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Abstract

The proper orthogonal decomposition (POD) has been widely used in fluid dynamic applications for

extracting dominant flow features. The ‘‘gappy’’ POD is an extension to this method that allows the con-

sideration of incomplete data sets. In this paper, the gappy POD is extended to handle unsteady flow recon-

struction problems, such as those encountered when limited flow measurement data is available. In

addition, a systematic approach for effective sensor placement is formulated within the gappy framework
using a condition number criterion. This criterion allows for accurate flow reconstruction results and yields

sensor configurations that are robust to sensor noise. Two applications are considered. The first aims to

reconstruct the unsteady flow field using a small number of surface pressure measurements for a subsonic

airfoil undergoing plunging motion. The second considers estimation of POD modal content of a cylinder

wake flow for active control purposes. In both cases, using the dominant POD basis vectors and a small

number of sensor signals, the gappy approach is found to yield accurate flow reconstruction results.
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1. Introduction

The proper orthogonal decomposition (POD), also known as Karhunen Loéve expansion and
principle components analysis, has been widely used for a broad range of applications, including
derivation of reduced-order dynamical models [1], image processing [2] and pattern recognition
[3]. The POD method computes a set of basis vectors that capture the dominant structures of
the system. For example, for fluid dynamic applications, the dominant POD basis vectors corre-
spond to the most energetic flow modes in the system.

Sirovich introduced the method of snapshots [4] as a way to efficiently determine the POD
modes for large problems, such as those encountered in computational fluid dynamic (CFD)
applications. A set of instantaneous flow solutions, or ‘‘snapshots,’’ is obtained from experimental
data or from a CFD simulation. These snapshots are then used to compute the POD basis vectors,
which yield a representation of the data that is optimal in the sense that, for any given basis size,
the two-norm of the error between the original and reconstructed snapshots is minimized. Re-
duced-order dynamic models can be derived by projecting the CFD model onto the reduced space
spanned by the POD modes [1,5,6].

The concept of using active control to enhance the stability properties of an unsteady flow has
been addressed for several applications, for example in [7–10]. In order to derive control models
that will be effective, it is vital that the relevant unsteady flow dynamics are captured accurately. A
high-fidelity CFD code can offer the degree of flow resolution that is required; however, for con-
trol design it is imperative that the flow model have a low number of states. The POD provides not
only a way to obtain accurate low-order models for control design, but also a systematic means to
identify the most dominant flow structures. One approach for flow controller design, demon-
strated to yield effective results, is to control the dominant POD modes [9,11].

To achieve active flow control in practice, the issue of flow sensing must also be addressed.
Using a POD-based control approach, a strategy is required to accurately estimate the POD
modal content in real time from a limited number of sensor measurements. In addition, the ques-
tion of where to best place the sensors in order to achieve this estimation must be addressed. In
[11], flow control of a cylinder wake was considered. Two sets of POD basis vectors were derived
using collections of flow snapshots, obtained from a CFD simulation of the problem and from
particle image velocimetry (PIV) measurements of an experimental setup. In each case, a linear
stochastic estimator (LSE) [12] was used to provide a mapping from the velocity data (computa-
tional or experimental) to the POD modal content. The sensor locations were chosen according to
a heuristic procedure that placed them at spatial maxima and minima of each POD mode.

Here, an alternate approach is proposed for estimating the modal coefficients, based on the
gappy POD method. This method was developed by Everson and Sirovich [13], and is a modifi-
cation of the basic POD method that handles incomplete or ‘‘gappy’’ data sets. Given a set of
POD modes, an incomplete data vector can be reconstructed by solving a small linear system.
Moreover, if the snapshots themselves are damaged or incomplete, an iterative method can be
used to derive the POD basis. This method has been successfully applied for reconstruction of
images, such as human faces, from partial data [13]. The gappy POD has also been applied for
reconstruction of airfoil pressure fields from limited surface measurements [14]. In that work, it
was shown that the entire pressure field for subsonic and transonic inviscid flows could be recon-
structed using just a handful of POD modes and a small number of surface measurements.
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In this paper, the gappy POD method will first be described and extended to handle unsteady
flow reconstruction problems. A quantitative metric for placing sensors will then be developed
using the gappy formulation. Results will then be presented for two test cases. The first considers
the two-dimensional, linearized Euler equations to analyze a subsonic airfoil operating in unsteady
plunging motion. The second example considers a Navier–Stokes simulation of flow about a cir-
cular cylinder at low Reynolds number. Finally, conclusions are drawn and directions for future
work are discussed.
2. Proper orthogonal decomposition

