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This paper presents a physical low-order model for two-dimensional unsteady transonic
airfoil flow, based on small unsteady disturbances about a known steady flow solution.
This is in contrast to traditional small-disturbance theory which assumes small distur-
bances about the freestream. The states of the low-order model are the flowfield’s lowest
moments of vorticity and volume-source density perturbations, and their evolution equa-
tion coefficients are calibrated using off-line unsteady CFD simulations through dynamic
mode decomposition. The resulting low-order unsteady flow model is coupled to a typical-
section structural model, thus enabling prediction of transonic flutter onset for moderate
to high aspect ratio wings. The method is fast enough to permit incorporation of tran-
sonic flutter constraints in conceptual aircraft design calculations. The accuracy of this
low-order model is demonstrated for forced pitching and heaving simulations of an airfoil
in compressible flow. Finally, the model is used to describe the influence of compressibility
on the flutter boundary, and its accuracy is demonstrated for the Isogai Case A classical
flutter test case.

Nomenclature

A, E State-space matrices
Aa, Ba State-space matrices of aerodynamic

system
AΓ, AΓ̇, Aκ Coefficients of Γ evolution equation
BΓ, Bκ, Bκ̇ Coefficients of κx evolution equation
Dwave Wave drag
Iθ Moment of inertia around elastic axis
L Lift
Mcrit Critical Mach number
M∞ Free stream Mach number
Sθ Mass unbalance
V Velocity field
V0 Velocity field of steady solution
Vµ Flutter speed index
V∞ Free stream velocity
X, X ′, X ′′ Matrices containing sequences of

snapshots of state vector
a Local speed of sound
a, al, b Discrete state-space matrices
c Airfoil chord length
c` Lift coefficient
d Distance between quarter-chord and

elastic axis
h Vertical position, positive downward

kh Spring constant for vertical motion
kθ Torsional spring constant
m Mass
n̂ Normal unit vector
r Position vector
rθ Radius of gyration about the airfoil’s

elastic axis
t Time
u State-space control vector
ua State-space control vector of aerody-

namic system
w Vertical velocity, positive downward
x State-space vector
x, z Physical coordinates along freestream
xa State-space vector of aerodynamic

system
xcg Position of center of gravity relative to

leading edge
xea Position of elastic axis relative to lead-

ing edge

Symbols

α Angle of attack
Γ Circulation strength
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θ Pitch angle
κx x-doublet strength
µ Apparent mass ratio
ρ∞ Free stream density
σ Volume-source strength
Υ′ Matrix containing sequence of snap-

shots of control input vector

φ Velocity potential
ω Vorticity
ω Angular velocity
ω̄ Reduced frequency
ωθ, ωh Uncoupled in-vacuo natural frequen-

cies in pitch and heave

I. Introduction

The push for more efficient transport aircraft leads to larger wing spans and more flexible wings, config-
urations for which flutter becomes a significant design consideration. This is especially true for next-

generation airplane concepts, such as the Truss-Braced Wing.1 However, incorporating flutter prediction into
early-stage design is a considerable challenge for the transonic flow regime relevant to most civil transport
aircraft designs, since existing accurate models for transonic flutter prediction typically require extensive
computational fluid dynamic (CFD) analyses that are too expensive to conduct in early design stages where
potentially thousands of wing designs might be considered. Flutter constraints can be included in state-of-
the-art multidisciplinary design optimization settings, but even if the static aeroelastic methods are high
fidelity, the methods for unsteady (compressible) flow usually either linearize the unsteady response or use
a Prandtl-Glauert correction,2,3 which is limited to subsonic flow. In this paper, we develop an accurate,
fast, low-order model for small-amplitude transonic unsteady airloads, intended for flutter prediction in
early-stage design and optimization of transport aircraft.

While flutter for low subsonic flows can, in general, be accurately predicted with linearized small-
disturbance theories, they fail for transonic flow where the traditional small-disturbance formulation is
inherently nonlinear.4 For example, linear theory predicts that thinner wings would be less susceptible to
flutter, but wind tunnel tests have shown the opposite to be true.4 Another interesting phenomenon that
occurs in transonic flows is the transonic dip in the flutter boundary.5–8 Linear theories cannot predict the
location or shape of the transonic dip, and tend to produce optimistic estimates for the flutter boundary.9

The seminal work by Theodorsen10 is widely used for incompressible flutter predictions for two-dimensional
airfoils. Several researchers extended Theodorsen’s theory to subsonic flows,11–13 with none of these methods
extending to the transonic regime. Moreover, Theodorsen theory is only strictly valid for simple harmonic
motion, which strictly applies only at the flutter boundary.

Possio14 applied the acceleration potential to a two-dimensional subsonic compressible nonstationary
problem and arrived at an integral equation (Possio’s equation) for subsonic unsteady compressible flow.
Closed-form solutions to an approximation of Possio’s equation were found in 1999.15,16 However, the
accuracy for Possio’s method deteriorates for transonic flows and for high-frequency oscillations.17 Lomax et
al.18 used piston theory to analytically find the lift response to unsteady perturbations in subsonic flow, but
only for the non-circulatory part of the lift. Stahara and Spreiter,19 Isogai,20 and Dowell21 developed models
for linearized transonic flow, applicable to thin airfoils in shock-free flows. A linearization of the Transonic
Small-Disturbance (TSD) equation for unsteady transonic flow was first proposed by Nixon,22 which involves
changing the airfoil geometry for transonic flows such that the shock location does not change during any
perturbations.

