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The SIGEST paper in this issue, “Goal-Oriented Inference: Approach, Linear The-
ory, and Application to Advection-Diffusion” by Chad Lieberman and Karen Willcox,
is from the SIAM Journal on Scientific Computing.

The topic of this very well written paper is parameter estimation. In the context
of this paper, the parameter estimation is a step in a larger optimal design problem. The
design problem itself seeks to optimize or estimate a small number of output quantities
of interest. The difference in size between the dimension of the parameter space and
the number of quantities of interest opens up the possibility of model reduction, which
can lower the dimension of the parameter space.

This paper is about model reduction by projection. In this approach, one applies
projections on both sides of the model equations, thereby reducing the dimension of
the domain and the range. The classical method of this type is proper orthogonal
decomposition (POD), also known as the Karhunen–Loève expansion.

The inference-for-prediction (IFP) method in this paper constructs the projections
from the quantities of interest in the design optimization problem and attempts to
identify only those parameters which are needed for the optimization. The authors
apply the concepts of controllability and observability from control theory to select
the left and right subspaces and then to design a model-reduction algorithm. The
authors prove an optimality result for the IFP method for linear inverse problems.

The paper concludes with an application to an advection diffusion equation, com-
paring the new method with more conventional approaches. This example illustrates
how one specifies a prediction of an output quantity of interest and applies the theory
in the paper to estimate that quantity of interest. In the example, the diffusivity and
wind velocity are given. The data is a time series of measurements of the solution at
sensor locations. The problem is to recover information on contaminant plumes from
the measurements. Some of the output quantities of interest are time-dependent, for
example, the total contaminant propagating through a part of the boundary. Others
are scalars, for example, the temporal average of the total contaminant in a box within
the domain.

The advantage of a goal-oriented approach is that one can estimate the quantities
of interest without expending the effort one would need to fully solve an inverse prob-
lem. This is an active area of research, to which this paper makes a fine contribution.

The Editors
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Abstract. Inference of model parameters is one step in an engineering process often ending in predic-
tions that support decision in the form of design or control. Incorporation of end goals into
the inference process leads to more efficient goal-oriented algorithms that automatically tar-
get the most relevant parameters for prediction. In the linear setting the control-theoretic
concepts underlying balanced truncation model reduction can be exploited in inference
through a dimensionally optimal subspace regularizer. The inference-for-prediction method
exactly replicates the prediction results of either truncated singular value decomposition,
Tikhonov-regularized, or Gaussian statistical inverse problem formulations independent of
data; it sacrifices accuracy in parameter estimate for online efficiency. The new method
leads to low-dimensional parameterization of the inverse problem enabling solution on
smartphones or laptops in the field.
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1. Introduction. The process of utilizing experimental data to estimate unknown
parameters is central to many important problems in science and engineering. Infer-
ence problems arise in medical imaging [3], geophysics [7], meteorology and oceanog-
raphy [13], heat transfer [1], electromagnetic scattering [11], and electrical impedance
tomography [2], among many other disciplines.

Many inverse problems are ill-posed; the data do not determine a unique solu-
tion. Inference approaches, therefore, rely on the injection of prior information. In
deterministic formulations [9], this prior information is often manifested as a form of
regularization. In Bayesian statistical formulations [17], the prior information is used
to formulate a prior distribution reflecting the belief in probable parameter values. As
a result, the distinction becomes blurred between inferred parameter modes informed
by data and modes influenced largely or wholly by prior information. Without careful
design of prior information, this injection of outside information can overshadow the
information contained in the limited data that are obtained. Although ill-posedness
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will always be an issue to some extent in limited data settings, in this paper we
show that it is possible to partially circumvent the deleterious effects of the use of
regularizers or prior information by incorporating end goals.

While in some cases estimation of unknown parameters is the end goal, there
are many engineering processes where parameter estimation is one step in a multistep
process ending with design. In such scenarios, engineers often define output quantities
of interest to be optimized by the design.

For example, consider the advection and diffusion of a contaminant through an
urban canyon. A one-time release of contaminant propagates through the domain
where sensors affixed to some buildings provide noisy readings of contaminant con-
centration. The inverse problem is to recover the initial contaminant release using
the concentration data. In real-time scenarios, however, recovering the initial release
is secondary to predicting where the contaminant is headed next. Such predictions
are essential in planning evacuations or designing mitigation strategies. Identifying
the initial contaminant release is a means to predicting the path of the contaminant
in the future, beyond the time when it was last measured by the sensors. In this case
predictions of contaminant concentration around a particular building may be the
quantity of interest; if mitigation strategies are possible, then the prediction quantity
of interest is the objective function of the corresponding optimal control problem for
the mitigation plan.

Another important application is carbon capture and storage (CCS), also known
as CO2 sequestration, where the properties of a saline aquifer are to be identified to
determine the safety of storing supercritical carbon dioxide as a method of curbing
anthropogenic effects. One important output quantity of interest is the leakage rate
of carbon dioxide through improperly sealed wells or fault lines. A typical approach is
to perform experiments and collect data to ascertain the subsurface parameters (e.g.,
porosity and permeability), and then to use those estimates in an analysis under a
carbon dioxide injection scenario. Going one step further, one might want to solve
the optimal control problem for a pumping scenario that minimizes the leakage rate
of carbon dioxide. It is the estimate of this quantity of interest that is the ultimate
goal of the inference.

We propose a goal-oriented approach to inference that accounts for the output
quantities of interest. Generally, in an abstract sense, our experimental data are in-
formative about certain modes in the parameter space, and other modes in parameter
space are required to accurately estimate the output quantities of interest.1 Our phi-
losophy is to understand the relationship between these two sets of modes and to
modify our approach to inference based on that information. In the CCS example de-
scribed above, our goal of estimating the leakage rate under a given injection scenario
informs our inference of the subsurface properties. For the contaminant problem, the
requirements for estimating the concentration around a building inform our inference
of the initial condition. The goal-oriented inference method involves identifying pa-
rameter modes that are both informed by experiment and also required for estimating
output quantities of interest. We call it the inference-for-prediction (IFP) method.
In what follows, we refer to the output quantities of interest as predictions, although
predictions need not be outputs of a system but instead could be, for example, the eval-
uation of the objective function in a design optimization or optimal control problem.

1These concepts are rigorous for linear problems, as we demonstrate in this paper. For nonlinear
problems, the theory does not carry through, but we maintain that the general approach and way of
thinking is still advantageous.
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Fig. 1.1 The two separate decompositions of the parameter space based on the experiment (left) and
prediction (right).

The two decompositions of parameter space based on the experimental process
and the prediction process are shown notionally in Figure 1.1. We consider abstractly
the decomposition into experimentally observable and experimentally unobservable
modes on the left side of Figure 1.1. Experimentally observable modes are informed
by the experimental data, while experimentally unobservable modes are not. The
analogous decomposition for prediction is shown on the right side of Figure 1.1. Pre-
diction observable modes are components of the parameter that have influence on the
prediction quantities of interest, while prediction unobservable modes do not.

It is informative to explore the combinations of observable modes from the two
processes. We explicitly identify here three types of parameter modes. Modes in-
formed by experiment and required for prediction are targeted by the IFP method.
Modes that are informed by experiment but not required for prediction represent in-
efficiencies in the experimental data acquisition. Finally, modes that are required for
prediction but are uninformed by experiment lead to uncertainty in the prediction
and may guide future experimentation.

As an illustrative example, consider the inference of an unknown 2π-periodic and
integrable signal f(t) : [−π, π] → R. The signal can be expressed as a Fourier series
f(t) = 1

2a0 +
∑∞

n=1 an cos(nt) + bn sin(nt). Suppose we have a device that can only
measure signal content in a certain frequency range (n−

e , n
+
e ). Other frequencies are

experimentally unobservable; therefore, inference of the signal would require the in-
jection of prior information to set those modal coefficients. The signal f(t) is to be
used to drive a system that responds to inputs over the frequency range (n−

p , n
+
p ).

