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Abstract

This paper presents data-driven learning of localized reduced models. Instead of a global reduced
basis, the approach employs multiple local approximation subspaces. This localization permits adaptation
of a reduced model to local dynamics, thereby keeping the reduced dimension small. This is particularly
important for reduced models of nonlinear systems of partial differential equations, where the solution
may be characterized by different physical regimes or exhibit high sensitivity to parameter variations.
The contribution of this paper is a non-intrusive approach that learns the localized reduced model from
snapshot data using operator inference. In the offline phase, the approach partitions the state space into
subregions and solves a regression problem to determine localized reduced operators. During the online
phase, a local basis is chosen adaptively based on the current system state. The non-intrusive nature of
localized operator inference makes the method accessible, portable, and applicable to a broad range of
scientific problems, including those that use proprietary or legacy high-fidelity codes. We demonstrate
the potential for achieving large computational speedups while maintaining good accuracy for a Burgers’
equation governing shock propagation in a one-dimensional domain and a phase-field problem governed
by the Cahn-Hilliard equation.

1 Introduction

The complexity of today’s models and numerical simulations in computational science and engineering has
made the acceleration of model evaluations essential in many design and optimization applications. Often,
the trajectory of full-model states can be approximated in a low-dimensional subspace whose dimension is
orders of magnitude lower than the dimension of the high-fidelity model itself. With the use of localization
techniques, this dimension can be reduced even further by constructing a set of local subspaces which are each
adapted to a particular region of the solution space. Existing localization-based model reduction methods
are powerful, yet they are intrusive, requiring access to (and often modifications of) the high-fidelity model
source code. There is a growing recognition of the importance of non-intrusive methods. These approaches
aim to strike a good balance between ease of implementation in situations where an intrusive reduced
model is unavailable, and exploiting knowledge of the underlying problem to recover certain convergence and
stability guarantees [1]. This paper presents a new non-intrusive localized model reduction approach that
derives localized reduced space operators using the operator inference framework [2]. Our approach applies
to nonlinear partial differential equations (PDEs) with low-order polynomial nonlinear terms and is fully
driven by simulation data.

Projection-based reduced-order modeling identifies an appropriate low-dimensional subspace onto which
the governing equations are projected. This defines a reduced-order model (ROM) that has many fewer
degrees of freedom than the original full-order model (FOM). A popular choice for constructing the reduced-
order basis vectors is the proper orthogonal decomposition (POD), which constructs a basis from represen-
tative solutions (referred to as snapshots) of the system taken at various locations of the state space [3, 4, 5].
The POD basis is comprised of the leading principal components of the snapshot data. Often, the dynamics
of the underlying equations can be represented by a small number of POD modes. In other situations, the
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solution of the governing PDEs lies in a manifold that cannot be covered effectively by a single ROM without
significantly increasing its dimension, thus countering the computational efficiency gains. Linear dimension-
ality reduction is not always suitable for problems whose underlying governing equations are characterized
by local solution features that evolve with time (see for example [6, 7, 8]). This includes phase-field models
in materials science and engineering, the driving application behind the present study, which are notoriously
challenging to solve with traditional model order reduction techniques [9].

To address this challenge, localization-based techniques have been developed in which multiple local
approximation spaces are tailored to different regions of the state-space. The construction of multiple local
reduced-order models can offer substantial improvements in the efficiency of applications that otherwise
require an impractical number of POD modes. Broadly speaking, local subspaces can be defined in the
parameter space [10, 11, 12, 13, 14], in time [15, 16], or in or state-space [17, 14, 18, 19, 20]. Physics-
informed clustering strategies form the basis of another set of approaches for the construction of localized
ROMs. The goal of physics-informed clustering is to identify clusters that are appropriate for model reduction
purposes, through physical quantities corresponding to the underlying problem. Clustering directly in the
solution space can be achieved by grouping snapshots into a set of clusters using unsupervised learning
methods according to a predefined similarity metric. A variation of this can also be found in the projection
error-based local ROM [21], where scale-invariances of the underlying model are captured by using a true
projection error as a dissimilarity criterion instead of conventional Euclidean distances. In [22] a POD
analysis of the numerical data is followed by the clustering procedure to reduce the computational and input
load of the cluster analysis in the POD subspace. In the parameter-based version of the localized discrete
empirical interpolation method (DEIM) from [14], a clustering approach is used to define clusters in the
solution space by means of local DEIM residuals. More recently, the concept of dictionary-based ROM-nets
is introduced, where deep neural networks recommend a suitable local ROM from a dictionary [23]. It was
found that the particular physics-informed clustering analysis has a strong impact on the performance of the
local reduced models, after which the authors propose a novel dissimilarity measure for clustering purposes
[24].

Despite the demonstrated effectiveness of localization approaches in the field of reduced-order modeling,
existing approaches are intrusive in nature: they require access to the high-fidelity code in order to compute
the projected reduced-order operators. This limits the applicability of the approaches, since source-code
access and modification is often impractical or impossible. The contribution of our work is to combine the
aforementioned state-of-the-art localization techniques with a non-intrusive model reduction formulation,
leading to a flexible framework for reduction of large-scale nonlinear problems. We note that the nonin-
trusivity property does not imply that the simulation process is considered to be a black-box: this work
develops a localization approach based on the operator inference framework [2] and embeds knowledge of
the governing equations, their boundary/initial conditions, and their parametric nature. The additional
dimension reduction achieved through localization has the added benefit of addressing the numerical ill-
conditioning of the regression problem in operator inference approaches for non-intrusive model reduction
[1]. Our work differs from nonlinear system identification techniques that seek to discover the underlying
physics of a dynamical system from data [25, 26], since we target here the learning of a ROM for problems
where the governing equations are known and the goal is to approximate a trusted high-fidelity simula-
tion. We also distinguish between the proposed approach and calibration methods in fluid mechanics and
turbulence modeling, which aim to improve the accuracy of POD-based reduced-order models through the
solution of optimization problems [27, 28]. The interested reader is referred to [29] for a comparison of
various methods.

The remainder of this paper is organized as follows. In Section 2 the problem setting of model reduction
for nonlinear dynamical systems is described and the baseline operator inference method is discussed. Sec-
tion 3 presents the new localized operator inference approach, discussing how local reduced-order bases are
introduced within the scope of operator inference by utilizing data clustering and classification techniques.
Its application to two nonlinear problems is discussed in Section 4. Finally, concluding remarks are offered
in Section 5.
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2 Non-intrusive reduced-order modeling with operator inference

This section begins with introducing the high-dimensional dynamical systems of interest. We then briefly
summarize the baseline non-intrusive operator inference approach [2], which is the main building block for our
new localized method, in which reduced models are learned purely from numerical training data generated
by solving the high-dimensional dynamical system. The section concludes with some important numerical
considerations of operator inference approaches.