These analytical/theoretical methods all suffer from a loss of accuracy in transonic flows with shocks
on the airfoil surface, which are typical on jet transports. Other approaches have attempted to address
this limitation by deriving models using a combination of theory and experimental data, as in the work
of Leishman and Nguyen23 who formulated a state-space representation of unsteady airfoil behavior with
some parameters estimated from experimental data, or by deriving reduced-order models from high-fidelity
CFD models. A reduced-order modeling approach starts with the full state (flow field) information collected
from a CFD solver and identifies a low-dimensional subspace in which the most important system dynamics
evolve.24 Methods such as the harmonic balance,25 proper orthogonal decomposition,26–28 and Volterra
series29 have all been used to derive aeroelastic reduced-order models.30 These methods have been applied
in practice successfully, amongst others, for unsteady transonic flow around full wings,31 a full F-16 aircraft
configuration,32 and many more.

In contrast to the reduced-order modeling approach, which starts with a high-order model and reduces
the state by pure numerics, our work constructs a physics-based low-order model a priori, in terms of
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the flowfield’s volume-source and vorticity moments. Our state variables are the unsteady perturbations
of these moments from some known steady transonic solution, and their time evolution is governed by
postulated equations whose coefficients are treated as parameters. These parameters are calibrated using
high-fidelity CFD results. Our underlying assumption is that the baseline steady flow is statically nonlinear,
but sufficiently small disturbances around the baseline solution can be assumed to produce a linear response
in the overall volume-source and vorticity moments.33 The resulting model produces unsteady perturbation
lift and moment outputs, which can be combined with a conventional typical-section structural elastic model
to obtain an overall aeroelastic state-space model suitable for flutter prediction.

We develop the present aerodynamic model as an extension of the one used in ASWING,34,35 which
employs Theodorsen theory10 for calibration. In contrast, the present model is calibrated using data from
high-fidelity Euler CFD simulations of the transonic unsteady flow around airfoils. Section II of this paper
develops the physics-based low-order model. Section III describes the state-space system identification
methods used to fit the model coefficients using CFD data. Section IV demonstrates the model’s ability to
predict transonic flutter, and Section V concludes the paper.

II. Physics-Based State-Space Model Formulation

This section develops the physics-based low-order model. We start with the aerodynamic low-order model,
of which some coefficients will have to be calibrated—the calibration is discussed in Section III—and then
move on to the structural model. The aerodynamic and structural models are combined in an aeroelastic
state-space system. Analysis of the coupled state-space system indicates whether flutter occurs.

II.A. Aerodynamic Low-Order Model

The physics-based low-order aerodynamic model begins with the Helmholtz decomposition, which expresses
any instantaneous velocity field V as integrals over the velocity’s divergence and curl fields, commonly known
as the volume-source density σ and the vorticity ω:

σ ≡ ∇ ·V (1)

ω ≡ ∇×V (2)

V(r, t) =
1

2π

∫∫
σ(r′, t)

r−r′

|r−r′|2
dA′ +

1

2π

∫∫
ω(r′, t)× r−r′

|r−r′|2
dA′ + V∞, (3)

where r is a position vector, t is time, and V∞ is the free-stream velocity field. For low-speed flow we have
σ = 0 by mass continuity, and for potential flow the ω field is restricted to the body boundary layers and
wakes where it can be approximated via vortex filaments or the equivalent normal-doublet panels. This is the
basis of vortex-lattice or doublet-lattice methods. For compressible flows the volume-source field σ becomes
significant due to density gradients, but for small-disturbance subsonic flows it can be linearized and removed
via the Prandtl-Glauert transformation.36 Although this linearization approach fails for transonic flows, the
velocity decomposition (3) is a mathematical identity and always remains valid, provided the volume-source
field σ is defined and computed appropriately. One example is given by Oskam,37 who obtained 2D transonic
airfoil solutions using this approach. Specifically, the volume-source field was represented by panels covering
space around the airfoil, whose σ strengths were computed via the full-potential equation, together with the
usual normal-doublet panels on the surface computed via flow tangency.

We define the unsteady volume-source and vorticity fields to have the form

σ(r, t) = σ0(r) + ∆σ(r, t) (4)

ω(r, t) = ω0(r) + ∆ω(r, t), (5)

where σ0 and ω0 correspond to some known steady transonic flow, and ∆σ and ∆ω are small perturbations
defining the unsteady flow we are seeking. Since the Helmholtz decomposition (3) is linear in σ and ω, the
corresponding velocity field will have the same baseline plus perturbation form:

V (r, t) = V0 (r) + ∆V (r, t) . (6)

We stress that “small disturbance” here refers to small disturbances from the steady solution, and not small
perturbations from the freestream (which is the more common usage).
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To construct the low-order model for the overall airfoil lift and pitching moment, we first assume that the
effects of the σ and ω fields, diagrammed in Figure 1, can be captured by only their leading spatial moments.
The zeroth moment of the vorticity, or equivalently its overall lumped strength, is the airfoil circulation

Γ ≡
∫∫

ω · ŷ dA, (7)

where ŷ is the unit vector into the plane. For steady flow, the circulation captures the lift exactly via the
Kutta-Joukowsky theorem. As sketched in Figure 1, the volume-source field σ is mostly positive over the
upper front of the airfoil where the flow accelerates, and mostly negative over the shock and the upper rear
where the flow decelerates. Its zeroth moment is comparable to the wave drag, which typically is very small
and negligible compared to the lift force:

Dwave

ρ∞V∞
'
∫∫

σ dA ' 0. (8)

Consequently, we must consider the first x-moment of the volume-source field, which is its overall lumped
x-doublet strength,

κx(t) ≡
∫∫
−xσ dA. (9)

In the single-element Weissinger vortex-lattice method,38,39 all the vorticity is lumped into a point vortex
placed at the airfoil quarter-chord point, and its strength Γ is implicitly determined by requiring the flow-
tangency condition Vc.p. · n̂c.p. = 0 at the control point at the airfoil three-quarter chord point. For unsteady
flow there will be additional contributions from the shed vorticity that modify Vc.p. and hence Γ(t) and the
lift, and also from the airfoil motion. This is the approach used in the ASWING formulation,34,35 which for
low-speed flow closely matches the results of the more exact Theodorsen theory.10

For the transonic flows considered here, this model is extended by the addition of the lumped x-doublet
placed at some location (xκ, zκ). As diagrammed in Figure 1, the doublet adds to the overall velocity at the
control point, and thus will affect Γ and the lift. This is the mechanism which is here postulated to capture
the compressibility effects on the circulation and the resulting lift and moment.
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Figure 1. Vorticity and field sources representing velocity field are approximated by overall circulation
Γ and doublet κx. Only their small unsteady perturbations from a transonic flowfield, ∆Γ and ∆κx,
are sought in the present analysis.

Corresponding to decompositions (4) and (5), we will here actually seek the small perturbations

∆Γ(t) ≡ Γ(t)− Γ0 (10)

∆κx(t) ≡ κx(t)− κx,0 (11)

from the steady-solution values Γ0, κx,0. The steady circulation Γ0 is directly proportional to the steady lift
coefficient c`0 or the corresponding angle of attack α0, while κx,0 is also a strong function of the freestream
Mach number M∞ and to some extent of the airfoil shape. Typical κx,0 variation for a transonic airfoil is
shown in Figure 2. Note that the dependence on c`0 is almost linear.

4 of 20

American Institute of Aeronautics and Astronautics



cℓ0

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

κ
x
,0
/
V
∞
c2

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 5(b)

Fig. 5(a)

M = 0.75
M = 0.70
M = 0.65
M = 0.60
M = 0.55
M = 0.50
M = 0.45
M = 0.40

Figure 2. Variation of κx,0 with c`,0 and Mach number for the RAE2822 transonic airfoil, as computed
using MSES.40–42

For the imposition of flow tangency at the control point, we define the instantaneous airfoil-surface normal
velocity at the control point as

Un(t) ≡ Uc.p. · n̂c.p., (12)

while the instantaneous fluid normal velocity at the control point is defined as

Vn(t) ≡ Vc.p. · n̂c.p.. (13)

Next, we approximate the normal fluid velocity perturbation at the three-quarter control point as

∆Vn(t) = AΓ∆Γ +AΓ̇∆Γ̇ +Aκ∆κx, (14)

which can be considered to be a lumped form of the velocity decomposition (3), with the ∆Γ̇ term capturing
the contribution of the shed vorticity. Following the single-element Weissinger vortex lattice method38,39 we
set

AΓ = − 1

π

1

c
, (15)

and following the ASWING shed-vorticity model34,35 we set

AΓ̇ = − b

V∞
. (16)

The calibrated lag constant value b = 2/π gives results that closely approximate those of Theodorsen.10

If we place the x-doublet at (xκ, zκ) = (c/2, c/4), then the doublet’s influence on the three quarter-chord
control point gives

Aκ =
1

4π

1

c2
. (17)

In general, however, the effective doublet position is not known, and is expected to depend on the baseline
steady solution. Hence, the Aκ coefficient will be a calibrated function of the baseline steady flow solution.
Regardless, we obtain the evolution equation for the circulation by requiring flow tangency at the control
point,

∆Vn = Un (18)

⇒ AΓ̇∆Γ̇ = Un −AΓ∆Γ−Aκ∆κx. (19)
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The evolution equation for the x−doublet is postulated to be second-order. This follows from the full
potential equation,43

∇2φ− 1

a2

[
∂2φ

∂t2
+
∂

∂t

(
‖V‖2

2

)
+ V · ∇

(
‖V‖2

2

)]
= 0. (20)

Note that ∇2φ = σ, so that taking the Laplacian of Eq. (20) would give a wave equation for σ, involving
second time derivatives. Hence, κx—the first moment of σ—must at a minimum have a second time derivative
in its evolution equation. Therefore, we postulate the evolution equation for κx to be

∆κ̈x = BΓ∆Γ +Bκ∆κx +Bκ̇∆κ̇x, (21a)

where

BΓ = BΓ (M∞, c`0) (21b)

Bκ = Bκ (M∞, c`0) (21c)

Bκ̇ = Bκ̇ (M∞, c`0) (21d)

are calibrated functions for the airfoil (or airfoil family) being analyzed, and

c`0 =
2Γ0

cV∞
(22)

is the lift coefficient of the baseline solution. The lift and the moment around the elastic axis, per unit span,
are

∆Lc(t) = ρ∞V∞∆Γ + ρ∞c∆Γ̇ (23a)

∆L(t) = ∆Lc(t) + ∆Lnc(t) (23b)