The response of the system is the prediction output of interest. Frequency content
outside of this range is attenuated by the system and is therefore prediction unob-
servable. Since our goal is to predict the system response to the signal f(t), inferring
components outside of the prediction frequency range corresponds to inefficient ex-
periment. Moreover, our estimate of frequency content within (n−

p , n
+
p ) but outside of

(n−
e , n

+
e ) will be informed only by prior information (and not by data), and therefore

is a major source of uncertainty in our prediction estimate of the system response to
f(t). In this case, we have specified the characteristics of experiment and prediction
in the same orthogonal basis, and therefore the analysis is straightforward. In prac-
tical situations, our proposed method will automatically identify the experiment and
prediction decompositions to obtain accurate predictions with respect to a number of
traditional inverse problem formulations.

There are many advantages to this decompositional way of thinking, including
computational efficiency in the inference step; enabling deployment on lightweight,
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portable devices (e.g., smartphones and laptops) in the field; understanding of the
effects of regularization and prior information on predictions; identification of ineffi-
ciencies in experimental data acquisition to focus efforts on data informative about
modes required for predictions; and understanding of vulnerabilities in predictions.

Model reduction is the act of reducing a high-dimensional system to a lower-
dimensional description while maintaining integrity of the input-output map. Our
approach to goal-oriented inference exploits a compelling connection to balanced trun-
cation model reduction [16]. In balanced truncation one obtains a projection-based
reduced model that balances the controllability and observability of the underlying
transformed system. The control-theoretic concepts underlying balanced truncation
suggest a new form of subspace regularization exploiting the similarity in spatial pat-
terns between permeability and pressure in subsurface identification and control prob-
lems [18]. In the goal-oriented inference context, we present an approach that leads to
a balance between the experiment and prediction observability associated with param-
eter modes. In the linear case, this approach leads to a form of subspace regularization
that is dimensionally optimal in the sense that we infer the fewest number of param-
eters necessary to accurately estimate the predictions required to meet end goals.

This paper is organized as follows. In section 2 we provide background material
on the control-theoretic concepts. We review the principles of and give an algorithm
for balanced truncation model reduction. In section 3 we define experiment and
prediction observability, we delineate the IFP algorithm for the truncated singular
value decomposition inverse problem formulation, and we provide discussion on the
numerical implementation and computational cost associated with the new method.
The theoretical underpinnings of the method are provided in section 4, including
a geometric interpretation and proof of the dimensional optimality of the critical
subspace. In section 5 we extend the approach to Tikhonov-regularized and Gaussian
statistical inverse problems. Section 6 discusses the application of the new method
to a model problem in contaminant identification and presents numerical results that
corroborate the theory. Conclusions are provided in section 7.

2. Background. In this section we provide background material in control-theor-
etic concepts and balanced truncation model reduction that will be the basis for the
development of our goal-oriented inference approach. When developing mathematical
models we often describe systems by state equations where the states are defined to
be physical quantities (e.g., position, velocity, momentum, etc.). When those state
equations are coupled with an output equation, the physically meaningful state vector
is not always the minimum dimension vector that defines the system for the purposes
of predicting the output. Model reduction is the term used to describe the act of
reducing such a system to a lower-dimensional description that maintains integrity in
output predictions, typically over a desired range of inputs to the system.

Balanced truncation is one systematic method for performing model reduction on
a linear time-invariant system. The determination of a reduced state vector depends
on two control-theoretic concepts. Controllability of a state refers to the input energy
required to drive a system to zero from that state. Observability of a state refers
to the output energy associated to that state. Independently, the most controllable
(observable, respectively) modes are the eigenvectors of the controllability (observabil-
ity, respectively) gramian corresponding to larger eigenvalues. The goal of balanced
truncation model reduction is to obtain a reduced state vector composed of modes
that exceed a certain threshold on a joint measure of controllability and observability
known as Hankel singular values.
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Controllability and observability gramians are defined in section 2.1 and their
properties are discussed. In section 2.2 balanced truncation model reduction is de-
scribed in mathematical detail.

Consider the time-invariant discrete-time linear system

xk+1=Axk +Buk, k = 0, 1, . . . ,(2.1)

yk=Cxk, k = 0, 1, . . . ,(2.2)

where xk ∈ R
n is the state at time step k, A ∈ R

n×n, B ∈ R
n×ni , uk ∈ R

ni is the
input at time step k, C ∈ R

no×n, and yk ∈ R
no is the output at time step k. The

system has given initial condition x0. We assume that (2.1) is stable; i.e., the spectral
radius ρ(A) < 1.

2.1. Controllability and Observability. Controllability and observability are two
important properties of the system (2.1)–(2.2) [12]. The information contained within
them is exploited in balanced truncation model reduction, as we describe in section 2.2.

A measure of the controllability Lc(x) of a state x is the minimum input energy
required to drive the system to zero when initialized at x0 = x; i.e.,

Lc(x) = min
uk ∀k

∞∑
k=0

‖uk‖2 s.t. x0 = x, lim
k→∞

xk = 0.

Let P =
∑∞

k=0 A
kBB�(A�)k ∈ R

n×n be the controllability gramian. The system
(2.1)–(2.2) is controllable if P is full rank. Then we may write Lc(x) = x�P−1x.

A measure of the observability Lo(x) of a state x is the total output energy
generated by the unforced (uk = 0 ∀k) system initialized at x0 = x; i.e.,

Lo(x) =

∞∑
k=0

‖yk‖2 =

∞∑
k=0

‖CAkx‖2.

Let Q =
∑∞

k=0(A
�)kC�CAk ∈ R

n×n be the observability gramian. Then the ob-
servability associated with a state x is Lo(x) = x�Qx. The system (2.1)–(2.2) is
observable if Q is full rank.

The controllability and observability gramians are usually computed as solutions
to the Stein equations

−P+APA� = −BB�, −Q+A�QA = −C�C,

respectively.

2.2. Balanced Truncation Model Reduction. A projection-based reduced model
of the system (2.1)–(2.2) is given by

x̂k+1= Âx̂k + B̂uk, k = 0, 1, . . . ,

ŷk= Ĉx̂k, k = 0, 1, . . . ,

where Â = U�AV ∈ R
m×m, B̂ = U�B ∈ R

m×ni , Ĉ = CV ∈ R
no×m, x̂k ∈ R

m is
the reduced state at time step k, and ŷk ∈ R

no is the output of the reduced model at
time step k. The left basis U ∈ R

n×m and right basis V ∈ R
n×m span subspaces of

dimension m�n and satisfy U�V = I.
Balanced truncation model reduction is one method for selecting the left and

right bases [16]. Conceptually, balanced truncation can be understood in two distinct
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steps. The first step is a similarity transformation to describe the state space of
the system (2.1)–(2.2) in a way that balances each coordinate direction’s combined
measure of controllability and observability. In particular, the controllability and
observability gramians of the transformed system are diagonal and equal. The second
step is truncation, retaining only some of the states in the transformed model and
discarding the rest. For example, any coordinate directions having zero combined
measure of controllability and observability can be truncated without affecting the
system’s input-output behavior.

We first identify the similarity transformation. The balanced truncation left and
right bases can be obtained using general matrix factors of the controllability and
observability gramians [4, 15]. For purposes of exposition, we will assume the factors
are square. Let P = SS� and Q = RR�. Consider the similarity transformation
defined by T = Σ−1/2M�R� and T−1 = SNΣ−1/2, where MΣN� is the singular
value decomposition (SVD) of R�S. The transformed system

x̃k+1=TAT−1x̃k +TBuk, k = 0, 1, . . . ,

yk=CT−1x̃k, k = 0, 1, . . . ,

has diagonal and equal controllability and observability gramians,

TPT� = T−TQT−1 = Σ.

The coefficients σ1, σ2, . . . , σn on the diagonal of Σ are known as the Hankel singular
values, which represent a joint measure of the controllability and observability of
the modes in the transformed system. The second step is the truncation of the
transformed state x̃ ∈ R

n to x̂ ∈ R
m. The truncation eliminates the least controllable

and observable modes of the system based on the Hankel singular values.
In practice the balanced truncation reduced model can be obtained by directly

identifying left and right bases U and V by Algorithm 1. Although balanced trunca-
tion is not optimal, there exist bounds on the H∞-norm of the error system related to
the truncated Hankel singular values [16]. There exist algorithms to obtain a balanced
reduced model via approximate computation of the gramians for large-scale systems
[15, 10].

Algorithm 1 Balanced truncation model reduction left and right bases.