2.1 Dynamical system with high-dimensional states

This work considers problems governed by systems of nonlinear PDEs. Consider the governing equations
of the system of interest written, after spatial discretization, in semi-discrete form. This results in a high-
dimensional system of ordinary differential equations (ODEs), since the order of the spatial discretization is
typically at least thousands to millions. We consider a particular form of the semi-discrete equations with a
nonlinear term of the second order in the state,

d

dt
s(t) = C+As(t) +H (s(t)⊗ s(t)) +Bu(t); s(0) = s0. (1)

Here, the state dimension is n ∈ N and the semi-discrete state at time t ∈ [0, T ] is s(t) ∈ Rn, with specified
initial condition s0 ∈ Rn. Throughout this paper (1) will be referred to as the full-order model (FOM).
We note its polynomial structure: the vector C ∈ Rn are the constant terms of the system of differential
equations; and the matrix operators A ∈ Rn×n and H ∈ Rn×n2

are the terms that are linear and quadratic in
the state s(t), respectively. There are m ∈ N inputs contained in the input vector u ∈ Rm that enter linearly
via the input matrix B ∈ Rn×m, typically encoding boundary conditions or forcing terms. Here, ⊗ denotes
the Kronecker product, following the notation from [30], which for a column vector s = [s1, s2, ..., sn]

⊤ is

given by s ⊗ s =
[
s21, s1s2, . . . , s1sn, s2s1, s

2
2, . . . , s2sn, . . . , s

2
n

]⊤ ∈ Rn2

. When a polynomial structure is not
an attribute of the underlying governing equations, variable transformations and auxiliary variables may be
employed to expose structure that is amenable to projection-based approximation. It was shown in [31] that
many nonlinear dynamical systems may be lifted to the quadratic form of (1). Similarly, it has been shown
in [32, 33, 34, 35] that a number of PDE models that appear in complex engineering systems can be lifted
to this quadratic form.

2.2 Learning low-dimensional reduced models via operator inference

Consider the task of reducing high-dimensional model (1). A projection-based ROM can be obtained by
restricting the state to lie in a low-dimensional subspace spanned by a set of basis vectors through, for
instance, the POD. The POD basis is computed empirically from training data in the form of solution
snapshots and applies to both linear and nonlinear systems. To compute the POD basis, consider a set of
k snapshots, s1, s2, . . . , sk, which are state solutions computed at different time instances and/or parameter
values. We define the snapshot matrix S ∈ Rn×k whose jth column is the snapshot sj ∈ Rn. The POD
basis vectors are the left singular vectors of S corresponding to the r largest singular values. They populate
the columns of the basis matrix V. The column space of V defines an r-dimensional subspace of the full
state space Rn, where, generally speaking, r ≪ n. The POD basis is orthonormal, that is V⊤V = I,
where I denotes the identity matrix of dimension r × r. Approximating the high-dimensional state s in the
low-dimensional basis V, we write

s(t) ≈ Vŝ(t), (2)

where ŝ ∈ Rr is the r-dimensional reduced state.
Classical model reduction techniques use an intrusive process to compute a set of reduced matrix operators

via projections of the FOM operators, which typically involves intrusive queries to the FOM source code.
In contrast, the operator inference approach from [2] is non-intrusive in nature and permits the reduced
operators to be learned from data without the need for access to FOM operators. We define the operator
inference ROM of Eq. (1) as

d

dt
ŝ(t) = Ĉ+ Âŝ(t) + Ĥ (ŝ(t)⊗ ŝ(t)) + B̂u(t); ŝ(0) = V⊤s0, (3)
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where Ĉ ∈ Rr, Â ∈ Rr×r, Ĥ ∈ Rr×r2 , and B̂ ∈ Rr×m are the reduced operators determined via a data-driven
regression problem.

In the following least-squares learning problem we will work with a quadratic system as in (1) and (3).
However, operator inference readily extends to systems with cubic and higher-order polynomial terms, noting
that as the polynomial order of the system increases, so too does the number of coefficients to be inferred in
the corresponding operator inference regression problem. Given k reduced state snapshots, the corresponding
reduced-order time derivative data, and a postulated model form, the operator inference approach formulates
a regression problem to find the reduced matrix operators that yield the reduced model that best matches
the given projected snapshot data. For a model with quadratic form, this leads to the following minimization
problem: (

Ĉ, Â, Ĥ, B̂
)
= argmin

Ĉ,Â,Ĥ,B̂

k∑
j=1

∥∥∥Ĉ+ Âŝj + Ĥ (ŝj ⊗ ŝj) + B̂uj − ̂̇sj∥∥∥2
2
, (4)

with ̂̇sj the representation, in the POD coordinates, of the time derivative of the jth snapshot, and uj the
input data uj := u(tj) at time tj . It has been shown in [2] that Eq. (4) decouples into r independent linear

least-squares problems that solve for each row of Ĉ, Â, Ĥ and B̂ independently. Ref. [2] also shows that as
the time step ∆t → 0 and reduced space dimension r → n, the inferred operators of (4) will converge to
those obtained from intrusive projection.

2.3 Numerical considerations

While the least-squares optimization problem is linear in the coefficients of the unknown reduced operators,
the number of coefficients to be inferred grows exponentially with higher-order polynomial terms in the
inference problem. For a ROM in which the system dynamics are quadratic, inferred using k state and time
derivative pairs, we require k > 1 + r + r(r + 1)/2 +m to avoid an underdetermined least-squares problem
[36, §5.3]. In addition, the snapshot data must be sufficiently rich to yield a well conditioned problem (4).
For systems with higher-order polynomial state dependence the number of coefficients to be inferred in each
least-squares problem grows even more rapidly. For a fixed number of basis functions r, this leads to an
increase of training costs in the offline stage of the approach. It also becomes increasingly difficult to avoid
conditioning issues, even for a full-rank linear least squares problem (4). A large condition number typically
originates from linear dependencies of the states at different time steps and/or parameter variations and
can introduce significant errors into the numerical solutions. In [2] a data collection strategy for avoiding
ill-conditioning was proposed.