∆M(t) = ∆Mc/4(t) + ∆Lc(t) d + ∆Mnc(t), (23c)

where ∆Mc/4(t) ≡ 1
2ρ∞V

2
∞ c2 ∆cm. Here, ∆cm is a calibrated function of ∆Γ/cV∞, ∆Γ̇/V 2

∞, ∆κx/c
2V∞,

and ∆κ̇x/cV
2
∞, using a least-squares fit to a number of unsteady Euler or RANS calculations. Following

Theodorsen,10 the non-circulatory lift ∆Lnc(t) and moment around the elastic axis ∆Mnc(t) are added-mass
terms defined as

∆Lnc(t) =
1

4
ρ∞πc

2
[
∆ḧ−

(
xea −

c

2

)
∆θ̈
]

+
1

4
ρ∞πc

2V∞∆θ̇ (24a)

∆Mnc(t) =
1

4
ρ∞πc

2
(
xea −

c

2

) [
∆ḧ−

(
xea −

c

2

)
∆θ̈
]
− ρ∞πc

4

128
∆θ̈ − 1

4
ρ∞πc

2V∞

(
3

4
c− xea

)
∆θ̇. (24b)

II.B. Typical-Section Structural Model

We focus here on the typical section (Fig. 3), as used frequently in the aeroelasticity community. Using
Hamilton’s equation and Lagrangian mechanics, the equations of motion of an airfoil in heave and pitch
motion are found to be44,45

m∆ḧ+ kh∆h+ Sθ∆θ̈ = −∆L (25a)

Sθ∆ḧ+ kθ∆θ + Iθ∆θ̈ = ∆M (25b)

where here we define ∆h to be the heave perturbation, defined positive downward, and ∆θ to be the pitch
angle perturbation, defined positive clockwise. m is the total mass/span of the section, Sθ ≡ (xcg−xea)m
is the mass unbalance/span, where xcg and xea are the distances of the center of gravity and elastic center,
respectively, from the leading edge. Iθ is the moment of inertia/span around the elastic axis. Finally, kh
is the heave displacement spring constant/span, and kθ is the torsional spring constant/span. The pitching
moment equation (25b) is constructed about the elastic axis (or shear center) location, defined to be a
distance d from the quarter chord point.
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Figure 3. Typical section.

II.C. Overall State Space Model and Flutter Prediction

The aeroelastic model couples the aerodynamic and structural models, using the following overall state
vector:

x(t) = [∆h(t),∆θ(t),∆w(t),∆ω(t),∆Γ(t),∆κx(t),∆κ̇x(t)]
>
, (26)

where ∆ω(t) ≡ ∆θ̇(t) is the pitch rate perturbation and ∆w(t) ≡ ∆ḣ(t) is the vertical (downward) velocity
perturbation. The vertical velocity and pitch rate force the aerodynamic system through the normal velocity
at the control point,

Un = ∆w + V∞∆θ +
c

4
∆ω. (27)

The aeroelastic system equations now become

∆ḣ = ∆w (28a)

∆θ̇ = ∆ω (28b)

m∆ẇ + Sθ∆ω̇ = −kh∆h−∆L

= −kh∆h− ρ∞V∞∆Γ− ρ∞c∆Γ̇

= −kh∆h− ρ∞V∞∆Γ

− ρ∞c

AΓ̇

(
∆w + V∞∆θ +

c

4
∆ω −AΓ∆Γ−Aκ∆κx

)
−∆Lnc(t) (28c)

Sθ∆ẇ + Iθ∆ω̇ = −kθ∆θ + ∆Ld+ ∆M

= −kθ∆θ + ρ∞V∞∆Γd+
ρ∞c

AΓ̇

(
∆w + V∞∆θ +

c

4
∆ω −AΓ∆Γ−Aκ∆κx

)
d

+ ∆Mc/4 + ∆Mnc(t) (28d)

∆Γ̇ =
1

AΓ̇

[
∆w + V∞∆θ +

c

4
∆ω −AΓ∆Γ−Aκ∆κx

]
(28e)

∆κ̈x = BΓ∆Γ +Bκ∆κx +Bκ̇∆κ̇x. (28f)

Eq. (28) has the form of a standard descriptor state-space model

Eẋ = Ax. (29)

Flutter is indicated if any eigenvalue of the matrix (E−1A) has a positive real part. The unknown coefficients
of the E, A matrices are calibrated using CFD simulations of forced pitching and heaving airfoil motions,
as described in the next section.
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III. Model Fitting from CFD Data

This section describes our approach to fit the unknown coefficients of the low-order flutter model using
data generated with unsteady CFD simulations. The structural dynamics of the typical-section airfoil are
the same for subsonic and transonic flows, and it is only the aerodynamic model that needs calibration for
transonic flows. Therefore, we decompose the state-space system in Eq. (29), to extract the aerodynamic
state-space system with state xa, input ua, and state-space matrices Aa and Ba, defined as follows:

d

dt

∆Γ(t)

∆κx(t)

∆κ̇x(t)

 =

−
AΓ

AΓ̇
−AκAΓ̇

0

0 0 1

BΓ Bκ Bκ̇


︸ ︷︷ ︸

Aa

∆Γ(t)

∆κx(t)

∆κ̇x(t)


︸ ︷︷ ︸

xa

+


V∞
AΓ̇

c/4
AΓ̇

1
AΓ̇

0 0 0

0 0 0


︸ ︷︷ ︸

Ba

∆θ(t)

∆ω(t)

∆w(t)


︸ ︷︷ ︸

ua

(30)

III.A. State-space System Identification

The unknown coefficients in the low-order flutter model developed in Section II are AΓ̇, Aκ, BΓ, Bκ,
Bκ̇. To determine these coefficients from data, we employ the state-space system identification method
of Dynamic Mode Decomposition (DMD).46 Specifically, we use dynamic mode decomposition with control
(DMDc),47 which requires us to collect snapshots of the states and control inputs at each time step. There-
fore, we first run unsteady compressible flow simulations for forced pitching/heaving oscillations to obtain
{∆Γ(ti),∆κx(ti),∆θ(ti),∆ω(ti),∆w(ti)} with ti = (i− 1)∆t, i = 1, . . . , (N + 2).