1: Compute the first m normalized eigenvectors ψi of S�QS with corresponding
eigenvalues σ2

i ; i.e.,

S�QSψi = σ2
iψi, ‖ψ‖2 = 1, ψ�

i ψj = δij , i = 1, 2, . . . ,m.

2: Compute the first m left eigenvectors φi of R�PR also having eigenvalues σ2
i ;

i.e.,

φi = σ−1
i ψ�

i S
�R, i = 1, 2, . . . ,m.

3: Then define the left and right bases

U = R
[
σ
−1/2
1 φ�

1 · · · σ
−1/2
m φ�

m

]
, V = S

[
σ
−1/2
1 ψ1 · · · σ

−1/2
m ψm

]
.
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3. IFP Method in the Linear Setting. Let μ ∈ R
q be an unknown parameter

defining a system of interest. We assume that q is large; i.e., there are many more
parameters to infer than experiments we can afford to perform or predictions we
wish to make. Let Oe ∈ R

r×q be the linear observation operator representing the
(usually indirect) measurement process mapping the parameter space to the space of
experimental observables of dimension r < q. We write experimental outputs ye =
Oeμ. In many instances it will be appropriate to model sensor error, in which case we
obtain yd = e(ye, ε) for some error model e and a measure of error ε. Our formulation
will utilize the experimental output matrix Oe, but our algorithms will be data-
independent and therefore admit any form of the error model e. For many applications
of interest, Oe will be the composition of a PDE operator and an observation operator.
Likewise, the prediction operator Op ∈ R

s×q is analogous to Oe but instead measures
prediction output quantities of interest in the space of dimension s < r.2 We write
prediction yp = Opμ.

3

A traditional approach to this problem would be to solve the inverse problem for
the parameter μ using the observed data from the experiment. Once a parameter
estimate is obtained, it can be utilized to simulate predictions to obtain yp. The
goal of the IFP method is to obtain the predictions without resolving the unknown
parameter completely. This is achievable in the context of linear experiments and
linear predictions because we can apply linear algebraic tools to understand the joint
contributions to the experiment and prediction outputs of parameter modes. The
IFP method works by automatically identifying a subspace regularizer such that the
resulting modified inverse problem has certain desirable properties. In particular, the
resulting parameter estimate yields the same prediction as the fully resolved parame-
ter estimate and the identified subspace is optimally low-dimensional. In section 3.1
we define experiment and prediction observability and the associated gramians. Sec-
tion 3.2 states our assumptions, gives important definitions, and establishes the IFP
property. We conclude with an algorithm for obtaining a basis for efficient inversion.
Finally, in section 3.3 we discuss the numerical implementation of the algorithm and
analyze the computational complexity.

3.1. Experiment and Prediction Observability. Experiment and prediction ob-
servability extend the concept of observability of linear systems described in section 2.1
to the goal-oriented inference setting.

A measure of the experiment observability of a parameter μ is given by the ex-
perimental output energy associated with it. We define Le(μ) = ‖ye‖2 = ‖Oeμ‖2.
Consequently, the experiment observability gramian He = O�

e Oe can be defined since
Le(μ) = μ

�Heμ. Since the experiment observability gramian is symmetric and pos-
itive semidefinite, it admits the decomposition He = VeLeV

�
e , where Ve ∈ R

q×r is
orthogonal and Le ∈ R

r×r is diagonal with positive entries. The columns of Ve are
eigenvectors of He with corresponding eigenvalues on the diagonal of Le. When we
solve the inverse problem, the pseudoinverse H†

e = VeL
−1
e V�

e and its matrix factor

Ge = VeL
−1/2
e will play an important role.

Let Ve⊥ be an orthogonal basis whose range is the orthogonal complement to the
range of Ve. Then any parameter μ can be decomposed as μ = VeV

�
e μ+Ve⊥V

�
e⊥μ.

2The assumption s < r is not necessary, but it does simplify the exposition. For almost all of
the following, one could generalize by replacing s with min(r, s). It is essential only that r � q and
s � q.

3Note that the physics underlying the PDE operators (if present) in Oe and Op need not be the
same. Typically, experimental conditions will differ from operational conditions, and our method
admits that naturally.
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The first component influences the data ye observed for parameter μ, while the second
component produces exactly zero experimental output. When we utilize data ye

to infer the parameter μ, the second component is determined by injecting outside
information through regularization and prior distribution in the deterministic and
statistical approaches, respectively.

A measure of the prediction observability of a parameter μ is given by the pre-
diction output energy associated with it. Define Lp(μ) = ‖yp‖2 = ‖Opμ‖2. The
prediction observability gramian Hp = O�

p Op then follows since Lp(μ) = μ�Hpμ.
It is also symmetric and positive semidefinite and therefore has a decomposition
Hp = VpLpV

�
p analogous to He above. Similarly, any parameter μ can be de-

composed as μ = VpV
�
p μ + Vp⊥V�

p⊥μ. The first component will pass through to
predictions yp and is therefore necessary to accurately estimate; on the other hand,
the second component is in the kernel of Op and will therefore not contribute to yp.
Thus, the second component need not be accurately estimated, or even estimated at
all, to achieve accurate estimates of yp.

3.2. IFP Algorithm. The IFP method will lead to a well-chosen basis for infer-
ence spanning the low-dimensional subspace of the parameter space that will result in
replication of the predictions obtained by a traditional approach to the linear inverse
problem. In this section, we will treat the truncated SVD (TSVD) approach to the
linear inverse problem, and we will extend the method to the Tikhonov-regularized
inverse problem and Gaussian statistical inverse problem in section 5.

We begin with a TSVD approach to the linear inverse problem. The inverse
problem uses data yd and knowledge of Oe to estimate the unknown parameter μ.
In many applications, however, the inverse problem is ill-posed due to the vast null
space of Oe. This difficulty is usually overcome by regularization. In this section, we
consider a form of subspace regularization by seeking a solution only in the row space
of Oe. In section 5.1, we will consider regularization in the form of a penalty in the
objective function.

Let PSV� = Oe be the SVD with P ∈ R
r×r, S ∈ R

r×q, and V ∈ R
q×q. Let

Ve ∈ R
q×r and V⊥

e ∈ R
q×(q−r) span the row space and null space of Oe, respectively,

such that V = [Ve,V
⊥
e ]. Let Ve ⊂ R

q be the r-dimensional subspace spanned by
the columns of Ve. The TSVD approach searches for μ ∈ Ve that reproduces the
observed data with minimal error in �2-norm. That is,

(3.1) μTSVD = arg min
µ∈Ve

1

2
‖yd −Oeμ‖22.

The first-order optimality condition for (3.1) is obtained by imposing the con-
straint and setting the first derivative of the objective function to zero; i.e.,

(3.2) V�
e O

�
e OeVea = V�

e O
�
e yd,

where a ∈ R
r is the vector of modal coefficients in the expansion xTSVD = Vea.

Substituting the reduced eigendecomposition of OT
e Oe = He and noting that

VT
e Ve = I, (3.2) reduces to a = L−1

e V�
e O

�
e yd. Therefore, the TSVD parameter

estimate is given by

μTSVD = VeL
−1
e V�

e O
�
e yd.

In the traditional two-step approach, this estimate of μ would then be utilized in
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simulation to predict output quantities of interest:

yTSVD
p = Opμ

TSVD.

It is precisely these prediction outputs that the IFP method will reproduce.
The following derivation of the IFP basis resembles, and in fact was inspired by,

balanced truncation model reduction [16]. It is not necessary, however, for there to
exist an underlying state space system to use the IFP method; it is sufficient to have
models only for the experiment and prediction operators Oe and Op.

Before stating the basis generation algorithm, we first define the key property of
the IFP method.

Property 1. A parameter estimate μ∗ has the IFP property if it results in
prediction equal to that of the prediction resulting from the TSVD parameter estimate;
i.e., yp(μ

∗) = Opμ
∗ = yTSVD

p .
Our goal is to find an s-dimensional subspace W ⊂ R

q such that the IFP solution

(3.3) μIFP = arg min
µ∈W

1

2
‖yd −Oeμ‖22

has Property 1. For now, we assume that such a subspace exists and is spanned by
the columns of the matrix W ∈ R

q×s. Then we may write

(3.4) μIFP = W(W�HeW)−1W�O�
e yd.