Operator inference problems can also be noisy due to error in the numerically estimated time derivatives,
model misspecification (e.g., if the system is not truly quadratic), and unresolved system dynamics due to
the truncated POD modes. The ROM constructed through Eq. (4) can thus suffer from overfitting the
operators to the data, resulting in poor performance. To this end, [37] developed a regularized operator
inference formulation that balances residual minimization with a Tikhonov regularization term. This yields
a regularized operator inference problem of the form

(
Ĉ, Â, Ĥ, B̂

)
= argmin

Ĉ,Â,Ĥ,B̂

k∑
j=1

∥∥∥Ĉ+ Âŝj + Ĥ (ŝj ⊗ ŝj) + B̂uj − ̂̇sj∥∥∥2
2

+ λ1

(
∥Ĉ∥22 + ∥Â∥2F + ∥B̂∥2F

)
+ λ2∥Ĥ∥2F ,

(5)

where λ1, λ2 ≥ 0 are scalar regularization hyperparameters and ∥ · ∥F denotes the Frobenius norm. The
values of these hyperparameters are chosen in an outer optimization loop that also accounts for reduced
model stability, as discussed in [37]. We refer to [38] for a recent discussion on the stability of learned
models with operator inference. In that work, the authors propose a regularizer that explicitly leverages the
quadratic model form to penalize unstable models. It is shown that additional physical insights, in the form
of structure of the linear dynamics, can be imposed on the operator-inference models via constraints.
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3 Operator inference using local reduced-order bases

The operator inference approach from [2] employs a single global basis with span encompassing the desired
range of dynamics. Ensuring that a reduced-order representation is sufficiently rich to yield accurate predic-
tions over the desired range of parameter values is often challenging: the performance of a projection-based
ROM hinges on the ability of the underlying subspaces to accurately represent nonlinear trajectories in the
state space. Rather than constructing a single linear subspace to approximate the underlying differential
equations, we compute several local subspaces which are each tailored to a particular region of the solution
space. The distinguishing feature in the proposed approach is that the set of local reduced models are now
learned via operator inference in completely non-intrusive fashion. We refer to this approach as localized
operator inference.

In the next subsection we introduce our localized operator inference method in step-by-step fashion.
We then specify the individual offline and online components of the proposed approach used in the learning
problem. A cost analysis of the construction of ROMs with localized operator inference concludes the section.

3.1 Localized operator inference

Classical model reduction follows a decomposition of computational tasks into two phases: (1) the offline
phase where the reduced model is derived from the high-fidelity model, and (2) the online phase where the
reduced model is deployed to compute, in the low-dimensional manifold, the solution that best captures the
dynamics of the high-fidelity solution. The offline stage of localized operator inference approach consists of
the following consecutive steps:

1. Data collection & clustering – The training data is collected and partitioned into groups of kine-
matically similar observations using unsupervised learning methods. The clustering algorithm returns
np partitions of the data matrix.

2. Training the classifier – We train the classifier. Its purpose is to recommend a good local ROM
with respect to a predefined indicator.

3. Learning a set of cluster-specific ROMs – Using the operator inference approach from Section 2
we learn a set of cluster-specific system operators, one associated with each snapshot partition p. This
leads to a set of np local ROMs that operate independently of one another.

The output of the offline stage contains a set of cluster-specific ROMs and the classifier. The online phase
of the localized operator inference method consists of the following steps:

4. Selection of ROM – The indicator is computed and, using the classifier constructed in the offline
stage, the most appropriate local ROM is identified.

5. ROM evaluation – We evaluate the learned ROM using the reduced model operators corresponding
to the selected local ROM.

The workflow of the localized operator inference method is sketched in Figure 1. We now specify the different
aspects of the offline and online stages of the proposed approach.

3.2 Localized operator inference: the offline phase

3.2.1 Data collection & clustering

In the operator inference framework, the goal is to learn a ROM of the form (3) directly from data. Let
s1, . . . , sk be the solutions of the FOM (1) at time steps t1, . . . , tk computed with a time stepping scheme
and initial condition s0. The inputs u(t0), . . . ,u(tk) are sampled at the same time steps. Then, the snapshot
and time derivative data matrices and input trajectory are defined as

S =

 | | |
s0 s1 . . . sk
| | |

 , Ṡ =

 | | |
ṡ0 ṡ1 . . . ṡk
| | |

 , U =

 | | |
u(t0) u(t1) . . . u(tk)
| | |

 . (6)
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...

Figure 1: Localized operator inference workflow. In the offline phase a clustering approach is employed to
partition the snapshot data into np clusters. A cluster-specific set of reduced state operators is then inferred
using the operator inference approach from [2]. A classifier is trained to learn the mapping between the
states and their appropriate partition p which, during the online stage, selects the optimal local ROM with
respect to the current state of the system.

We now consider the partitioning of state and time derivative pairs in the data set. For high-dimensional
data, effects attributed to the curse of dimensionality hinder the successful application of many traditional
clustering algorithms. Most notably, the assessment of similarity using distance is no longer a meaningful
criterion for distinguishing between data objects that should be part of the same cluster or that should be
separated into distinct clusters [39]. Instead of directly clustering the high-dimensional snapshots, we follow
the procedure from [22] in first projecting the snapshot data onto a lower dimension subspace. Such an
approach improves the stability of clustering approaches, because we cluster points in a low-dimensional
subspace and not in the high-dimensional space, and it also enables the handling of large numbers of clusters
[14]. For this clustering step, we compute a global POD basis denoted V ∈ Rn×rG , where rG is the dimension
of this global basis. We obtain the representation of each snapshot sj in these global POD coordinates as

s̃j = V
⊤
sj , or

S̃ = V
⊤
S, (7)

where the tilde denotes the reduced-dimension state representation in the global POD basis V. Note that
these global POD coordinates are used only for the clustering and classification steps, not for defining the
reduced models themselves. The global basis dimension rG ≪ n is chosen such that S̃ contains only the
most important information about the snapshots. It is noted that only the snapshot matrix, and not the
time derivative data matrix, is expressed in the POD coordinate system as we choose to drive the clustering
algorithm by similarities in the states.