2.1. Standard POD basis

Before describing the gappy POD procedure, the standard approach to computing POD basis
vectors via the method of snapshots is first reviewed [4]. Consider the collection of m flow snap-
shots, fUkgmk¼1, where U

k is a vector containing the flow solution at a time tk. The correlation ma-
trix R is formed by computing the inner product between every pair of snapshots
Rik ¼
1

m
ðUi;UkÞ; ð1Þ
where (Ui,Uk) denotes the inner product between Ui and Uk. The eigenvalues ki and eigenvectors
wi of R are then computed. The jth POD basis vector, Uj, is given by a linear combination of
snapshots
Uj ¼
Xm
i¼1

wj
iU

i; ð2Þ
where wj
i denotes the ith element of the jth eigenvector. The magnitude of the jth eigenvalue, kj,

describes the relative importance of the jth POD basis vector. This importance is commonly quan-
tified by defining the relative energy content, Ej, for each basis vector j as
Ej ¼
kjPm
i¼1ki

; ð3Þ
where the term ‘‘energy’’ refers to a measure in the two-norm.

2.2. Gappy POD

The gappy POD procedure uses a POD basis to reconstruct missing, or ‘‘gappy’’ data. This pro-
cedure was developed by Everson and Sirovich [13] and can be described as follows. The first step
is to define a mask vector, which describes for a particular flow vector where data are available
and where data are missing. For the flow solution Uk, the corresponding mask vector nk is defined
as follows:
nki ¼ 0 if Uk
i is missing;
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nki ¼ 1 if Uk
i is known;
where Uk
i denotes the ith element of the vector Uk. Pointwise multiplication is defined as

ðnk;UkÞi ¼ nki U
k
i . Then the gappy inner product is defined as (u,v)n = ((n,u), (n,v)), and the induced

norm is (kvkn)2 = (v,v)n.

Let fUkgmk¼1 be the standard POD basis for the snapshot set fUkgmk¼1, where all snapshots are
completely known. Let g be another solution vector that has some elements missing, with corre-
sponding mask vector n. Assume that there is a need to reconstruct the full or ‘‘repaired’’ vector
from the incomplete vector g. Assuming that the vector g represents a solution whose behavior
can be characterized with the existing snapshot set, the intermediate repaired vector ~g can be rep-
resented in terms of p POD basis functions as follows:
~g �
Xp

i¼1

biUi: ð4Þ
To compute the POD coefficients bi, the error, �, between the original and repaired vectors must
be minimized. The error is defined as
� ¼ kg � ~gk2n ð5Þ

using the gappy norm so that only the original existing data elements in g are compared. The coef-
ficients bi that minimize the error � can be found by differentiating (5) with respect to each of the bi
in turn. This leads to the linear system of equations
Mb ¼ f ; ð6Þ

where
Mij ¼ ðUi;UjÞn ð7Þ

and
fi ¼ ðg;UiÞn: ð8Þ

Solving Eq. (6) for b and using (4), the intermediate repaired vector ~g can be obtained. Finally, the
complete g is reconstructed by replacing the missing elements in g by the corresponding repaired
elements in ~g, i.e. gi ¼ ~gi if ni = 0.

While not discussed here, we also note that if the original snapshot ensemble has incomplete
data, the POD basis vectors can be computed using an iterative gappy approach [13,14].
2.3. Gappy POD for unsteady flows

It is relatively straightforward to extend the gappy POD algorithm for consideration of unstea-
dy flows. Assume we have a sequence of T sensor measurements, fgigTi¼1, where g

i corresponds to a
gappy flow solution at time ti. At each timestep, one can solve the gappy problem given by Eq. (6)
to determine the corresponding POD basis vector modal content. The matrix M depends only on
the POD basis vectors and the mask vector. For a given sensor configuration, the mask vector is
fixed and M is thus not a function of time. Its inverse can therefore be precomputed to yield an
efficient implementation. The time-dependent gappy problem can be stated as
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Mbi ¼ f i; ð9Þ
where bi contains the POD modal coefficients at time ti. The matrix M and vector f are defined as
before in (7) and (8), except now g, and therefore f, varies with time.
3. Sensor placement problem

We consider the problem of placing N sensors in a flow. The sensor locations should be chosen
so that the required flow information can be obtained. In particular, in the active flow control
framework, we are concerned with using sensor data to determine the POD modal content of
the flow.