These snapshots are collected in the matrices X ∈ R1×N , X ′ ∈ R2×N , X ′′ ∈ R2×N , and Υ′ ∈ R3×N as
follows:

X =
[
∆κx(t1) ∆κx(t2) . . . ∆κx(tN )

]
, (31a)

X ′ =

[
∆Γ(t2) ∆Γ(t3) . . . ∆Γ(tN+1)

∆κx(t2) ∆κx(t3) . . . ∆κx(tN+1)

]
, (31b)

X ′′ =

[
∆Γ(t3) ∆Γ(t4) . . . ∆Γ(tN+2)

∆κx(t3) ∆κx(t4) . . . ∆κx(tN+2)

]
, (31c)

Υ′ =

∆θ(t2) ∆θ(t3) . . . ∆θ(tN+1)

∆ω(t2) ∆ω(t3) . . . ∆ω(tN+1)

∆w(t2) ∆w(t3) . . . ∆w(tN+1)

 . (31d)

Note that we need the matrix X ′′ because we postulated the evolution equation for κx to be second-order
in Eq. (21a).

DMD fits a discrete state-space system, relating X ′′ to X ′, X and Υ′ as

X ′′ ≈ aX ′ + alX + bΥ′, (32)

where a ∈ R2×2, al ∈ R2×1, b ∈ R2×3 are matrices containing the unknown coefficients to be fit. Eq. (32)
can be rewritten in the form

X ′′ ≈ GΩ, (33)

with G =
[
a al b

]
∈ R2×6 and Ω =

X ′X
Υ′

 ∈ R6×N .

In Eq. (33), X ′′ and Ω are obtained from the CFD simulations, and G is then found by solving the
least-squares optimization problem

G = arg min
G

‖X ′′ −GΩ‖F . (34)

To solve this minimization problem, one computes a singular value decomposition (SVD) of Ω = UΣV >,
where U ∈ R6×6, V ∈ RN×6, and the diagonal matrix Σ ∈ R6×6. The least-squares fit G is then found to be

G = X ′′V Σ−1U>. (35)
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In contrast to the reduced-order modeling approach where DMD is typically used, we do not truncate the
singular values in Σ when computing G. In reduced-order modeling, the row dimension of the snapshot
matrices is the total number of states in the CFD model (typically 104 or higher), and DMD is used to
identify a model of much lower order. In contrast, in this system identification setting, we construct the
data matrices X, X ′, X ′′, and Υ′ with our six physical low-order quantities, such that the state dimension
of the DMD representation is already at the desired number.

The matrices a, al, and b are found by decomposing the linear operator U as[
a, al, b

]
≈
[
X ′′V Σ−1U>1 , X ′′V Σ−1U>2 , X ′′V Σ−1U>3

]
, (36)

where U1 ∈ R6×2, U2 ∈ R6×1, U3 ∈ R6×3 are the first two columns of U , the third column of U , and the last
three columns of U .

Finally, we relate the discrete state-space matrices a, al, b to the continuous state-space matrices Aa and
Ba in Eq. (30) using Tustin’s method.48

The process described in this section allows for fitting one state space model for one particular freestream
Mach number, airfoil and baseline lift coefficient. We would like to characterize the flutter boundary for a
range of Mach numbers, airfoil thicknesses, and baseline lift coefficients. Therefore, the method described
in this section is used to find the aerodynamic state space matrices for a set of freestream Mach numbers,
baseline lift coefficients, and different thicknesses of the same airfoil family. Splines are then fit for the
entries in the aerodynamic state space matrices to find a low-order model at an interpolatory Mach number,
baseline lift coefficient, and/or airfoil thickness.

III.B. CFD Data Generation

We fit the aerodynamic part of the state-space system using data from CFD solutions. Throughout this work,
we use the SU2 tool suite.49 SU2 is a multi-purpose PDE solver, and specifically developed with aerospace
applications in mind, such as unsteady compressible flow over an airfoil. For CFD applications, SU2 employs
a finite volume method with standard edge-based structure on a dual grid. For unsteady simulations it uses
a dual time-stepping strategy for high-order accuracy in time.50

Two changes to SU2 were necessary for this work. First, the parameters of our problem (κx, Γ) are
computed by post-processing SU2 solutions. The circulation Γ(t) is defined as

Γ(t) ≡
∫∫

ω(t) · ŷ dA =

∮
V(t) · dl. (37)

If this line integral is computed sufficiently close to the airfoil, it is more accurate than integrating the
vorticity, because this is less susceptible to round-off errors and noise in the gradient computation. Note
that we need to choose the contour for the line integral to exclude the wake, such that we compute the
circulation without including shed vorticity. This is illustrated in Fig. 4(c).