The clustering algorithm is tasked with partitioning the snapshot data in S̃ with respect to a certain
criterion. The input to the clustering method is the set S̃, and the output is a partition {S̃1, S̃2, . . . , S̃np

},
denoting np individual clusters. The k-means algorithm is a standard clustering algorithm that has been
applied successfully to many different applications in the context of the unsupervised learning methods
for model reduction [17, 18, 20, 21, 22]. It is a hard clustering algorithm: each data point is assigned
to exactly one cluster. While these methods are widely used in practice, they ignore any measure of data
similarity across clusters. In this work, a fuzzy c-means (FCM) algorithm is adopted as the clustering method
[40, 41, 42]. In contrast to k-means and other hard clustering methods, data is no longer divided into distinct
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clusters. Each data point can potentially belong to multiple clusters as a result of the varying degree of
membership. By iteratively updating the cluster centers and the membership grades for each data point,
the FCM algorithm moves the cluster centers to the correct location within a data set. It returns a list of np

cluster centers, {c1, . . . , cnp
}, and a partition matrix, µ, where each element expresses the degree to which

reduced snapshot s̃j belongs to cluster cp. The algorithm minimizes an objective function that represents
the distance from any given data point to a cluster center weighted by the membership of that data point
in the cluster

k∑
j=1

np∑
p=1

µq
jp ∥s̃j − cp∥2 , (8)

where

µjp =
1

np∑
l=1

(
∥s̃j − cp∥
∥s̃j − cl∥

) 2
q−1

. (9)

The fuzzy partition matrix exponent, controlling the softness of the overlap of the reduced snapshot clusters,
is given by q > 1 and the total number of reduced snapshots equals k. The cluster centers are computed as

cp =

k∑
j=1

µq
jps̃j

/
k∑

j=1

µq
jp , (10)

which are points in RrG . Generally speaking, the total number of data points assigned to each cluster will
vary. In the context of localization approaches for model reduction, FCM eliminates the need for auxiliary
algorithms to introduce overlap between the generated state clusters to avoid the formation of gaps between
the generated clusters. Such techniques promote the continuity of the approximation in the transitional
regions of the state space [17, 18]. A data point can be assigned to a given cluster solely through its
degree of membership. This is a straightforward task as, for a given projected snapshot, s̃i, the sum of the
membership values for all clusters is one.

3.2.2 Training the classifier

The use of localized ROMs introduces the need for a model selection method that identifies the most suitable
ROM. When model selection during the online phase is not straightforward one can train a classifier to learn
the model selection task and enable fast model recommendation [14, 23, 43]. Having obtained a partition

of S̃, we train the classifier Θ : Z → {1, 2, . . . , np} to select the most appropriate local ROM with respect
to a predefined indicator z ∈ Z. In machine learning terms this ubiquitous task is called classification [44].
The task of constructing the indicator z is also called feature extraction or feature selection [45]. It can
be viewed as applying a mask to a high-dimensional vector to obtain a low-dimensional vector containing
the most relevant information. The purpose of an indicator is to describe the high-dimensional state well
enough to decide which local ROM should be used. For this reason we use the projected snapshot data
partitions, S̃ = {S̃1, S̃2, . . . , S̃P }, whose columns denote the solution snapshots represented in the global
POD coordinate system.

Many classification methods are available in the literature. Here we employ a nearest neighbor classifier
with an Euclidean distance metric. The classifier Θ : Z → {1, 2, . . . , np} with Z ∈ RrG is trained on the
reduced snapshot data s̃1, . . . , s̃k from the clustering algorithm and their assigned cluster index p.

3.2.3 Learning a set of cluster-specific ROMs

The proposed method learns a set of cluster-specific reduced models by constructing multiple local bases
throughout the parameter space. We consider again the quadratic FOM, as in (1). Given a partitioning of

S̃, and thus of S, we compute the thin singular value decomposition in every pth snapshot cluster via

Sp = ΦpΣpΨ
⊤
p ; p = 1, . . . , np, (11)

where Φp ∈ Rn×kp ,Σp ∈ Rkp×kp , and Ψp ∈ Rkp×kp . We let kp denote the number of snapshots collected
in Sp. The singular values σp,1 ≥ σp,2 ≥ · · · ≥ σp,kp

≥ 0 in Σp, with σp,j denoting the jth singular value of
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snapshot cluster p, are given in non-increasing order. The local POD basis vectors Vp are the first rp left
singular vectors of Sp. The size of the POD basis is typically chosen using the singular values as a guideline.
In the context of localized ROMs, this means that one could use different local basis sizes for each cluster.

Note that, in practice, one must be careful about the scaling of the snapshots in order to obtain an ade-
quate basis. Centering the data can be achieved through mean-subtraction, for instance. This is particularly
important when dealing with coupled problems in which the different physical variables are measured by
different scales [1].

In the operator inference framework, the goal is to learn a ROM for a postulated model form directly
from data [2]. In the proposed localized operator inference approach, we will learn np localized ROMs. For
each p = 1, . . . , np, one starts with the trajectories of s(t) and ṡ(t) projected onto the local basis matrix
Vp ∈ Rn×rp :

Ŝp = V⊤
p Sp,

̂̇Sp = V⊤
p Ṡp; p = 1, . . . , np. (12)

The localized operator inference optimization problem to compute the localized reduced operators Ĉp, Âp, Ĥp

and B̂p from the above projected data is:

(
Ĉp, Âp, Ĥp, B̂p

)
= argmin

Ĉp,Âp,Ĥp,B̂p

(∥∥∥Ĉp1kp
+ ÂpŜp + Ĥp

(
Ŝp ⊙ Ŝp

)
+ B̂pUp − ̂̇Sp

∥∥∥2
F

+ λ1,p

(
∥Ĉp∥2F + ∥Âp∥2F + ∥B̂p∥2F

)
+ λ2,p∥Ĥp∥2F

)
; p = 1, . . . , np,

(13)

associated with the pth snapshot cluster, where 1kp
∈ Rkp is a kp-length row vector with all entries set to

unity, operator ⊙ denotes the Khatri-Rao product of two matrices (also known as column-wise Kronecker
product [30]), and λ1,p, λ2,p are the regularization hyperparameters chosen for each cluster p. Solving the
cluster-specific regression problem, (13), is not only important for keeping the reduced-state dimension low
(leading to faster online solves), it also guards against ill-conditioning of the operator inference regression
problem with a growing number of POD modes. Algorithm 1 summarizes the proposed localized operator
inference learning approach.

The ideal set of regularization parameters balance the minimization between the data fit and the regu-
larisation to produce a ROM that minimizes some error metric over the full time domain. Various strategies
can be devised for choosing these scalar hyperparameters. In the context of localized operator inference, we
employ the following strategy: for every trajectory in the training set, an optimal set of hyperparameters
is computed through a grid-search technique. These hyperparameters are chosen to be constant across the
learning problems for inferring the local reduced state operators, i.e. λ1,p = λ1, λ2,p = λ2. For parameter
values not included in the training set, the regularization parameter for learning problem (13) is chosen
corresponding to the closest neighboring samples in the training set. This approach was found to lead to
stable ROMs.

3.3 Localized operator inference: the online phase

3.3.1 Selection of ROM

In the online phase of the localized operator inference method we evaluate the classifier to decide which local
ROM should be used given an indicator z. Given a local reduced state ŝp, associated with local ROM p, the
indicator is computed as

z := s̃ = V
⊤
Vpŝp ∈ RrG (14)

during the evaluation of the ROM. Cluster-related reduced-order quantities {V⊤
Vp}

np

p=1 ∈ RrG×rp may be
pre-computed since low computational cost is crucial during the online phase. We then evaluate the nearest
neighbor classifier for the ROM selection.
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Algorithm 1 Non-intrusive localized operator inference using Tikhonov regularization.