This problem can be cast in the gappy framework. We assume that POD basis vectors have
been computed, which are representative of the flows under consideration. A particular set of
sensor measurements then corresponds to a gappy solution vector: the solution is known at
the sensor locations and unknown for other parts of the flow, i.e. nj = 1 if location j is a sensor.
Using the gappy POD procedure outlined above, the modal content, bik for POD mode k at time-
step i, can be determined by solving Eq. (9). If desired, the full flowfield can then be constructed
using (4). In [14], it was shown that this approach worked well for reconstructing steady flow
pressure fields when considering a number of sensors distributed evenly around the surface of
an airfoil.

Within the gappy framework, we now consider the problem of where best to place the sensors,
i.e. given N sensors and l possible locations, how does one select the locations that will enable the
POD modal coefficients to be determined most accurately? Consider Eqs. (6)–(8). If all data are
available, i.e. nj = 1 for all j, then M is the identity matrix, and the modal coefficients can be cal-
culated exactly. Consider removing available data, and computing the gappy inner products be-
tween basis vectors to form the entries of M. In general, the POD basis vectors are no longer
orthogonal when inner products are considered in the gappy sense, andM therefore becomes fully
populated. As this orthogonality is lost, so is the ability to exactly identify the modal content. The
sensor locations, and correspondingly the non-zero entries in the mask vector, should therefore be
chosen to preserve orthogonality between the POD basis vectors, when calculated using the gappy
inner product. One should also ensure that the diagonal entries ofM are not too small (this would
correspond to choosing sensor locations where a POD basis vector value is close to zero). Mathe-
matically, one way to achieve these goals is to minimize the condition number of M. The sensor
location problem is therefore stated as
min jðMÞ
s:t: nj 2 f0; 1g; j ¼ 1; 2; . . . ; l

Xl

j¼1
nj ¼ N ; ð10Þ
where j(M) is the condition number of M.
A solution to this combinatorial optimization problem may be obtained using a greedy algo-

rithm as follows:
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(i) Consider placing the first sensor: loop over all possible placement points, evaluate M for
each point, and choose the point that minimizes j(M).

(ii) With the first sensor location set, loop over all possible remaining placement points. For each
point, update the mask vector, evaluate M, and choose the point that minimizes j(M).

(iii) Repeat step (ii) for all remaining sensor locations.

Note that this approach does not yield an optimal solution, but can be implemented efficiently.
4. Results

Results will be presented for two cases: unsteady plunging motion of a subsonic airfoil and low
Reynolds number flow over a circular cylinder. Both the sensor placement algorithm and the time-
dependent gappy reconstruction of POD modal content will be considered. The robustness of the
method to sensor noise will also be investigated.
4.1. Subsonic airfoil plunging motion

The first case considered is a NACA 0012 airfoil operating in unsteady plunging motion about
a steady-state condition that has a freestream Mach number of 0.6 and an angle of attack of 0�.
The CFD method is described in [15], and uses a high-order, discontinuous-Galerkin formulation
on an unstructured grid to solve the two-dimensional linearized Euler equations. The CFD mesh
used has 1836 elements, which corresponds to 22,032 flow perturbation unknowns. POD basis
vectors were calculated using a frequency-domain method of snapshots approach [16,17]. The re-
duced frequency, kc, is defined as
kc ¼
xc

U
; ð11Þ
where x is the frequency of the airfoil plunging motion, c is the airfoil chord, and U is the free-
stream velocity. In order to compute the POD basis vectors, flow snapshots were evaluated at 21
evenly spaced reduced frequencies between zero and one.
4.1.1. Gappy sensor placement

The full POD basis vectors contain all flow variables; however, only pressure measurements on
the airfoil surface were considered as possible sensor locations. For the grid used, there were 100
possible sensor locations. The first four POD basis vectors capture 99.7% of the energy in the
snapshot ensemble, thus p = 4 modes were considered when formulating the gappy problem.
The greedy algorithm was used to determine the sensor locations while attempting to minimize
the condition number of the 4 · 4 M matrix. The resulting sensor locations are shown in Fig. 1
for N = 5, 10 and 20. In the figure, the dots correspond to a possible sensor location (this is a
CFD grid point on the airfoil surface), while the crosses correspond to the chosen sensor loca-
tions. The condition number of the gappy matrix M is 237.89, 54.06, and 82.73 for N = 5, 10
and 20, respectively.
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Fig. 1. Resultant positions for sensors on airfoil surface using p = 4 basis vectors. Dots represent available CFD mesh