We will also utilize an assumption regarding the geometry of the experiment and
prediction observable subspaces.

Assumption 1. We will assume throughout that rank(V�
p Ve) = s.

Assumption 1 is not a limiting assumption; the exposition is cleaner since we
know that the IFP subspace will have dimension s if it holds. If rank(V�

p Ve) < s, the

true rank will be exposed implicitly in our algorithm. If rank(V�
p Ve) = 0, then our

algorithm breaks down appropriately, indicating that none of the experiments provide
information about any of the required predictions.

We now define the IFP subspace.
Definition 3.1. An IFP subspace is an s-dimensional subspace W such that the

solution μIFP to (3.3) has Property 1 independent of the data yd.
The definition of an IFP basis follows naturally.
Definition 3.2. Any basis W ∈ R

q×s is an IFP basis if its columns span an
IFP subspace W.

We now present an algorithm for obtaining an IFP basis W (we prove it in
section 4.1) that simultaneously diagonalizes the projected experiment and prediction
observability gramians. Although the simultaneous diagonalization is not necessary
to replicate the TSVD predictions (any basis for W will do), it does provide a measure
by which further reduction can be performed if desired.

The singular values on the diagonal of Σ are analogous to the Hankel singular
values of balanced truncation. They represent a joint measure of the experiment
and prediction observability. While Algorithm 2 identifies a low-dimensional basis
for the IFP subspace, it is possible to truncate further. In this basis, eliminating
columns of W from the right is analogous to removing the least experiment and
prediction observable modes according to the joint measure reflected by the singular
values.
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Algorithm 2 IFP basis generation for TSVD approach.

1: Define Ge = VeL
−1/2
e .

2: Compute the reduced eigendecomposition ΨΣ2Ψ� of G�
e O

�
p OpGe.

3: Define W = GeΨΣ−1/2.

3.3. IFP Implementation and Computational Complexity. Algorithm 2 has
two major computational steps. In step 1 we require the eigendecomposition of the
experiment observability gramian He = O�

e Oe, which has rank r. Step 2 involves an
eigendecomposition of a matrix of rank s.

For step 1, efficient implementation should include a code to perform the matrix-
vector product Hev as efficiently as possible, both in terms of storage and operation
cost. Oftentimes, particularly when the governing equations are given by PDEs, this
implies a matrix-free implementation. For problems of interest, the action Hev is one
forward and one adjoint solution starting from initial condition v [5]. Let α(n) be
the cost of one time step of the PDE (depending on the mesh DOFs n) and let Ke

be the number of time steps until the last data are collected. Then the forward and
adjoint solutions cost 2α(n)Ke. Since the experiment observability gramian has rank
r, an iterative eigenvalue solver like Lanczos iteration will require at least 2rα(n)Ke

to obtain the eigendecomposition, but it may not exceed this cost by much if the
eigenvalues are well separated [8]. Note here that r is independent of n and that
α(n) ∼ n if appropriate preconditioners are used. If all operations are performed
iteratively, the storage requirements should not exceed a small constant number of
parameter vectors and therefore scale linearly with q. However, we do assume here
that we store the r eigenvalues and eigenvectors for a total cost of (q + 1)r = qr + r.

The computation in step 2 contains two parts. First, the implementation should
include a matrix-free code for computing Hpv = O�

p Opv. Second, a rank s eigende-
composition must be computed. The code for the action of the prediction observability
gramian on a vector Hpv will also manifest in forward and adjoint solves, although
the final time of the simulation Kp > Ke. Thus, the cost is approximately 2α(n)Kp

for each matrix-vector product. This computation is a part of the code that com-

putes the matrix-vector product G�
e O

�
p OpGev = L

−1/2
e V�

e HpVeLev utilized by the
eigenvalue solver. Each such product requires in order (from right to left) r scalar
products, nr scalar products, r q-vector sums, 2α(n)Kp for the action of Hp, r q-
vector inner products, and finally another r scalar products. That is a total cost of
2(4q + 2)rα(n)Kp for each matrix-vector product G�

e O
�
p OpGev. Since this matrix

has rank s, we can expect approximately s such iterations, giving a total cost for
step 2 of approximately 2(4q + 2)rsα(n)Kp. There is negligible additional storage
required at this step since the storage of the eigenvectors Ve will dominate. We
store the resulting s eigenvalues and r-dimensional eigenvectors for a storage cost of
(r + 1)s.

If we combine the cost of the first two steps and then account for the final ma-
trix multiplication to obtain W, we have a total operation cost of approximately
2rα(n)Ke + 2(4q + 2)rsα(n)Kp + qrs2 and total storage cost of approximately
(q+1)r+(r+1)s+ qs. While the IFP method may be more computationally expen-
sive than traditional inference procedures for the solution of one-off inverse problems,
the benefits of the IFP method are threefold. First, if data are collected repeatedly
under the same experimental observation operator, then the cost of determining the
IFP basis can be amortized over the experiments. Second, the IFP basis encodes im-
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portant information about the process relating inference and prediction, in particular
through an analysis of the range of the IFP basis as it compares to the ranges of the
gramians of the experiment and prediction processes. The study of this relationship
could play a role in determining the effects of regularization and in designing future
experiments. Last, and perhaps most importantly, since the IFP method has data-
independent theory, it is feasible to move all of this computation offline and utilize
only the resulting basis in an online deployment. This offline-online decomposition of
cost can make the IFP approach efficient for inverse problem solutions on lightweight,
portable devices in the field.

4. IFP Linear Theory. In this section we develop the relevant theory for the
IFP method in linear inverse problems. We first prove that the basis generated by
Algorithm 2 leads to Property 1. That is, we can solve a much lower-dimensional
inference problem for the unknown parameter without losing accuracy in the pre-
diction quantities of interest. We then give a geometric interpretation of the IFP
method in this setting. In particular, the IFP solution is an oblique projection of
the parameter estimate based on the TSVD approach onto the appropriate subspace
such that observabilities of the experiment and prediction are balanced. Finally, the
section is concluded with a proof of dimensional optimality, showing that there is no
subspace of dimension less than s that makes the solution of (3.3) have Property 1.
Therefore, the proposed approach is optimal in the sense of online computational
cost and appropriately balanced between the experiment information and prediction
requirements.

4.1. Prediction Exactness. We first show that the basis generated by Algo-
rithm 2 defines an IFP subspace, i.e., that the solution to (3.3) has Property 1.

Theorem 4.1. Algorithm 2 leads to a basis W whose columns span an IFP
subspace. Therefore, the solution μIFP to (3.3) with W = range(W) has Property 1.

Proof. Let U = O�
p OpGeΨΣ−3/2 and note that the columns of U are a basis

for the row space of Op. Thus, any two parameter estimates μ1 and μ2 satisfying
U�(μ1 − μ2) = 0 will have the same prediction Opμ1 = Opμ2. We will now show
U�(μIFP − μTSVD) = 0. Substituting the optimality conditions for the TSVD and
IFP optimization problems, we find

(4.1) U�(μIFP − μTSVD) = U�(W(W�HeW)−1W�O�
e −VeL

−1
e V�

e O
�
e )yd.

By construction, we have

U�W = Σ−3/2Ψ�G�
e O

�
p OpGeΨΣ−1/2 = Σ−3/2Σ2Σ−1/2 = I,

where we have used the orthonormality of Ψ and the eigendecomposition from Algo-
rithm 2. Furthermore, the basis W satisfies the relation

W�HeW=Σ−1/2Ψ�G�
e VeLeV

�
e GeΨΣ−1/2,

=Σ−1/2Ψ�L−1/2
e V�

e VeLeV
�
e VeL

−1/2
e ΨΣ−1/2

= Σ−1/2Ψ�ΨΣ−1/2 = Σ−1.

Using these facts, (4.1) reduces to

U�(μIFP − μTSVD) = (ΣW�O�
e −U�VeL

−1
e V�

e O
�
e )yd.