Input: partitions of the snapshot data {S1,S2, . . . ,Snp}, time derivative data {Ṡ1, Ṡ2, . . . , Ṡnp}, input data
{U1,U2, . . . ,Unp}, and a user-specified energy threshold κ

Output: np sets of reduced model operators {Ĉp, Âp, Ĥp, B̂p}np

p=1

1: for p ∈ {1, 2, . . . , np}, one for each data cluster do
2: Compute the SVD of Sp

3: rp ← choose rp such that

rp∑
i=1

σ2
p,i

kp∑
i=1

σ2
p,i

> κ ▷ Dimension of local POD basis

4: Vp ← the rp leading left singular vectors of Sp ▷ Compute the local POD basis from the snapshots
5: Ŝp ← V⊤

p Sp ▷ Project snapshots onto the rp-dimensional POD subspace

6:
̂̇Sp ← V⊤

p Ṡp ▷ Projected time derivatives of the snapshots
7: {λ1,p, λ2,p} ← determine regularization parameters
8: Solve cluster-specific learning problem (13) via rp independent least-squares problems
9: end for

10: return {Ĉp, Âp, Ĥp, B̂p}np

p=1

3.3.2 ROM evaluation

With the localized operator inference approach, the ROM (3) takes the form

d

dt
ŝp(t) = Ĉp + Âpŝp(t) + Ĥp (ŝp(t)⊗ ŝp(t)) + B̂pu(t); ŝp(0) = V⊤

p s0, (15)

where the subscript p denotes the pth local ROM and Ĉp ∈ Rrp , Âp ∈ Rrp×rp , Ĥp ∈ Rrp×r2p , and B̂p ∈ Rrp×m

are the corresponding local reduced model operators. The high-dimensional state approximation based on
the pth POD basis is written as s(t) ≈ Vpŝp(t). To switch from a local approximation ŝb to a different
approximation ŝa, the solution Vbŝb(t) is projected onto the ath local subspace to account for the change in
the POD coordinate systems:

ŝa = V⊤
a Vbŝb ∈ Rra . (16)

The reduced-order matrices V⊤
a Vb ∈ Rra×rb may be pre-computed for any cluster-combination {a, b} such

that the projection (16) can be performed efficiently during the online solution of the reduced model.

3.4 Computational costs

We now present an offline-online breakdown of the computational cost of the proposed approach. During the
the offline stage of the localized operator inference method, we incur additional computational and storage
costs by performing a clustering analysis (step i). Generally speaking, soft clustering approaches (such as
FCM) are more computationally demanding compared to hard clustering algorithms (e.g. k-means) because
each data point has a weighting associated with every cluster. However, the low-dimensional representation of
the snapshot data leads to a lower-dimensional clustering task and thus a more efficient clustering procedure.
For the model selection, we first train a classifier (step ii). In this work we employ nearest neighbor classifiers,
which are cheap to evaluate if the number of neighbors is kept low. Efficiency of the classifier is crucial
since we evaluate it during the online phase of the approach. Additionally, we infer np local ROMs using
the operator inference approach, instead of just one (step iii). However, learning a set of reduced model
operators, (13), is an embarrassingly parallel task that can fully benefit from parallel architectures. An
analysis of the computational cost associated with constructing a reduced model using operator inference
was presented in [2]. While the proposed approach leads to an overall increase of the offline costs, the extra
steps are justified by the expected online computational cost reduction.

The cost of the online phase of the localized operator inference approach is very similar to that of the
original (global) operator inference method from [2]. The only additional cost in the online stage is related
to evaluating a classifier (step iv). However, this cost does not depend on the number of data points used to
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train the classifier nor on the number of clusters, np. The evaluation of the ROMs (step v) does not require
any extra steps other than projections of the solution upon switching between ROMs when necessary. To
summarize, the localized operator inference approach is well-suited for applications in which the online cost
benefits due to the reduction of the basis dimension outweighs the increase of the extra offline costs.

4 Numerical experiments

In this section we demonstrate localized operator inference on two examples. We consider the Burgers’
problem for shock propagation and the Cahn-Hilliard equation for modeling the process of phase separation.
The FCM clustering algorithm and k-nearest neighbor search engine available in MATLAB are employed
for clustering and classification, respectively. The minimization of objective function (8) in the clustering
approach terminates when the objective function improves by less than a specified minimum threshold of
10−14. Since the quality of the clustering procedure hinges on a randomized initial guess, we perform several
replicates and select the clustering assignment that comes with the smallest value for the objective function
(8). The fuzzy partition matrix exponent is set to q = 1.5. The time derivatives are approximated with a
five-point stencil, which has fourth-order accuracy. The first two and last two time derivatives are computed
using one-sided finite-difference approximations with the same order of accuracy. To remove redundant
terms in the original Kronecker product, in practice we employ a compact Kronecker product in which the
duplicate terms are removed. For instance, the standard Kronecker product of a vector s = [s1, s2]

⊤ with
itself yields [s21, s1s2, s2s1, s

2
2]

⊤, whereas for the compact Kronecker product we have [s21, s1s2, s
2
2]

⊤. The
Kronecker product of two column vectors of length r contains only r(r + 1)/2 unique quadratic terms.

4.1 Burgers’ problem for shock propagation

We assess the method’s performance on the inviscid Burgers’ equation for shock propagation in a one-
dimensional domain [46, 17, 18, 47, 21]. This problem is particularly challenging for projection-based ROMs.
The difficulty arises from the fact that ROMs approximate the solution as a linear combination of spatially
fixed reduced basis functions. However, when the underlying system dynamics exhibit motion with respect to
a fixed grid, ROMs that use a global POD basis generally fail to capture the space-time evolution of the local
phenomena accurately. Consider the following one-dimensional initial-boundary-value problem problem:

∂

∂t
s(x, t) + s(x, t)

∂

∂x
s(x, t) = g(x); x ∈ [0, 100], t ∈ [0, 50], (17)

with s(x, t) the unknown conserved quantity, and the forcing term g(x) = 0.02e0.02x. The Dirichlet boundary
condition used for the above PDE is

s(0, t) = sBC, (18)

which is constant with time. The initial condition is given by

s(x, 0) =

{
sBC for x = 0

1 for x > 0
(19)

and is therefore parametrized by a single degree of freedom, sBC. Its discontinuous nature in space is what
gives rise to shock formation.