surface points, crosses represent the chosen sensor locations. From top: 5 sensors, 10 sensor, 20 sensors.
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It can be seen from the figure that as the number of sensor locations is increased, the posi-
tions show some clustering, particularly near the airfoil trailing edge. This clustering is an arti-
fact of the availability of all CFD surface grid points as sensor locations, and would be
avoided in practice. It is interesting to note that the condition number of the system increases
as the number of sensors is increased from 10 to 20. This suggests that the additional pressure
information, which is concentrated primarily around the airfoil trailing edge, is not construc-
tive towards differentiating between the first four POD modes. More insight to the choice of
other sensor locations can be gained by plotting the spatial variation of the POD basis vectors.
Fig. 2 shows the values of the first four basis vectors along the airfoil surface. The basis vec-
tors are symmetric with respect to the airfoil top and bottom surfaces. The figure shows
increasing spatial frequency of subsequent POD vectors, which is commonly observed in flow
applications.

By comparing Figs. 1 and 2, it can be seen that the locations of the sensors are chosen in regions
that correspond roughly to local optima of the POD basis vector variation (for example, near
x/c = 0.6 and x/c = 0.75). This observation corresponds well to the heuristic sensor placement pro-
cedure suggested in [11]. In that work, sensors were placed at local spatial optima for each mode.
The locations determined by the gappy methodology proposed here do not correspond exactly to
optima because the POD basis vectors are not pure harmonics, and the optimization criteria is
based on maintaining orthogonality between modes.
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4.1.2. Gappy flow reconstruction
The question of interest is how well, with the selected sensor configuration, the modal content

of the time-dependent flow solution can be predicted. For the NACA 0012 airfoil, an unsteady
simulation was run that used a forcing input that varied temporally as a Gaussian pulse, i.e.
the plunging input, h, is given by
hðtÞ ¼ �he�aðt�t0Þ2 ; ð12Þ

where �h is the amplitude of the pulse, t0 determines the time at which the peak input occurs, and
the parameter a determines the sharpness of the pulse and, therefore, the range of frequencies ex-
cited in the system. The case considered used �h ¼ 1, t0 = 40, and a = 0.01. This value of a yields an
input whose significant frequency content lies within the POD snapshot sample range.

At each timestep in the simulation, the actual POD modal content was computed and com-
pared to that predicted using the gappy reconstruction from just the sensor data. The results
for the first four POD modes are shown in Fig. 3 for N = 10. The solid lines show the exact modal
amplitude while the symbols are the results calculated using data from the ten sensors. It can be
seen that a very good match is obtained for all four modes. The corresponding errors between the
actual and predicted values are plotted in Fig. 4. For the first mode, the error can be seen to be
very small in magnitude relative to the actual values shown in Fig. 3. For modes 2, 3 and 4, the
error is larger; however, the prediction is still very good. Fig. 5 shows a comparison of the actual
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Fig. 3. POD modal amplitude as a function of time for pulse plunge input to NACA 0012 airfoil. Solid lines denote the

actual amplitudes; symbols denote the amplitude predicted using gappy POD using p = 4, N = 10.
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and reconstructed lift coefficient for this case. Using just four POD modes and ten sensors, the
gappy method yields very accurate results.

4.2. Cylinder wake flow

The second example analyzes the problem described in [11] of flow prediction in a cylinder wake
at a Reynolds number of 100. CFD simulation data from that study was used to form an ensemble
of snapshots. These data was obtained using a direct numerical simulation of the Navier–Stokes
equations on an unstructured grid with the COBALT solver. The cylinder has an incoming flow
Mach number of 0.1. The Strouhal number of the wake shedding was computed to be 0.163 [11].

From these snapshots, POD basis vectors were calculated for the vorticity flow component. The
relative energy content, defined by (3), corresponding to the first twelve POD basis vectors is given
in Table 1. It can be seen that the modes occur roughly in pairs (due to the periodic nature of the
shedding) and that 12 modes are required to capture 99.9% of the flow vorticity energy.