Computing the x-doublet through integration of the divergence of the velocity field is even more problem-
atic, because the extrema in the volume-source field are highly localized. As an example, the volume-source
field around the RAE2822 airfoil in subsonic and transonic flow is shown in Fig. 5 for different lift coefficients,
as computed with MSES.40–42 Using the contour shown in Fig. 4(b), the x-doublet is computed by evaluating

κx(t) = −
∫∫

x∇ ·V(t) dA = −
∮
xV(t) · n̂ ds+

∫∫
U(t) dA

= −
∮
x [ V(t)−V∞] · n̂ ds+

∫∫
[U(t)− U∞] dA, (38)

where U is the velocity in the freestream x-direction. The final expression for κx(t) subtracts off V∞ to
minimize cancellation errors.

When using a structured grid (e.g., an O-grid or a C-grid for airfoils), computing these quantities using
line integrals is straightforward. One can just track the grid lines at a certain distance around the airfoil.
However, throughout this work we mostly used unstructured grids, complicating the computation of the line
integrals. In this case, we find a set of edges in the mesh at a certain distance from the airfoil that form
a closed loop around that airfoil. First, the set of edges that intersect a circle centered around the airfoil
is identified, by finding the edges for which one edge point is inside the circle and one is outside on the
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(a) Detail of triangular mesh with cut. Black
lines indicate primal grid with nodes (circles),
thick black lines indicate the line along which
the line integrals are computed.

(b) Mesh of NACA64A010 airfoil with line around airfoil that
is used for the line integral in the computation of the x-
doublet κx.

(c) Mesh of NACA64A010 airfoil with line around airfoil that
is used for the line integral in the computation of the circu-
lation Γ.

Figure 4. Details of meshes to illustrate how the circulation and x-doublet are computed through line
integrals.

circle (see Fig. 4(a)). An arbitrary precision method by Shewchuk51 is employed for this. Subsequently any
hanging nodes are removed from this set. The result of such an approach is shown in Fig. 4(b). For the
doublet computation, we must also integrate the U velocity within this circle, which is done by summing
over all cells of the primal grid (instead of the dual grid, which SU2 uses).

The second change to SU2 was to alter the dynamic mesh rotations in order to allow for different
prescribed motions (which include multiple frequencies with a ramp-up to maximum amplitude) and to
allow for restarting the solution from a steady result without any discontinuities in the grid velocities. An
example of such a prescribed motion is shown in Fig. 6.

IV. Results

Using the methodology outlined in Sections II and III, low-order models are constructed for several
different airfoils. Using these low-order models, we investigate the influence of airfoil shape, baseline lift
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(b) Transonic flow, M∞ = 0.75, c` = 0.70 (Mcrit = 0.535)

Figure 5. Volume-source fields around RAE2822 airfoil in subsonic and transonic flow as computed
by MSES.40–42

coefficient and Mach number on the transonic flutter boundary. The accuracy of the low-order model is also
validated for the standard Isogai Case A.

IV.A. Example Calibration Results for RAE2822 Airfoil

The low-order model is calibrated using Euler simulations of pitching and heaving airfoils at different Mach
numbers and reduced frequencies. The results in this section use simulations of an RAE2822 transonic airfoil
in forced pitching motion along the path shown in Fig. 6 with an amplitude of θ = 0.3◦, and also in a forced
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Figure 6. Example of forced pitching oscillation.

heaving motion using a similar trajectory for ḣ with an amplitude of ḣ/V∞ = 0.005.
First, we show the results of just the SU2 forced-heaving simulations for different Mach numbers in

Figures 7 and 8. Both the phase and the magnitude variation of the circulation and the x-doublet are seen
to significantly depend on the forcing reduced frequency ω̄, and its effect varies with the baseline Mach
number M∞. At the higher transonic Mach number, the dependence of the x-doublet phase on frequency is
especially strong. A physical explanation of this behavior is that the delays in propagation of the shock and
acoustic waves which comprise the σ field variation will be strongly affected by the size of the supersonic
zone, and hence by M∞.

These CFD results for different Mach numbers and different reduced frequencies are then used to calibrate
a low-order model. In this work, we focus on fitting one low-order model per Mach number for reduced
frequencies in the range of ω̄ = 0.05 to ω̄ = 0.40. In the DMD formulation of Section III, we require that all
CFD simulations use the same fixed time step ∆t. Therefore, the low frequency simulations use more time
steps than the high frequency simulations. Throughout this work, we set the time step such that for the
highest reduced frequency 40 time steps per period are used.

For the calibration we combine the forced pitching and heaving simulations to yield one fit per Mach
number and airfoil. Applying the DMD method of Section III to these CFD results yields the fits shown in
Figures 9 and 10 for pitching motion, and Fig. 11 for heaving motion. The low-order model captures the
circulation response quite accurately. Capture of the x-doublet response is quite reasonable as well, except
for the final part after we stop forcing the airfoil. This is likely due to the numerical noise in the SU2
computation, which then also throws off the fit.
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Figure 7. Phase diagram of Γ for forced heaving at different reduced frequencies for subsonic and
transonic flow.
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Figure 8. Phase diagram of κx for forced heaving at different reduced frequencies for subsonic and
transonic flow.

We also show the errors in the fit for different Mach numbers in Tables 1 and 2. The error in each state
is computed as

εi =
‖xi,DMD − xi,SU2‖2

‖xi,SU2‖2
. (39)

The results in Tables 1 and 2 confirm that the fit for circulation is significantly better than the fit for the
x-doublet.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

(a) Circulation strength
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(b) x-doublet strength

Figure 9. Comparison of phase diagrams between SU2 results and low-order model for forced pitching
oscillations at ω̄ = 0.35 for M∞ = 0.6 for the RAE2822 airfoil with α0 = 1.5◦ (Mcrit = 0.648).