The problem is semi-discretized by a Godunov type finite volume method with 29 control volumes leading
a system of nonlinear ODEs. The corresponding inferred reduced model takes the polynomial form

d

dt
ŝp(t) = Ĉp + Ĥp (ŝp(t)⊗ ŝp(t)) + B̂pu(t), (20)

where ŝp(t) ∈ Rrp is the reduced local state vector corresponding to the pth local ROM, Ĥp ∈ Rrp×rp(rp+1)/2

is the local operator corresponding to the nonlinear (quadratic) term, and Ĉp ∈ Rr
p is the local vector

corresponding to the constant terms. The local input matrix B̂p imposes the Dirichlet boundary condition
with the constant input u(t) = sBC. Note that the inviscid Burgers’ equation (17) contains no linear
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(a) FOM (reference) (b) OpInf ROM, r = 10

(c) OpInf ROM, r = 20 (d) OpInf ROM, r = 40

Figure 2: Numerical simulation of a Burgers’ problem at a testing point sBC = 1.75. We compare the FOM
with global operator inference ROMs constructed using different POD basis sizes.

dependencies on the state, so in our postulated polynomial ROM (15), we have Âp = 0. The local learning
(13) problem thus takes the following form in each snapshot cluster:(

Ĉp, Ĥp, B̂p

)
= argmin

Ĉp,Ĥp,B̂p

(∥∥∥Ĉp1kp
+ Ĥp

(
Ŝp ⊙ Ŝp

)
+ B̂pUp − ̂̇Sp

∥∥∥2
F

+ λ1,p

(
∥Ĉp∥2F + ∥B̂p∥2F

)
+ λ2,p∥Ĥp∥2F

)
; p = 1, . . . , np,

(21)

where the reduced model operators are inferred with Algorithm 1.
To train the reduced models of the form (20) a training data set is constructed containing twenty equidis-

tant points in the parameter domain sBC ∈ [1.5; 2.0]. We consider a test set in which an additional 100
trajectories are generated with sBC randomly drawn from a uniform distribution U([1.5; 2.0]). The training
trajectories are used to learn the reduced models. k = 5, 000 time steps were taken to march forward in
time. The simulation outputs the system state and time derivative every ten time steps, yielding a total of
10,000 snapshots for the learning problem. Both the FOM and the ROMs are solved with a semi-explicit
Euler time-stepping scheme.

The operator inference approach from [2], described in Section 2, is applied to the solution of the afore-
mentioned problem for reference. The method constructs a ROM in which a single POD basis represents
the entire state. Figure 2 shows an example result of the shock propagation phenomenon. It depicts the
evolution of the conserved quantity s(x, t) in time over the one-dimensional domain at an arbitrary test
point. The translating nature of the shock front proves to be a challenging problem for model reduction:
when the number of POD basis functions is relatively low, the moving front is smeared out in space. It
is also observed that the conserved variable displays oscillatory behavior upstream and downstream from
the shock front. The small over- and undershoots in the solution of the learned model are a consequence
of Gibbs phenomena arising from using a limited number of POD modes for ROM construction. As more
POD modes are added, oscillations in the ROM solutions decrease consistently and the shock movement is
reproduced with increasing levels of accuracy.
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Figure 3: Comparison of the singular value decay of the collected snapshots for global and a set of local
POD basis functions for Burgers’ problem.
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Figure 4: Analysis of the reduced space dimension as a function of the number of snapshot clusters np at
different retained POD energy levels κ for Burgers’ problem.

The proposed localized operator inference method is applied to the Burgers’ problem in which cluster-
specific ROMs are constructed. A dimensionality reduction is applied to the matrix of the concatenated
initial conditions and trajectories S, after which it is partitioned into np snapshot clusters. To determine

the number of basis functions to retain in the low-dimensional representation of the snapshot matrix, S̃, we
examine the quantity

rG∑
i=1

σ2
i

/
n∑

i=1

σ2
i , (22)

where σi are the singular values of the snapshot matrix S. The quantity in Eq. (22) is the relative energy of
the rG retained modes of the full-state training data. Recall that this dimension reduction based on a global
POD basis is used only for the purposes of snapshot clustering and training the classifier, and thus should
not be viewed as a representative metric for ROM accuracy. The required numbers of modes, rG, needed to
retain 99.9%, 99.99% and 99.999% of the energy in the training data equals 6, 20 and 41, respectively. Our
experiments found rG = 6 to be sufficiently accurate for clustering and classification tasks in the Burgers’
problem for shock propagation.

The singular values of the training data set are plotted in Figure 3. The partitioning of the snapshot
data into clusters was found to significantly increase the rate at which the singular values decay. When the
snapshot clusters are made to overlap with one another by sharing a number of states between neighboring
clusters, the decay of the singular values is slightly slower compared to the non-overlapping cluster (Fig. 3b).
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Figure 5: Condition number of the operator inference data matrix [1kp
, Ŝp ⊙ Ŝp,Up] versus retained energy

threshold, κ, for np = 8 and np = 32 snapshot clusters. The equivalent condition number for the baseline
global operator inference approach [2] is included for reference. Shaded areas indicate the condition number
range over the set of np localized ROMs.

While in principle snapshot clusters do not need overlap, this procedure avoids the formation of gaps between
neighboring clusters and is reported to improve the quality of the sought-after reduced state solution upon
transitioning between neighboring clusters [17].

We now take a closer look at the impact of the number of adopted overlapping clusters, np. The number
of modes to retain in each localized ROM is determined by evaluating the retained energy in each individual
cluster, p, as a function of the reduced dimension in that cluster, rp:

κrp =

rp∑
i=1

σ2
p,i

/
kp∑
i=1

σ2
p,i ; p = 1, . . . , np. (23)

Each local ROM dimension, rp, is chosen independently to satisfy κrp > κ, where κ is a user-specified
cumulative energy threshold. Figure 4 shows the median of the local reduced space dimension, rp, as a
function of the number of clusters at different values of κ. It is clear that, generally speaking, if κ is set to be
constant across all clusters, the local bases do not contain the same number of POD basis vectors. It is also
clear that even with a relatively low number of snapshot clusters, the local bases are reduced considerably
in dimension compared to the global basis. Growing the number of clusters follows the law of diminishing
returns. We note that the values of κ in Figure 4 are relatively high; this is required so that the ROMs
sufficiently resolve the moving interface with time and is an indication of the challenge of approximating
Burgers’ equation (17).