We now have ΣW�O�
e = Σ1/2Ψ�G�

e O
�
e and

U�VeL
−1
e V�

e O
�
e = Σ−3/2Ψ�G�

e O
�
p OpGeG

�
e O

�
e = Σ1/2Ψ�G�

e O
�
e .
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This demonstrates thatU�(μIFP−μTSVD) = (Σ1/2Ψ�G�
e O

�
e −Σ1/2Ψ�G�

e O
�
e )yd =

0 and therefore proves that yIFP
p = yTSVD

p for all data yd.
Note that Theorem 4.1 holds irrespective of data yd. The IFP method inherits

the sensitivity to noise of the TSVD approach.

4.2. Geometric Interpretation. Of particular interest is the geometry of the
approach. The solution μIFP is obtained as the oblique projection of μTSVD based on
the projector Π = GeΨΨ�G�

e He. That is to say, μIFP = ΠμTSVD independent of
the data. We show first that Π is an oblique projector.

Theorem 4.2. The matrix Π = GeΨΨ�G�
e He is an oblique projector.

Proof. We first show that Π is a projector, and then we establish that its range
and null space are not orthogonal complements. We have

Π2 = GeΨΨ�G�
e HeGeΨΨ�G�

e He = GeΨΨ�ΨΨ�G�
e He = GeΨΨ�G�

e He = Π.

Since Π2 = Π, Π is a projector. An orthogonal projector has orthogonal range and
null spaces. Any projector that is not an orthogonal projector is an oblique projector.
Therefore, it suffices for us to obtain a vector v ∈ R

q such that (Πv)�(v −Πv) 	= 0
to show that Π is an oblique projector since Πv ∈ range(Π) and v −Πv ∈ null(Π).

We assume that Le 	= I in general; if it is, then Π is an orthogonal projector. Let

z ∈ R
r be chosen such that Ψ�z = 0 but thatΨ�Lez 	= 0. Then define v = VeL

1/2
e z.

Then if we write out the expression above, we find

(4.2) (Πv)�(v −Πv) = v�VeΛV�
e v − v�VeΛΛ�V�

e v,

where Λ = L
1/2
e ΨΨ�L−1/2

e . Based on our choice of v above, we find that the first
term on the right-hand side vanishes; i.e.,

v�VeΛV�
e v = z�LeΨΨ�z = 0.

The second term on the right-hand side of (4.2) can be rewritten as ‖Λ�V�
e v‖2 =

‖L−1/2
e ΨΨ�Lez‖2 ≥ 0. Since we chose z such that Ψ�Lez 	= 0, the second term is

positive. This implies that we have found a v such that (Πv)�(v − Πv) 	= 0, and
therefore Π is an oblique projector.

Theorem 4.3. The parameter estimate μIFP obtained using the IFP method is
the oblique projection under Π of the TSVD solution μTSVD.

Proof. Using the basis W obtained by Algorithm 2 the IFP solution is computed
as

μIFP = W(W�HeW)−1W�O�
e yd.

Since the TSVD solution obtained always reproduces the data exactly (even under
noisy data conditions), we can write yd = Oeμ

TSVD. Therefore,

μIFP = W(W�HeW)−1W�Heμ
TSVD.

Recalling that W�HeW = Σ−1 and that W = GeΨΣ−1/2, we have

μIFP = GeΨΨ�G�
e Heμ

TSVD = ΠμTSVD.
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4.3. Dimensional Optimality of the IFP Subspace. It is natural to ask whether
the IFP subspace of dimension s is the subspace of minimum dimension such that
the solution of (3.3) has Property 1. We now show that there does not exist an
s̃-dimensional subspace W̃ for s̃ < s such that the solution of (3.3) has Property 1.

Theorem 4.4. The IFP subspace W is the subspace of minimum dimension such
that the solution to (3.3) has Property 1.

Proof. In view of Assumption 1, the predictable component of the TSVD solution
is obtained from the data by the operation

μTSVD
p = VpV

�
p μ

TSVD = VpV
�
p VeL

−1
e V�

e O
�
e yd,

where the matrix VpV
�
p VeL

−1
e V�

e O
�
e transforming data yd to μTSVD

p has rank s.

Let s̃ < s and let W̃ ∈ R
q×s̃ be a basis for any s̃-dimensional subspace W̃ . Based

on the IFP formulation the matrix from data yd to predictable component of the
IFP estimate μIFP

p = VpV
�
p μ

IFP is VpV
�
p W̃(W̃�HeW̃)−1W̃�O�

e . In order for

μIFP
p = μTSVD

p for arbitrary yd it must be the case that VpV
�
p VeL

−1
e V�

e O
�
e =

VpV
�
p W̃(W̃�HeW̃)−1W̃�O�

e . However, we know that the matrix on the left has
rank s and the matrix on the right has rank s̃ 	= s, establishing a contradiction.
Therefore, a basis permitting Property 1 must have dimension at least s. Thus, an
IFP subspace, which has dimension s, is dimensionally optimal.

5. Extensions of the IFP Method. In the developments thus far we have con-
sidered only inverse problems solved by the TSVD approach, effectively a subspace
regularized deterministic optimization problem. The IFP method was developed in
analogy to the TSVD approach. We showed in the previous section that the IFP
method has the desired properties with respect to the TSVD approach. We now
extend the IFP approach to Tikhonov-regularized inverse problems and Gaussian sta-
tistical inverse problems in this section. It is shown that only a small modification
to the IFP method (i.e., a different choice of basis) above is necessary to apply the
goal-oriented approach to these cases, and the aforementioned theory and associated
properties follow.

5.1. Tikhonov-Regularized Inverse Problem. Another method for regularizing
ill-posed inverse problems is adding a penalty term to the objective function [9]. The
idea is to select the parameter that most closely matches the experimental data and
is minimum under some prescribed norm. The main effect is a modification of the
experiment observability gramian in the algorithm.

A Tikhonov-regularized inverse problem [9] has the form

(5.1) μTR = arg min
µ∈Rq

1

2
‖yd −Oeμ‖22 +

1

2
‖Rμ‖22,

where we assume the regularization parameter weighting the two terms has been
incorporated into the regularization matrixR. For these formulations, the experiment
observability gramian becomes O�

e Oe +R�R, where R�R is assumed to fill at least
the null space of O�

e Oe, making the problem (5.1) well-posed.
The optimality condition for the Tikhonov-regularized inverse problem (5.1) is

given by

(O�
e Oe +R�R)μTR = O�

e yd,
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where we assume that R is chosen such that O�
e Oe+R�R has rank q and is positive

definite. The solution of (5.1) is then given by

μTR = (O�
e Oe +R�R)−1O�

e yd,

and the associated prediction is

yTR
p = Opμ

TR.

We will now show that we can modify the IFP method of section 3.2 for the inverse
problem (5.1) to once again replicate the predictions without inverting for all of the
parametric modes. The key here is a modification to the experiment observability
gramian. In particular, we have He = O�

e Oe +R�R. Given an IFP subspace W , we
obtain the IFP solution

(5.2) μIFP = arg min
µ∈W

1

2
‖yd −Oeμ‖22 +

1

2
‖Rμ‖22.

However, the IFP basis W is now obtained by Algorithm 3.

Algorithm 3 IFP basis generation for Tikhonov-regularized approach.

1: DefineGe=VeL
−1/2
e , whereVeLeV

�
e is the eigendecomposition ofO�

e Oe+R�R.
2: Compute the reduced eigendecomposition ΨΣ2Ψ� of G�

e O
�
p OpGe.

3: Define W = GeΨΣ−1/2.

The eigendecomposition in step 1 of Algorithm 3 will lead to square eigenvector
matrices Ve ∈ R

n×n since He is full rank by design of R, which increases both the
operation and storage cost of the algorithm. It will be necessary to obtain n eigenvec-
tors to maintain prediction exactness, and this cost could be prohibitive. Otherwise,
one may choose to truncate the eigendecomposition based on the decay of the eigen-
values and obtain an approximation to our method. It should be mentioned, however,
that since R is specified, the cost of each matrix-vector product Hev should not be
much greater than the cost for the unregularized experiment observability gramian
in the TSVD approach in section 3.2. So although there are a total of n (instead of
r) eigenvectors to compute, the cost of obtaining each one is still about the same. It
may also be possible to obtain the eigendecomposition more efficiently by leveraging
the symmetry of the two matrices O�

e Oe and R�R by providing an estimate of the
eigenvalues based on the eigenvalues of O�

e Oe and R�R separately [14].
Theorem 5.1. The predictions yIFP

p arising from the IFP solution (see (3.4))

μIFP of (5.2) with basis W defined by Algorithm 3 are identical to the Tikhonov-
regularized predictions yTR

p .
Proof. The proof is exactly the same as the proof of Theorem 4.1. Algorithms 2

and 3 work with the eigendecomposition of He, which has been suitably redefined for
the Tikhonov-regularized inverse problem here.

