomes an ad
hoc process that requires trial and error to obtain accurate, stable reduced-order
models. In particular, for the POD, the choice of snapshot ensemble is critical.

FMR is also applied to the transfer function between an incoming density
perturbation and the average Mach number at the diffuser throat. This transfer
function represents the dynamics of the disturbance to be controlled and is shown
in Figure 6. As the figure shows, the dynamics contain a delay, and are thus more
difficult for the reduced-order model to approximate. Results are shown for FMR
with m = 200 and ω0 = 5, 10. With ω0 = 5, the model has significant error
for frequencies above f/f0 = 2. Choosing a higher value of ω0 improves the fit,
although some discrepancy remains. These higher frequencies are unlikely to occur
in typical atmospheric disturbances, however if they are thought to be important,
the model could be further improved by either evaluating more Fourier coefficients,
or by choosing a higher value of ω0. The ω0 = 10 model is further reduced via
balanced truncation to a system with thirty states without a noticeable loss in
accuracy.



i

i

“WillcoxSandia04” — 2008/1/9 — 12:42 — page — #15 i

i

i

i

i

i

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

f/f0

re
al

(G
(jw

))

CFD
m=200, ω

0
=5

m=200, ω
0
=10

k=30, ω
0
=10

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

f/f0

im
ag

(G
(jw

))

CFD
m=200, ω

0
=5

m=200, ω
0
=10

k=30, ω
0
=10

Figure 6. Transfer function from incoming density perturbation to average
throat Mach number for supersonic diffuser. Results from CFD model (n = 11, 730)
are compared to 200th-order FMR models with ω0 = 5, 10. The ω0 = 10 model is
further reduced to k = 30 via balanced truncation.

5 Conclusion
Model reduction is an essential component to achieving real-time simulation and
control of PDEs. Several model reduction techniques are available and in use across
a broad range of applications. For large-scale systems, the POD and Krylov-based
methods have been used with considerable success. The three orders of magni-
tude reduction from O(104) states to O(101) states demonstrated in the supersonic
diffuser example is representative of what can be achieved in many applications.
However, it is important to note that many open questions and unresolved issues
remain. The popular reduction approaches for large-scale systems do not offer
rigorous guarantees regarding the quality of the reduced-order model, and remain
ultimately ad hoc. FMR goes some way to addressing this issue by providing a
rigorous, although non-computable, error bound. Using this error bound to com-
bine FMR with a more rigorous technique, such as balanced truncation, yields an
efficient, systematic, two-step reduction process.

In addition, reduction of large-scale nonlinear systems remains an open ques-
tion. Direct projection of the nonlinear governing equations onto a reduced subspace
yields a model that has low order but that cannot be implemented efficiently. A
trajectory piecewise-linear approach that can be used efficiently in conjunction with
large-scale reduction methods has been proposed and demonstrated for integrated
circuit applications [17]. This approach has also been shown to combine effectively
with the POD for nonlinear CFD applications [18]. Many open questions remain
regarding the robustness and rigor of this approach; however, it represents a signif-
icant step towards achieving efficient, low-order, nonlinear models.



i

i

“WillcoxSandia04” — 2008/1/9 — 12:42 — page — #16 i

i

i

i

i

i

Bibliography

[1] Holmes, P., Lumley, J.L. and Berkooz, G., Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry, Cambridge University Press, Cam-
bridge, UK (1996).

[2] Lumley, J.L., The Structures of Inhomogeneous Turbulent Flow, in Atmo-
spheric Turbulence and Radio Wave Propagation (1967) pp. 166-178.
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