The conditioning of operator inference regression problem poses numerical challenges. As the reduced
dimension grows, the conditioning can deteriorate rapidly. In some cases the conditioning can be improved
by adding more training data, although if the required size of the basis increases correspondingly then
this can lead to diminishing returns [2, 34]. Regularization is the primary numerical strategy to address
this issue, although the resulting ROM performance can be sensitive to the regularization hyperparameters.
Our localized operator inference approach addresses this challenge because each localized operator inference
regression problem has a smaller number of degrees of freedom than if we were to infer global ROM operators.
Figure 5 compares the condition number of the localized operator inference data matrix [1kp , Ŝp ⊙ Ŝp,Up]
(which is formed to solve (21)) at different retained POD energy thresholds. For the baseline operator
inference approach (with a global basis) the condition number can get quite large (> 1010) for this application
as we add more POD modes. In contrast, for the same retained energy threshold in the local training data,
the proposed approach reduces the condition number up to several orders of magnitude.

Figure 6 compares solutions computed with the baseline operator inference approach (using a global POD
basis) and the localized operator inference method. In the latter ROM simulations a number of np = 32
snapshot clusters are employed. Examining the results in Figure 6, it can be seen that localized operator
inference predictions capture the space-time evolution of the moving of the shock front well. Figures 6c–6d
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(a) FOM (reference) (b) OpInf ROM, r = 40

(c) Localized OpInf ROM, np = 32, r = 4 (d) Localized OpInf ROM, np = 32, r = 8

(e) Localized OpInf ROM, np = 32, κ = 99.99% (f) Localized OpInf ROM, np = 32, κ = 99.999%

Figure 6: The numerical simulation of Burgers’ problem at a testing point sBC = 1.75. We compare the
FOM with the proposed localized operator inference ROMs constructed using np = 32 snapshot clusters.
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Figure 7: Operator inference model prediction error for Burgers’ problem for shock propagation. Comparison
of the baseline operator inference and localized operator inference methods for (left) the training trajectories
and (right) a set of testing trajectories. Median and first/third quartile errors are shown.

set the dimension of every local basis at the levels of r = 4 and r = 8. It can be seen show that upon
increasing the local basis size to r = 8, the ROM predictions for the conserved variable become virtually
indistinguishable from that of the FOM, whereas upward of r = 40 POD modes are needed to produce the
same level of accuracy with a global basis. Instead of employing a predefined number of localized basis
functions, we now choose each local ROM’s dimension based on the metric (23) (see also Algorithm 1).
Figures 6e–6f plot the ROM solutions at κ = 99.99% and κ = 99.999%. The corresponding set of ROMs has
a reduced state dimension with ranges rp = 2 to 6 and rp = 4 to 9, respectively, for the two different levels of
energy. Due to its local nature, the proposed approach also suppresses the usual undershoot-overshoot of the
solution exhibited around the interface. The test and training errors are given in Figure 7. For each training
and testing input, the error relative to the original high-dimensional solution, Sorig ∈ Rn×k, is computed
by solving the reduced model to generate the predictions in the reduced state, then reconstructing the full
states of the trajectory in the original full state space to obtain Srec ∈ Rn×k. The relative error is given by
the norm of the difference between the FOM and ROM solutions

∥Srec − Sorig∥F
∥Sorig∥F

. (24)

For a limited computational budget, expressed through the number of POD basis functions in the reduced
models, our testing indicates that the proposed method produces more accurate results compared to a
baseline operator inference approach that relies on a single global POD basis, which is a key contribution of
this work.

4.2 The Cahn-Hilliard phase-field model

We consider the Cahn-Hilliard equation for modeling the dynamics of spinodal decomposition. For this
system, localized reduced-order modeling was found to be imperative due to the prohibitive computational
cost associated with traditional model order reduction techniques in capturing its rich dynamics across
multiple time scales. We briefly introduce the problem and its governing equation, after which we apply the
proposed localized non-intrusive reduced-order modeling framework. While the literature on reduced models
for Cahn-Hilliard is sparse, some recent efforts have targeted this problem [48, 49, 50].

The Cahn-Hilliard phase-field model has been widely recognized as the generic equation modeling the
leading-order dynamics of phase separation driven by chemical potential gradients. It is of vital importance
in, for instance, understanding microstructure evolution during the additive manufacturing of metallic alloys,
which is an important motivation for this work. The Cahn-Hilliard equation is a parabolic equation and
involves first-order time derivatives, and second- and fourth-order spatial derivatives. The interested reader
is referred to [51] for a recent discussion on its basic principles and practical applications.
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(a) t/T = 0.1 (b) t/T = 0.2 (c) t/T = 0.5 (d) t/T = 1

Figure 8: Full-state time snapshots of the concentration field s(x, t) from different initial conditions: (top)
s̄ = 0.1, (bottom) s̄ = 0.3.
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Figure 9: Comparison of the singular value decay of the collected snapshots for global and a set of local
POD basis functions for the Cahn-Hilliard system.
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(a) FOM

(b) Localized OpInf, r =
15;np = 32

t/T = 0.1 t/T = 0.2 t/T = 0.4 t/T = 1

Figure 10: Time snapshots of the concentration field at a test point s̄ = 0.15273 for the FOM and a ROM
constructed with np = 32 snapshot clusters.

Let Ω = [0, 1]2 ⊂ R2 be the spatial domain and [0, T ] ⊂ R the time domain. Consider the Cahn-Hilliard
equation of the form

∂

∂t
s(x, t) = M∇2

(
s3(x, t)− s(x, t)− ℓ∇2s(x, t)

)
, x ∈ Ω; t ∈ [0, T ) (25)

where s(x, t) is the concentration (also ‘phase-field’ or ‘order parameter’) taking the values in [−1, 1]. It is
related to the concentration of a substance concentration at the spatial coordinate x ∈ Ω at time t ∈ [0, T ].
The concentration is normalized such that the regions s = ±1 represent domains that are pure in each of
the phases. The mobility M and the interface parameter ℓ, a measure proportional to the thickness of the
regularized interface, are both assumed to be constant in space and time. We choose M = 1 and ℓ = 10−4 for
the remainder of this section. Periodic boundary conditions are applied to all boundaries. The discretization
is performed with the finite difference method on a uniform grid with a nodal spacing of 2−7 for a total
of n = 16, 384 degrees of freedom in the full model. The conducted numerical experiments focus on phase
separation and coarsening in the time interval t ∈ [0, 0.01].