4.2.1. Gappy sensor placement

The sensor placement algorithm described earlier was applied to this problem. As discussed in
[11], it is desirable to place the sensors in locations that experience relatively large modal ampli-
tudes. The optimization formulation based only on minimizing the condition number of M was
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found to yield reasonable results; however a much better solution could be obtained by modifying
the approach as follows. The first sensor was placed by considering the sum of the diagonal ele-
ments ofM minus the sum of the off-diagonal elements ofM. The first sensor location was chosen
so as to maximize this quantity, yielding a larger emphasis on amplitude size. Subsequent sensors
were then placed according to the condition number minimization described previously. The mod-
ified algorithm is therefore as follows.

(i) Consider placing the first sensor: loop over all possible placement points, evaluate M for
each point, and choose the point that maximizes the summation of diagonal minus off-diag-
onal entries of M.

(ii) With the first sensor location set, loop over all possible remaining placement points. For each
point, update the mask vector, evaluate M, and choose the point that minimizes j(M).

(iii) Repeat step (ii) for all remaining sensor locations.

4.2.2. Gappy flow reconstruction

In [11], the time histories of the POD modal content were estimated using a linear combination
of sensor signals. The coefficients of the linear combination were determined using a least squares
fit to the known POD modal amplitudes of the original snapshot simulation. The sensing loca-
tions were determined using a heuristic criterion of placing sensors in areas of high modal activity,
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Table 1

Percentage energy and cumulative energy content for vorticity POD modes for cylinder wake flow

Mode number, i Ei (%)
Pi

j¼1Ej (%)

1 46.17 46.17

2 37.81 83.99

3 5.47 89.46

4 4.94 94.40

5 2.31 96.71

6 2.26 98.97

7 .35 99.31

8 .34 99.65

9 .10 99.75

10 .10 99.85

11 .03 99.88

12 .03 99.91

K. Willcox / Computers & Fluids xxx (2005) xxx–xxx 11

ARTICLE IN PRESS
thus using a total of 12 sensors to estimate the first four POD modes: two sensors each for modes
one and two, and four sensors each for modes three and four.

The modified gappy sensor placement algorithm described above was implemented for this
problem and then the gappy reconstruction approach was used to determine the time-dependent
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POD modal content. The first case considered was with p = 4 POD modes and N = 12 sensors.
Fig. 6 shows the actual and predicted POD modal coefficients using the gappy approach. While
the overall trends are captured, it can been seen that there is some error in the prediction, partic-
ularly in the peak areas. The RMS error of the prediction for the jth mode is defined as
ej ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðb

i
j � ~b

i

jÞ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1ð~b
i

jÞ
2

q ; ð13Þ
where bij and ~b
i

j are respectively the estimated and actual coefficient for POD mode j at timestep i,
m = 70 is the number of timesteps considered, and the error is normalized by the RMS value of
the actual modal coefficient. The RMS errors for reconstruction of the first four modes are given
in Table 2. The table also shows that the condition number of the matrix M in this case was 1.82.

The sensor configuration suggested by Cohen et al. [11] was also considered, obtained by select-
ing sensing locations at spatial minima and maxima of the POD modes. The resulting RMS errors
from the gappy reconstruction are given in Table 2. It can be seen that this configuration resulted
in an improved condition number of 1.65, demonstrating the inability of the greedy algorithm to
find the true optimum. Since the cylinder flow case exhibits strong periodicity, the POD modes
resemble Fourier modes, and the heuristic approach is expected to yield accurate results. The
RMS errors for this case are also given in Table 2 and can be seen to be much lower than for



Table 2

RMS errors of gappy reconstruction for various sensor configurations and numbers of modes for cylinder wake flow

N p e1 (%) e2 (%) e3 (%) e4 (%) j(M)

12 (greedy) 4 11.84 23.48 32.72 12.69 1.82

12 (modal max/min) 4 6.12 5.74 8.03 9.32 1.65

12 (modal max/min) LSE 2.1 0.6 7.1 2.9 –

12 (modal max/min) 12 3.63 1.98 48.56 7.76 1.64 · 104

20 (max/min + greedy) 12 0.70 1.10 2.75 2.38 15.17

20 (modal max/min) 12 0.34 0.89 3.20 3.03 138.34

The LSE data is taken from [11].
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the previous configuration. This result suggests that the condition number criterion is appropriate
for sensor location choice, but that a better optimization algorithm is required. For comparison,
the RMS errors using the least squares approach with this sensor configuration are also given in
Table 2.