The difference between the IFP method for the TSVD approach and the IFP
method for the Tikhonov-regularized approach is in the construction of the basis. By
introducing the regularization in the form of a penalty in the Tikhonov-regularized
formulation, the experiment observability gramian is modified. In particular, for
general R, the experiment observability gramian becomes full rank and biases the
important modes of the experimental process away from those determined from the
data acquisition process alone (as is the case in the TSVD approach).
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5.2. Linear Gaussian Statistical Inverse Problem. One way to account for un-
certainty in prior knowledge and uncertainty in sensor measurements is through a
statistical formulation of the inverse problem. In this section, we demonstrate how
the IFP methodology can be extended to the statistical setting using a Bayesian ap-
proach with a Gaussian prior and Gaussian likelihood. The solution to the statistical
inverse problem is a random variable and therefore has a distribution, which in this
case is also Gaussian due to the linearity. That distribution over the parameter is then
propagated through to the prediction, resulting in a distribution over predictions that
we refer to as the posterior predictive. Instead of finding a single estimate of the
predictions, we will determine a mean and covariance estimate. The mean estimate
is obtained by the IFP method for a specific Tikhonov-regularized inverse problem;
i.e., the procedure discussed in section 5.1 is all that is required. We show that
the covariance estimate can be obtained at minimal additional cost through matrix
multiplications involving the IFP basis W and singular values Σ.

Let μ ∼ N (0,Γ0) be the multivariate Gaussian random variable with mean 0
and covariance Γ0 representing our prior knowledge of the unknown parameter.4

We assume that the measurements we make are corrupted by independent additive
Gaussian errors ε = yd −Oeμ ∼ N (0, σ2I) with zero mean and variance σ2.

Given that the map from parameters to experimental outputs is linear, by Bayes’s
rule, we write the posterior estimate of the parameter

μ|yd ∼ N (μπ,Γπ),

where

μπ = σ−2(Γ−1
0 + σ−2O�

e Oe)
−1O�

e yd,(5.3)

Γπ = (Γ−1
0 + σ−2O�

e Oe)
−1.

Recall, however, that we are interested only in the statistics of the prediction
arising from simulations utilizing this parameter. That is, the posterior predictive

yp|yd ∼ N (Opμπ,OpΓπO
�
p ).

It is this posterior predictive distribution yp|yd that will be replicated by the IFP
method.

We will now show that the IFP approach can obtain the posterior predictive. First
note that the posterior predictive mean is obtained as the solution to a Tikhonov-
regularized inverse problem.

Theorem 5.2. The posterior predictive mean Opμπ is obtained by solving (5.2)
with W generated by Algorithm 3, where R is chosen such that R�R = σ2Γ−1

0 .
Proof. We first rewrite the Tikhonov-regularized inverse problem (5.1) to account

for the sensor error and prior knowledge; i.e., we search for the parameter

μ∗ = arg min
µ∈Rq

1

2
‖yd −Oeμ‖22 +

1

2
σ2μ�Γ−1

0 μ

= arg min
µ∈Rq

1

2σ2
‖yd −Oeμ‖22 +

1

2
μ�Γ−1

0 μ.(5.4)

4The method readily admits priors with nonzero mean. Both the traditional approach and IFP
method would then target the deviation from the mean; the covariance remains unchanged.



508 CHAD LIEBERMAN AND KAREN WILLCOX

We now show that this is precisely the posterior mean. The first-order optimality
condition of (5.4) is given by

(Γ−1
0 + σ−2O�

e Oe)μ
∗ = σ−2O�

e yd,

whose solution is μ∗ = σ−2(Γ−1
0 + σ−2O�

e Oe)
−1O�

e yd. This is equal to μπ given
in (5.3). The remainder of the proof is completely analogous to that of Theorem
5.1.

The following theorem states that the posterior predictive covariance can be recov-
ered by a matrix multiplication involving the IFP basis W and the diagonal matrix of
singular values Σ already computed in the posterior predictive mean obtained above.

Theorem 5.3. The posterior predictive covariance can be obtained as a matrix
multiplication involving the IFP basis W and singular values Σ from Algorithm 3
since

OpΓπO
�
p = OpWΣW�O�

p .

Proof. The posterior predictive covariance is given by

(5.5) OpΓπO
�
p = Op(Γ

−1
0 + σ−2O�

e Oe)
−1O�

p .

Recall that He = Γ−1
0 + σ−2O�

e Oe is full rank; therefore, H−1
e = VeL

−1
e V�

e and
VeL

−1
e V�

e = GeG
�
e . Substituting into (5.5), we find

(5.6) OpΓπO
�
p = OpGeG

�
e O

�
p .

Since range(Ψ)⊥ ⊂ null(OpGe) and (I − ΨΨ�) is the orthogonal projector onto

range(Ψ)⊥, we have OpGe(I − ΨΨ�) = 0 and therefore OpGe = OpGeΨΨ�.
Substituting into (5.6), we find

OpΓπO
�
p = OpGeΨΨ�G�

e O
�
p .

Inserting the identity Σ−1/2ΣΣ−1/2 = I, we obtain

OpΓπO
�
p = OpGeΨΣ−1/2ΣΣ−1/2Ψ�G�

e O
�
p = OpWΣW�O�

p .

In the next section, we will apply the IFP method to a two-dimensional (2-D)
advection-diffusion model problem simulating contaminant transport.

6. Application to 2-D Advection Diffusion. Consider a contaminant inversion
and prediction problem modeled by advection diffusion in two dimensions. A one-
time contaminant release advects and diffuses throughout the domain. A handful of
sensors measuring concentration of the contaminant give localized readings at discrete
times. We wish to predict output quantities of interest depending on the contaminant
concentration in the domain at later times. In section 6.1 we provide details about
the problem description. In section 6.2 we present the numerical results corroborating
the theory developed above.

6.1. Problem Description. Let z = (z1, z2) be the spatial coordinates of a 2-D
rectangular domain Ω = {(z1, z2) | 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 0.4}. Denote by ∂Ω the
boundary of that domain. Let c(z, t) : Ω×R+ → R+ be the contaminant concentration
at z and time t, where R+ = [0,∞). We prescribe ambient wind velocity u = (1.5, 0.4)
constant throughout the domain. Let the diffusivity κ = 0.02 also be constant. Given
initial condition c0(z) = c(z, 0), the contaminant evolves in time according to the
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Fig. 6.1 The domain and the eight sensor center locations.

advection-diffusion equation

∂c

∂t
=−κ∇2c+ u · ∇c, z ∈ Ω, t > 0,(6.1)

∇c · n=0, z ∈ ∂Ω, t > 0,(6.2)

where ∇ = ( ∂
∂z1

, ∂
∂z2

) and n denotes the outward-pointing unit normal on each of the

four segments of ∂Ω.
The experimental outputs ye(t) = (ye1(t), ye2 (t), . . . , yens

(t)) at time t are given
by localized integrals of the contaminant concentration, i.e.,

(6.3) yei(t) =

∫
Ω

c(z, t) exp

{
− 1

2σ2
e

‖z− zi‖2
}
dz, i = 1, 2, . . . , ns,

where zi is the location of the ith sensor, σe = 0.01 is a measure of the sensing radius
for all sensors, ‖ · ‖ represents the Euclidean norm in R

2, and ns is the number of
sensors distributed in the domain. Contaminant concentration readings are available
only at discrete times t = t0, t1, . . . , tnr , where nr is the number of readings. In what
follows, we will denote the concatenation of experimental outputs as

(6.4) ye =
[
y�
e (t0) y�

e (t1) · · · y�
e (tnr )

]�
.

Then ye ∈ R
r, where r = nsnr. In our numerical experiments, we use eight sensors.