The goal of a calibrated low-order model is to be predictive at different frequencies. We calibrate one
low-order model for M∞ = 0.30 and one low-order model for M∞ = 0.70, and test these low-order models
at frequencies that were not part of the frequencies used for calibration. Tables 3 and 4 show the accuracy
of the DMD fits for these Mach numbers. We see that the accuracy for these frequencies is quite similar to
the accuracy for frequencies that were part of the calibration (Tables 1 and 2).
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Figure 10. Comparison of time series between SU2 results and low-order model for forced pitching
oscillations at ω̄ = 0.35 for M∞ = 0.6 for the RAE2822 airfoil with α0 = 1.5◦ (Mcrit = 0.648).
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Figure 11. Comparison of phase diagrams between SU2 results and low-order model for forced heaving
oscillations at ω̄ = 0.25 for M∞ = 0.6 for the RAE2822 airfoil with α0 = 1.5◦ (Mcrit = 0.648).

Table 1. Accuracy of DMD fit for
forced pitching oscillations at M∞ = 0.30
for RAE2822 airfoil with α0 = 1.5◦

(Mcrit = 0.648).

ω̄ Error Γ Error κx

0.05 2.8% 7.7%

0.10 2.5% 5.7%

0.15 2.9% 11.5%

0.20 2.7% 16.6%

0.25 2.3% 16.2%

0.30 1.5% 12.1%

0.35 1.3% 13.0%

0.40 3.9% 19.5%

Table 2. Accuracy of DMD fit for
forced pitching oscillations at M∞ = 0.70
for RAE2822 airfoil with α0 = 1.5◦

(Mcrit = 0.648).

ω̄ Error Γ Error κx

0.05 4.9% 4.1%

0.10 3.8% 5.9%

0.15 2.5% 14.4%

0.20 2.8% 4.8%

0.25 5.8% 12.4%

0.30 3.6% 16.1%

0.35 1.5% 12.9%

0.40 5.8% 16.3%

We fit low-order models for different freestream Mach numbers to investigate the effect of compressibility
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Table 3. Accuracy of DMD fit for forced
pitching oscillations at frequencies that
were not part of the DMD calibration
(M∞ = 0.30 for RAE2822 airfoil with
α0 = 1.5◦, Mcrit = 0.648).

ω̄ Error Γ Error κx

0.125 2.7% 8.5%

0.175 2.9% 14.4%

0.225 2.5% 17.1%

0.275 1.9% 14.5%

0.325 1.1% 10.9%

0.375 2.4% 16.7%

Table 4. Accuracy of DMD fit for forced
pitching oscillations at frequencies that
were not part of the DMD calibration
(M∞ = 0.70 for RAE2822 airfoil with
α0 = 1.5◦, Mcrit = 0.648).

ω̄ Error Γ Error κx

0.125 3.6% 17.2%

0.175 2.2% 9.7%

0.225 4.9% 6.6%

0.275 4.9% 19.0%

0.325 2.4% 13.2%

0.375 3.4% 9.8%
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Figure 12. Bode plot of transfer function between non-dimensional circulation (2Γ/V∞c) and pitch
angle θ for different Mach numbers for the RAE2822 airfoil with α0 = 1.5◦ (Mcrit = 0.648).

on the aerodynamic response of the airfoil. The effect of Mach number is shown by the magnitude and phase
of the transfer function between circulation and the pitching angle θ in Fig. 12, where we also show the
result for Theodorsen’s theory. We see that the magnitude of the transfer function is strongly dependent on
Mach number, as expected, but that the Mach number influence becomes smaller as the reduced frequency
increases. The magnitude of the transfer function is also quite different between subsonic and transonic
Mach numbers. Furthermore, the phase lag increases with subsonic Mach number and the Mach number
dependence becomes stronger as the reduced frequency increases. For high transonic Mach numbers (e.g.,
M∞ = 0.85), however, the phase lag suddenly becomes smaller. The trends in these Bode plots are similar
to Theodorsen theory, but the values are noticeable different, even for low Mach numbers. This is likely due
to considering an airfoil with thickness rather than a flat plate.

This low-order model can be used to investigate the effect of Mach number on the flutter boundary of
the RAE2822 airfoil. Low-order models of the form Eq. (30) are fit using DMD at different freestream Mach
numbers. For a given Mach number, the aerodynamic low-order model is coupled to the structural model—
with airfoil parameters as listed in Table 5—to obtain the full aeroelastic state space model in Eq. (30). Here,
we focus on the flutter speed as a function of the center of gravity position. The eigenvalues of (E−1A) for
a given xcg are a function of V∞. A bisection method is used to find that flutter speed index Vµ for which
the aeroelastic system becomes unstable, the results are shown in Fig. 13. The flutter speed index Vµ is a
nondimensionalization of the freestream velocity at which flutter occurs, and is defined as Vµ = 2V∞/

√
µωθ c.

This bisection search is performed online and only involves solving 7× 7 eigenvalue problems. Constructing
one flutter boundary in Fig. 13 for sixty different xcg locations therefore only takes ∼0.1 s.