The Cahn-Hilliard equation considered contains a cubic nonlinear term, i.e., M∇2s3 on the righthand
side of (25). Using operator inference, we thus seek to infer the local reduced model operators of the following
dynamical system:

d

dt
ŝp(t) = Âpŝp(t) + Ĝp (ŝp(t)⊗ ŝp(t)⊗ ŝp(t)) , (26)

where ŝp(t) ∈ Rrp is the local reduced state vector, Âp ∈ Rrp×rp the local operator corresponding to the re-

duced model representation of the linear terms of the Cahn-Hilliard equation, and Ĝp ∈ Rrp×rp(rp+1)(rp+2)/6

the local operator corresponding to the reduced model representation of the cubic nonlinear term. Note that
the Cahn-Hilliard equation (25) contains no quadratic dependencies on the state, nor are there constant

terms. In our postulated polynomial ROM (3) this means that Ĉp = 0 and Ĥp = 0. There is also no

external forcing term, that is B̂p = 0, because of periodicity in the state. Note that the presence of the cubic
term leads to a modified operator inference learning problem (13). In each snapshot cluster p we solve the

17



following linear least-squares problem:(
Âp, Ĝp

)
= argmin

Âp,Ĝp

(∥∥∥ÂpŜp + Ĝp

(
Ŝp ⊙ Ŝp ⊙ Ŝp

)
− ̂̇Sp

∥∥∥2
F

+ λ1,p∥Âp∥2F + λ2,p∥Ĝp∥2F

)
; p = 1, . . . , np.

(27)

The initial condition for (26) is given by a random perturbation about the nominal concentration, s̄. At
every grid point of the underlying discretization a noise value is added independent of one another. The
initial condition is then formulated as s0 = s̄+0.05rand(xi, yi), where the nominal concentration, s̄, is drawn
uniformly from the interval [0.1, 0.4] and rand(xi, yi) is the noise term whose values at grid point (xi, yi) are
distributed uniformly in [−1, 1]. As evidenced by Figure 8, variations in the nominal concentration can give
rise to a broad range of phase separation responses and morphologies in the Cahn-Hilliard system.

In what follows we adopt the strategy introduced in [49] by constructing pseudo-random initial states.
By fixing the random perturbation across our training samples we generate a set of training data which
is reproducible by our ROMs. A training set of 100 trajectories is constructed corresponding to a set of
equidistant points in the parameter domain. By setting the time step size to ∆t = 10−6 and recording
the data every 50 time steps, we obtain 200 state snapshots per high-fidelity simulation. This amounts to
20,000 snapshots used in the learning problem. The learned ROMs are then integrated with a fourth-order
Runge-Kutta scheme (RK45). The test set for this problem consists of an additional 20 trajectories based
on initial conditions drawn randomly from their distribution.

The singular values of the training data set are plotted in Figure 9. The proposed approach leverages the
low-rank structure of the system: the singular values of the local POD bases decay faster than the singular
values of the global basis. However, in comparison to the numerical experiments from the previous subsection,
the Cahn-Hilliard system needs a greater number of snapshot clusters to fully exploit the capabilities of
localized ROMs.

Table 1 tabulates the online runtime of the localized ROM for different retained energy thresholds. The
measurements are wall-clock time obtained from a MATLAB R2020a implementation on a local machine
with a 1.60 GHz Intel Core i5 CPU and 16GB of RAM. The runtimes are averaged over a total of ten runs.
The time marching scheme and configuration are identical for the FOM and the ROM simulations. The
speedup achieved by the proposed approach is about two orders of magnitude when the local reduced basis
dimension is relatively small. As expected, the speedups drop significantly as the ROMs become richer with
an increasing number of basis functions.

Table 1: Online runtimes for the ROMs constructed with the proposed localized operator inference framework
at different values for the locally retained energy. The runtime for the FOM is 61.65 sec.

local basis size rp 10 20 30 40
runtime (sec) 0.35 0.79 2.92 10.81
speedup (×) 175 77.53 20.98 5.67

Figure 10 gives an overview of the localized operator inference ROM prediction performance for the
primary quantity of interest, which is the concentration field s(x, t). The ROM predictions at selected times
agree well with the solutions to the original high-dimensional model at an arbitrary test point. To further
assess the performance of our reduced models, we calculate the autocorrelation of the spatially dependent
concentration field to characterize the evolving microstructure in a statistical sense [50]. Autocorrelation
functions represent a widely used mathematical framework for microstructural characterization and may be
interpreted as the conditional probability that two different points within the microstructure are found to
be in the same phase [52, 53]. Importantly, the invariance of autocorrelations with respect to translations
and rotations of the periodic microstructure make it a good candidate to assess the accuracy of our ROMs.
Figure 11 plots the differences in the autocorrelations of the concentration field at the final simulation time
t = 0.01. As the number of modes in the local training data increases from rp = 6 to rp = 15, the point-wise
error of the autocorrelation of the concentration function drops below 1% throughout the computational
domain. Minimum and maximum of the mean spatial error in the autocorrelations over the training and
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(a) (b)

Figure 11: Point-wise error between the autocorrelations of the true (FOM) and predicted (localized ROM)
concentration field at an arbitrary testing point s = 0.15273 (at final time t = 0.01) using (a) 6 local POD
modes and (b) 15 local POD modes.
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Figure 12: Localized operator inference model prediction error for the Cahn-Hilliard equation for the training
and testing trajectories. The mean spatial error in the autocorrelations is shown over the trajectories.

test are shown in Figure 12. The error in the concentration decreases with the increase in the size of the
POD basis, as expected. This shows that a localized ROM constructed using the proposed localized operator
inference approach is applicable for approximating, in a statistical sense, the leading-order dynamics of phase
separation as governed by the Cahn-Hilliard equation.

5 Conclusions and future directions

Many applications in engineering and science can benefit from the concept of localized reduced-order models.
We have presented the localized operator inference approach, a new learning method for constructing local
reduced-order models from simulation data. Our method differs from existing works in the literature in
that the reduced models are learned in a non-intrusive fashion. This is an important consideration for
enabling model-based reduction of complex dynamical systems. The proposed framework is applicable to
nonlinear static, dynamic, and parametric problems. Like most reduced-order modeling methods, it consists
of two stages. In the offline stage several reduced models are constructed by first clustering a set of training
data into a number of snapshot clusters. The operator inference framework then finds the local reduced
model operators that yield the reduced model that best matches the projected snapshot data in a minimum-
residual sense. In the online phase of the approach, model recommendation is performed via a nearest
neighbor classifier that was trained offline with simulation data. Numerical experiments on two different
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test problems demonstrate the ability of localized operator inference to reduce the dimensions of the learned
models without compromising the accuracy of the method. It is also shown that the proposed approach
can decrease the condition number of the associated least-squares learning problems by several orders of
magnitude.

Future efforts will focus on devising more refined regularization strategies that fully exploit the locality
of the available data. Another interesting avenue is the use of higher-order approximations of the solution
manifold, rather than the usual piecewise linear approximations. Representations beyond linear subspaces
have recently been proposed and, in principle, are applicable to any dynamical system and fully compatible
with the proposed localized non-intrusive reduced-order modeling framework.
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