The domain and sensor locations are shown in Figure 6.1. The sensors are placed in
the domain with knowledge of the synthetic initial contaminant concentration but are
not chosen with consideration for any of the outputs of interest. Both the IFP and
traditional approaches utilize the same sensor configuration. We make measurements
at time instants t = Δt, 2Δt, . . . , 30Δt, where Δt = 5× 10−3.

For the numerical experiments we compare prediction outputs from the three
traditional methods to their respective IFP implementations. We define three time-
dependent prediction outputs of interest and two scalar prediction outputs.

Let ∂Ωr = {(z1, z2) | z1 = 1, 0< z2 < 0.4} denote the right boundary of the do-
main. One prediction output quantity of interest is the total contaminant propagating
outward through this boundary as a function of time in the interval 60Δt ≤ t ≤ 70Δt,
i.e.,

yp0(t) =

∫
∂Ωr

c(z, t)u · nr dz2, 60Δt ≤ t ≤ 70Δt,

where nr = (1, 0) is the outward-pointing unit normal for the right boundary.
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Table 6.1 Standard deviations and center locations for the five Gaussian plumes summed to form the
initial condition (6.5) used to generate the synthetic data for the numerical experiments.
The initial condition is pictured in Figure 6.2.

i 1 2 3 4 5

αi 0.07 0.05 0.07 0.05 0.05
z1i 0.20 0.25 0.35 0.45 0.55
z2i 0.15 0.15 0.20 0.20 0.12

Fig. 6.2 The initial contaminant concentration c0(z) used to generate synthetic data for the numer-
ical experiments.

We define a second prediction output of interest that is the total contaminant
contained within a box on the interior of the domain. Let Ω1 = {(z1, z2) | 0.6023 ≤
z1 ≤ 0.6932, 0.2000 ≤ z2 ≤ 0.2909} and define

yp1(t) =

∫
Ω1

c(z, t)dz1 dz2, 25Δt ≤ t ≤ 50Δt.

For the demonstration of the IFP methodology in the statistical setting, we will
use two scalar prediction output quantities of interest. Let Ω2 = {(z1, z2) | 0.6023 ≤
z1 ≤ 0.6932, 0.1000 ≤ z2 ≤ 0.1909}; see Figure 6.1. Define

yp2(t) =

∫
Ω2

c(z, t)dz1 dz2, 25Δt ≤ t ≤ 50Δt.

Our third and fourth prediction outputs of interest are the time-integrated quantities

yp3 =

∫ 50Δt

t=25Δt

yp1(t) dt and yp4 =

∫ 50Δt

t=25Δt

yp2(t) dt.

The IFP method utilizes the experimental data to infer those components of
the parameter that are relevant for predicting the output quantities of interest. Our
numerical experiments generate synthetic data by prescribing an initial condition that
is a sum of Gaussian plumes, i.e.,

(6.5) c0(z) =

5∑
i=1

1

αi

√
2π

exp

{
− 1

2α2
i

‖z− zi‖2
}
,

where the standard deviations αi and centers zi, i = 1, 2, . . . , 5, are given in Table 6.1.

The initial condition is pictured in Figure 6.2. For reference we present four
snapshots of the contaminant concentration in the domain at times t = 10Δt, 30Δt,
50Δt, 70Δt in Figure 6.3. The synthetic data are corrupted by noise for our exper-
iments by adding random errors distributed normally with zero mean and variance
σ2 = 0.01.

The goal of our IFP method is not to obtain the true output of interest based
on the true parameter but rather to match the prediction obtained by employing any
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Fig. 6.3 The evolution of the contaminant whose initial concentration is shown in Figure 6.2 at
time steps (a) t = 10Δt, (b) t = 30Δt, (c) t = 50Δt, and (d) t = 70Δt.

of the traditional inference formulations discussed above. In other words, we are not
proposing to improve accuracy of inference but rather to exploit final goals to make
existing inference methods more efficient online and more transparent with respect to
injected information.

For numerical simulation we discretize the continuous formulation (6.1)–(6.2) in
space and time. We discretize in space by the finite element method (FEM) using a
regular simplicial mesh with 44 and 88 elements each on the short and long boundary
edges, respectively. The mesh has 7744 elements and 4005 nodes. We use a linear
nodal basis to approximate the numerical solution. The numerical instability due
to the advection term is treated by a streamline upwind Petrov–Galerkin (SUPG)
correction [6]. The semidiscrete equation is time-stepped by Crank–Nicolson, leading
to a system of the form (2.1) with uk = 0 ∀k.

The integral computations for calculating the experimental outputs and the pre-
diction output are also approximated by the discrete solution. For the experimental
outputs, the integral is computed using a mass-matrix-weighted inner product be-
tween the rapidly decaying Gaussian sensor in the integrand of (6.3) and the solution
vector xk at time step k. The prediction output quantity of interest is estimated by
using a midpoint rule in time, and the linear nodal basis leads to a midpoint integra-
tion rule in space as well. In both experiment and prediction, the outputs are linear
functions of the initial condition. For example, define Ce such that the experimental
outputs (6.4) are given by

ye(kΔt) = Cexk, k = 1, 2, . . . , 30.

Let μ = x0; then ye = Oeμ, whereOe =
[
(CeA)� (CeA

2)� · · · (CeA
30)�

]�
.

Similarly, defineCp0 such that yp0(kΔt) = Cp0xk for k = 60, . . . , 70; then yp0 = Opμ,

where Op =
[
(Cp0A

60)� (Cp0A
61)� · · · (Cp0A

70)�
]�

. For the other outputs
of interest, we need only redefine Op appropriately.

6.2. Results for Numerical Experiments. In this section we present results for
the 2-D advection-diffusion application described in the preceding section. We will
demonstrate the IFP methodology in each of the three inverse problem formulations
described above: TSVD, Tikhonov-regularized, and Gaussian statistical. All of the
problems are implemented in MATLAB and utilize the built-in LAPACK eigenvalue
solver.
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Fig. 6.4 The first four modes (a)–(d) of the IFP basis W for the TSVD approach.

6.2.1. TSVD Approach. The IFP method was applied in the context of the
TSVD approach to the initial condition problem described above. In this case, we
focus on the time-dependent output yp0(t). Similar results are obtained for all of the
outputs.

Algorithm 2 is implemented to obtain the IFP basis W ∈ R
q×s, whose first four

modes are plotted in Figure 6.4. The high frequency characteristics are inherited
from the eigenmodes Ve. For this problem, there are 240 experimental outputs (eight
concentration sensors over 30 time steps) and there are 11 prediction outputs (right-
side flux over 11 time steps). Although He mathematically has rank 240, the reduced
eigendecomposition reveals that it can be approximated almost exactly by a rank-54
matrix; this is due to the numerical implementation and tolerance in the eigensolver.
The singular values Σii indicate that there is a subspace of dimension s = 11 for which
there will be no information loss in the inference-to-prediction process; therefore, the
IFP method yields a basis W ∈ R

q×s. Decay of the singular values (see Figure 6.5)
indicates that further truncation to fewer than 11 modes is possible; the IFP solution
would then not result in exact predictions, but the error incurred by truncating the
last three or four modes would be very small.

We now turn to the results of the inversion. In Figure 6.6 we plot (a) the real initial
condition, (b) the TSVD estimate, (c) the IFP estimate, and (d) the difference or error
μe = μTSVD − μIFP. It is important to recall here that the IFP approach targets
prediction outputs and is not designed to accurately infer the unknown parameter.
Clearly the traditional inference method is more proficient at that. It is this accuracy
that we give up for the reduced computational cost in the online phase of computation
with the IFP approach.

What is relevant, though, is the propagation of the error μe to the prediction
output yp0(t). If the IFP estimate μIFP results in the same predictions as the TSVD
estimate μTSVD as the theory claims, then we expect that the error initial condition
μe will lead to zero prediction. In Figure 6.7 we plot snapshots of the evolving error
field beginning with initial condition μe at four time steps within the prediction time
region t ∈ [60Δt, 70Δt]. It can be seen that the error propagation leads to negligible
flux through the right boundary, as the theory predicts.

In Figure 6.8 we plot the prediction outputs for both the TSVD and IFP ap-
proaches, as well as the error in the outputs. The prediction output curves are di-
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Fig. 6.5 The singular values on the diagonal of Σ reflecting the joint measure of experiment and
prediction observability for the TSVD approach.