Fig. 13 shows that for xcg far forward—or low reduced frequency—a higher subsonic Mach number
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lowers the flutter speed. However, as the center of gravity moves aft—at high reduced frequencies—a higher
subsonic Mach number increases the flutter speed. The behavior for transonic Mach numbers is quite
different, especially for xcg far forward. For instance, for xcg far forward, the flutter speed for M∞ = 0.80
and M∞ = 0.85 is higher than for M∞ = 0.70, which is classic transonic flutter behavior and commonly
described as the “transonic dip”.

Airfoil parameter

RAE2822 (α0 = 1.5◦, Mcrit = 0.648)

Apparent-mass ratio µ = 4m/πρ∞c2 4.16

Inertia/mass ratio r2θ = 4Iθ/mc
2 1.60

Elastic axis position xea/c 0.50

In-vacuo heave
natural frequency

ωh =
√
kh/m

√
50.0

In-vacuo pitch
natural frequency

ωθ =
√
kθ/Iθ

√
400

Table 5. Airfoil parameters used for flutter
calculations in Fig. 13, from Ref. 52.

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 13. Flutter speed versus xcg/c positions for
different freestream Mach numbers.

IV.B. Validation — Isogai Case A
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Figure 14. Comparison of transonic flutter boundary for Isogai Case A20,53 as found by our method
and methods from literature.54–57 Mcrit = 0.762 for this case.

We validate the accuracy of the model using the standard Isogai case A.20,53 We compare our results for
the flutter boundary against four methods from the literature54–57 and against the flutter boundary found
using SU2 (using the same mesh as was used to calibrate the model). We see that the agreement for the
transonic flow regime is quite good up to M∞ = 0.9. Isogai Case A is known for the characteristic S-shape of
its flutter boundary. For high transonic Mach numbers, the airfoil becomes unstable but if the flutter speed
index is increased further, it becomes stable again, until it finally becomes unstable again around Vµ ' 2.8.
Our model will be implemented in an aircraft design code to yield flutter predictions of optimal designs. A
good design should never operate in the second stability region and therefore it is not a problem that the
model cannot capture this S-shape of the flutter boundary.
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IV.C. Results Across Airfoil Shape Family

As mentioned before, this model is calibrated as a function of freestream Mach number M∞, airfoil family
and baseline lift coefficient c`0 . Fig. 15 shows the influence of the baseline lift coefficient and freestream
Mach number on the flutter boundary of an 11% transonic airfoil of the C-airfoil family (shown in Fig. 16).
Note that the dots in this figure indicate a freestream Mach number where the model was calibrated, whereas
the lines in between are generated using splines for the entries in the aerodynamic state space matrix. For
low subsonic freestream Mach numbers the dependence of the flutter boundary on baseline lift coefficient is
small, however for the transonic regime, the baseline lift coefficient has a larger influence on the transonic
flutter boundary. For this airfoil, a lower c`0 is associated with a higher flutter speed index for subsonic
Mach numbers, but a lower flutter speed index for high transonic Mach numbers.
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Figure 15. Influence of baseline lift coefficient c`0 on the transonic flutter boundary for the 11%
C-airfoil. For this case µ = 40, ωθ/ωh = 0.9, r2θ = 2.5, xea/c = −0.35, xcg/c = 0.35.

Figure 16. Overview of C-airfoil family. Figure 17. Comparison between C-airfoil and E-
airfoil (12%).

Bendiksen showed that the airfoil thickness can have a large effect on the flutter boundary in the transonic
flow and that linear theory predicts that thinner wings would be less susceptible to flutter, but in practice
the opposite has been observed in the transonic flow regime.4 A flutter boundary for airfoils with different
thicknesses of the same airfoil family is shown in Fig. 18. These results indeed confirm that for subsonic
freestream Mach numbers, a thicker airfoil is more susceptible to flutter. However, a thinner airfoil is more
susceptible to flutter for high transonic freestream Mach numbers.

To highlight the sensitivity of the model to a particular airfoil, we compare the flutter boundary for two
different transonic airfoils, which are shown in Fig. 17. These airfoils are quite similar, and Fig. 19 shows
that their flutter boundary is almost the same for subsonic Mach numbers. However, for the transonic flow
regime their flutter characteristics are quite different, demonstrating that the model is able to pick up on
slight differences in airfoil characteristics.

V. Conclusion

This paper highlighted the construction of a physics-based low-order model for unsteady transonic two-
dimensional flow over airfoils. The unknown parameters in the model’s aerodynamic state-space formulation
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Figure 18. Influence of airfoil thickness on the transonic flutter boundary for the C-airfoil family at
c`0 = 0.6. For this case µ = 40, ωθ/ωh = 0.9, r2θ = 2.5, xea/c = −0.35, xcg/c = 0.35.
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Figure 19. Comparison of flutter boundary between the E-airfoil and C-airfoil, both 12% thick at
c`0 = 0.6. For this case µ = 40, ωθ/ωh = 0.5, r2θ = 2.5, xea/c = −0.3, xcg/c = 0.35.

are calibrated using Dynamic Mode Decomposition. The approach has been demonstrated by fitting the
model to unsteady CFD simulations for a pitching and heaving RAE2822 in subsonic and transonic flow.
The calibrated model is then evaluated for its ability to predict the unsteady response over a relatively wider
range of flows than was used in the calibration set. The calibrated model is also used to investigate the effect
of compressibility on the flutter boundary of an RAE2822 airfoil. The influence of baseline lift coefficient,
freestream Mach number, and airfoil thickness on the flutter boundary is investigated using the resulting
low-order model. Finally, the accuracy of the low-order model is confirmed for a classic flutter test problem
from the literature.
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