There are two possible sources of error for the results presented in Fig. 6. First, there may be
insufficient sensors to accurately reconstruct the modal information using gappy POD. Secondly,
an insufficient number of POD modes may be used in the reconstruction. Recall that the gappy
procedure chooses the coefficients so as to minimize the gappy norm between the available and
the reconstructed data. If the neglected higher POD modes have significant contribution to the
sensor signals, then the reconstruction will be inaccurate. As Table 1 shows, the first four modes
capture only 94.4% of the flow energy. In order to more accurately represent the flow, the number
of POD modes considered was increased to p = 12. Using the 12 sensors located at modal optima,
the reconstructed modal coefficients were calculated and are shown in Fig. 7. As can be seen from
the figure, and from the corresponding RMS errors in Table 2, the reconstructions for modes 1, 2
and 4 are now excellent; however, the estimated response for mode 3 shows significant oscillations
and a large reconstruction error. This error is most likely due to poor numerical conditioning of
the system, which has a condition number of 16,400.

In order to reduce the condition number of the system and thus reduce the reconstruction error,
more sensors must be added. The initial configuration of 12 sensors corresponding to POD spatial
optima was used. The greedy algorithm was then used to place an additional eight sensors while
attempting to minimize the condition number of the gappy matrix with p = 12 POD modes. This
hybrid heuristic/greedy approach yielded an improved condition number of 15.17. The modal
amplitudes are plotted in Fig. 8 and, along with the RMS errors in Table 2, show an excellent
prediction. For comparison, RMS errors using 20 sensors placed at modal optima are also shown
in the table, obtained by placing four additional sensors at spatial optima of each of the fifth and
sixth POD modes. It can be seen that reconstruction accuracy of the two 20-sensor systems is sim-
ilar, although the hybrid approach yields a system with lower condition number.

4.2.3. Sensor noise sensitivity
An important practical question, relevant to implementation of flow sensing, is the sensitivity of

the reconstruction method to sensor noise. Here, the question of the best number of POD modes
is critical. If a high number of modes is used, the reconstruction will have several degrees of free-
dom as the reconstructed modal coefficients are varied so as to minimize the gappy norm of the
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error, and may thus be very sensitive to sensor noise. If fewer modes are used, this sensitivity may
be decreased, however the ability to accurately resolve important flow features may be lost.

Sensor noise was artificially simulated by adding a random component to the sensor signal ex-
tracted from CFD data. The noise added to each sensor signal at each sample time was chosen to
be uniformly distributed random number. Noise levels of ±1%, 2%, 5%, 10% and 20% were con-
sidered, where the percentage is measured relative to the mean RMS value of the vorticity flow
solutions. Fig. 9 shows the resulting RMS errors in the reconstructed signal for the first four
POD modes using the 20-sensor, 12-PODmode configuration of Fig. 8. In all cases, the error plot-
ted is the average error taken over 100 random samples. It can be seen that the reconstruction
error increases as the sensor signals become more noisy; however, small noise levels cause only
a small increase in the error and even with a relatively high noise content of 10%, the reconstruc-
tion is still very good for the dominant modes.

Fig. 10 shows an example of the reconstruction with a 10% random noise level. Comparing this
figure with Fig. 8, it can be seen that even with this relatively high level of noise, the reconstruction
results are excellent. The RMS errors are given in Table 3. This insensitivity to noise is not the
case for all sensor configurations. Mathematically, one would expect the sensitivity of the predic-
tion to be correlated to the condition number of the gappy system. Indeed, for the system (6), the
condition number can be defined by the relation
kdbk
kbk 6 jðMÞ kdf kkf k ; ð14Þ
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where db and df are perturbations in the vectors b and f, respectively. Eq. (14) shows that, for a
given relative error in the sensor signal term f, the relative error in the predicted POD coefficients
is bounded by the condition number of the gappy matrix M.

Table 3 shows the RMS errors averaged over 100 random samples for several different sensor
configurations with a 10% noise level. The 12-sensor configuration had relatively poor nominal
predictions despite increasing the number of POD modes, as was shown in Table 2. When this
configuration is used with 12 POD modes, the gappy system has a very high condition number,
hence the prediction is considerably worsened in the presence of noise. In contrast, the same con-
figuration used with only 4 POD modes has a condition number of 1.65, and, as Table 3 shows, a
very small increase in the RMS error is observed even with 10% noise present. The approach of
placing sensors so as to minimize the gappy system condition number not only leads to improve
reconstruction results, but also increases the robustness of the system with respect to sensor noise.
4.2.4. Discussion and comparison of approaches

As can be seen in Table 2, the RMS errors for the gappy estimation of the first four modes ob-
tained with N = 20 sensors and p = 12 modes are of similar magnitude to those obtained using a
least squares approach with N = 12. In the latter method, the RMS error represents a measure of
the quality of the least squares fit for the known evolution of the modal coefficients. It is not obvi-
ous how accurate the prediction would be for flows where the relative modal content is different to
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that used for calibration. The gappy estimation procedure does not require knowledge of the
actual modal coefficients, and should yield accurate results for a range of different flows, provided
the flow can be resolved with a sufficient number of available basis vectors.