Fig. 6.6 The (a) real initial condition, (b) TSVD estimate, (c) IFP estimate, and (d) error µe =
µTSVD − µIFP. In Figure 6.7 we show the propagation of µe to the output time steps.

Fig. 6.7 The propagation of µe according to the advection-diffusion equation to the prediction output
yp0 at time steps (a) t = 60Δt, (b) t = 64Δt, (c) t = 65Δt, and (d) t = 70Δt. The
integrated flux through the right boundary is negligible.
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Fig. 6.8 The (left ordinate axis) error between the prediction outputs from the TSVD and IFP
approaches (red, diamonds) and the (right ordinate axis) predictions themselves based on
TSVD (black, solid) and IFP (orange, dashed, squares) approaches.

Fig. 6.9 The error in prediction outputs ‖yTSVD
p0

− yIFP
p0

‖2 between the TSVD and IFP predictions
vs. the number of IFP basis vectors included in W.

rectly on top of each other, and the error is seven orders of magnitude less than the
output predictions themselves. The error is not identically zero due to the numerical
approximations, e.g., in the eigenvector solver, where tolerances are used.

Although our results above do not involve further truncation from the original
IFP basis in s = 11 dimensions, we show in Figure 6.9 the error in prediction outputs
as it varies with the number of basis vectors included in the IFP estimate. The error
is significant if one includes just a few basis vectors, but as soon as six vectors are
included the error drops to 10−6.

In the next section, we demonstrate the approach for a Tikhonov-regularized
inverse problem.
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Fig. 6.10 The first four modes (a)–(d) of the IFP basis W for the Tikhonov-regularized approach.

Fig. 6.11 The singular values on the diagonal of Σ reflecting the joint measure of experiment and
prediction observability for the Tikhonov-regularized inverse problem approach.

6.2.2. Tikhonov-Regularized Approach. In the Tikhonov-regularized approach,
we define the matrixR implicitly by setting the diagonal matrix

(
R�R

)
jj

= 0.1λmin(1

+(99j/4004)), where λmin is the smallest nonzero eigenvalue of the experiment observ-
ability gramian. This spreads the eigenvalues of R�R evenly between approximately
0.0660 and 6.6028. We focus in this section on the output yp1(t) defined above. Re-
sults are similar for the other outputs of interest.

For this experiment, we find that s = 26 is the dimension of the IFP basis and
here r = q = 4005 since the regularization fills the null space of the experiment
observability gramian. The first four basis modes are plotted in Figure 6.10, and the
singular values are shown in Figure 6.11.

In Figure 6.12 we show the (a) real initial condition, (b) Tikhonov-regularized
estimate, (c) IFP estimate, and the (d) error μe = μ

TR −μIFP. The evolution of the
error μe through the advection-diffusion equation is shown in Figure 6.13 for four time
steps in the temporal range of the predictions t ∈ [25Δt, 50Δt]. Consistently with the
equal predictions based on Tikhonov-regularized and IFP parameter estimates, we see
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Fig. 6.12 The (a) real initial condition, (b) Tikhonov-regularized estimate, (c) IFP estimate, and
(d) error µe = µTR −µIFP. In Figure 6.13 we show the propagation of µe to the output
time steps.

Fig. 6.13 The propagation of µe according to the advection-diffusion equation to the prediction
output yp1 at time steps (a) t = 25Δt, (b) t = 35Δt, (c) t = 45Δt, and (d) t = 50Δt. The
average concentration inside of Ω1 (box) is negligible for all time steps t ∈ [25Δt, 50Δt].

that the error initial condition leads to negligible average contaminant concentration
within Ω1 over this time period.

We show the error in predictions and the predictions themselves in Figure 6.14.
The errors are again many orders of magnitude smaller than the predictions, and the
predictions themselves lie directly on top of each other. This result is consistent with
the theory presented in the preceding sections.

6.2.3. Gaussian Statistical Approach. For the statistical approach, we specify a
prior distribution on the parameter μ. We use a multivariate normal prior with mean
zero and covariance matrix Γ0 with the (i, j)th element given by

Γ0ij = a exp

{−‖zi − zj‖22
2b2

}
+ cI, 1 ≤ i, j,≤ n,

with constants a = 0.001, b = 0.5, and c = 0.1. We assume the sensors are corrupted
by additive Gaussian noise that is independent and identically distributed each with
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Fig. 6.14 The (left ordinate axis) error between the prediction outputs from the Tikhonov-regularized
and IFP approaches (red, diamonds) and the (right ordinate axis) predictions them-
selves based on Tikhonov-regularized (black, solid) and IFP (orange, dashed, squares)
approaches.

Fig. 6.15 The only two modes (a) and (b) of the IFP basis W for the Gaussian statistical approach.

zero mean and variance σ2 = 0.01. For this numerical experiment we focus on the
scalar outputs yp3 and yp4 . We present results here for the posterior predictive mean
and posterior predictive covariance; however, more attention is given to the covariance
since the mean computation is analogous to the Tikhonov-regularized problem in the
preceding section.

In this case again the prior distribution affects every mode of the parameter so
that r = q = 4005. On the other hand, there are only two scalar outputs of interest,
so we find that the IFP basis has dimension s = 2. In Figure 6.15 we plot these two
basis vectors. The singular values are Σ11 = 2.855× 10−4 and Σ22 = 1.390× 10−4.

The results are presented in Table 6.2 and Figure 6.16. The estimated posterior
predictive means and covariances are nearly identical, having componentwise errors
many orders of magnitude smaller than the values themselves. Once again, the nu-
merical results reflect the theory. Inverting for just two modes of the parameter is
sufficient to exactly obtain the posterior predictive distribution. In Figure 6.16 we
plot equiprobability contours of the posterior predictive distribution from the (a) tra-
ditional and (b) IFP approaches.

We have demonstrated that a goal-oriented inference approach is not specific
to the TSVD formulation of the inverse problem. Instead, the IFP method can be
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Table 6.2 Means and covariances for the prediction outputs. In each cell, we list the result from the
traditional approach (TA), the result from the IFP approach (IFP), and the absolute value
of the error (E). Equiprobable contours for the associated probability density functions
are pictured in Figure 6.16.

Covariance
Mean yp3 yp4

yp3

TA 5.1983E-1 1.9376E-8 2.0276E-9
IFP 5.1983E-1 1.9376E-8 2.0276E-9
E 2.3309E-11 1.3235E-23 4.6736E-23

yp4

TA 3.0017E-1 2.0276E-9 8.1433E-8
IFP 3.0017E-1 2.0276E-9 8.1433E-8
E 1.0047E-10 4.6736E-23 7.9409E-23

Fig. 6.16 Contour plots of the joint probability density function over the outputs (yp3 , yp4) for the
(a) traditional approach and the (b) IFP approach. The means and covariance matrices
corresponding to both approaches are also given in Table 6.2.

trivially adapted to extend to several other traditional formulations in both the de-
terministic and statistical regimes. The approach can be understood as follows. For
the appropriately chosen inverse problem formulation5 and well-defined prediction
output quantity of interest, an IFP method can be derived before data are obtained
from experiments. As a result, once data are obtained, one can determine the IFP
parameter estimate and the associated predictions for much lower computational cost
than is required to solve the original inverse problem. Due to the formulation of the
IFP method, we have certain guarantees on the properties of the resulting prediction.

7. Conclusion. A goal-oriented inference approach can exploit low-dimensional
prediction output quantities of interest by inferring many fewer parameter modes.
Errors are tolerated in the parameter estimate without sacrificing any accuracy in the
predictions. In the linear setting, the theoretical underpinnings of the IFP method are
established for its use in three traditional inverse problem formulations. Prediction
exactness holds for all cases, regardless of whether or not prediction modes are well
informed by experimental data. The approach has a compelling connection to the

5The choice of formulation is often subjective and problem dependent.
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balanced truncation model reduction. As a result the number of parameter modes
to be inferred in the method can be further truncated based on a joint measure
of experiment and prediction observability given by the associated Hankel singular
values, which rank the importance of parameter modes to the data-to-prediction map.
The new approach admits an offline/online decomposition that may make inference
feasible on lightweight, portable devices in the field.
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