For the cylinder flow, which exhibits strong periodicity, the heuristic approach to sensor place-
ment results in a well-conditioned gappy problem and accurate reconstructions for the first four
modes. In this case, the greedy algorithm did not find a 12-sensor configuration that yielded a bet-
ter condition number. However, the greedy algorithm provides a satisfactory alternative for cases
where the heuristic approach may not be appropriate. For example, if the POD basis vectors do
not exhibit a strong sinusoidal structure, location choices may not be obvious. The locations of
modal optima may also not be physically available for sensing (for example, in the cylinder case
it is assumed that velocity measurements are available anywhere in the flow). Finally, the heuristic
approach often may not extend to estimation of higher modes. If the higher modes exhibit sinu-
soidal behavior, then an increasing number of sensors per mode will be required to capture all
optima. If the higher modes lose their structure (as is often the case for flow applications) then
it will not be clear where to choose the sensor locations. The gappy formulation easily handles
an increasing number of modes, although as the results demonstrated, a sufficient number of mea-
surement points must be provided in order to reduce the condition number of the gappy matrix
M. If POD spatial optima are obvious for dominant modes, an effective approach is to first place a
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Table 3

RMS errors of gappy reconstruction for various sensor configurations for cylinder wake flow with 10% random noise

added to the sensor signals

N p Noise level (%) e1 (%) e2 (%) e3 (%) e4 (%) j(M)

12 (modal max/min) 4 10 6.19 5.87 8.48 9.72 1.65

12 (modal max/min) 12 10 5.06 3.41 90.07 16.10 1.64 · 104

20 (max/min + greedy) 12 10 1.33 1.78 4.27 4.30 15.17

Errors shown are the average result over 100 random trials.
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set of sensors using the heuristic approach and to then use a greedy algorithm to choose the
remaining locations according to the condition number criterion.

In addition to providing an effective quantitative criterion for placement of subsequent sensors,
the condition number of the gappy system also directly influences the sensitivity of the system to
sensor noise. A sufficiently large number of sensors must first be placed in order to achieve a sat-
isfactory nominal prediction. Further sensors should then be added using the greedy algorithm in
order to reduce the system condition number and thus reduce the sensitivity to sensor noise. In
this respect, the optimization approach to sensor placement provides an added advantage over
the heuristic method.
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5. Conclusions

The gappy POD methodology provides a natural framework to directly estimate POD modal
content from limited flow measurements and has been shown to work effectively for two examples.
With limited sensor measurements, modal content for the dominant POD modes can be estimated
accurately for an unsteady flow, provided a sufficient number of modes are used to resolve the
flow. The method is expected to extend to transonic cases, although accurate resolution of shock
dynamics typically requires a larger number of POD modes, and therefore a larger number of sen-
sors. When used in conjunction with a heuristic approach of placing sensors at POD spatial op-
tima, the gappy reconstruction yields excellent results. Alternatively, the sensor placement
problem can be formulated mathematically in the gappy framework using a condition number cri-
terion. While the resulting optimization problem cannot be solved exactly, an approximate solu-
tion method leads to results that support the intuitive approach of placing sensors at modal
optima. The more formal approach extends to cases where the heuristic criterion might be difficult
to apply. Minimization of the system condition number also leads to a sensor configuration that is
robust with respect to sensor noise. An effective approach is to place the first set of sensors at POD
spatial optima and then to use a greedy algorithm to choose the remaining locations according to
the condition number criterion. Further investigation into an improved optimization solution
method is required.

In another area of future work, an iterative gappy procedure can be used to derive a set of POD
basis vectors using incomplete snapshot data. This would, for example, enable CFD and PIV
measurements to be combined when determining the POD basis vectors. It would also enable
effective handling of imperfect PIV measurement data, a situation often encountered in practice.
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