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Abstract

This paper analyzes the Fourier model reduction (FMR) method from a rational Krylov projection framework and shows
how the FMR reduced model, which has guaranteed stability and a global error bound, can be computed in a numerically
efficient and robust manner. By monitoring the rank of the Krylov subspace that underlies the FMR model, the projection
framework also provides an improved criterion for determining the number of Fourier coefficients that are needed, and hence
the size of the resulting reduced-order model. The advantages of applying FMR in the rational Krylov projection framework
are demonstrated on a simple example.
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1 Introduction

Model reduction entails the systematic generation of
cost-efficient representations of large-scale systems that
result, for example, from discretization of partial differ-
ential equations (PDEs). Recent years have seen the de-
velopment of several reduction methods that are compu-
tationally tractable for large-scale systems. These meth-
ods have been applied in many different settings with
considerable success, including fluid dynamics, struc-
tural dynamics, and circuit design. For automatic con-
trol applications, model reduction is a crucial element
for achieving control of large-scale systems, such as those
governed by PDEs [2,11,18].

Algorithms such as optimal Hankel model reduction
[1,6], balanced truncation [15,16], and singular pertur-
bation approximation [13] come with rigorous guaran-
tees of quality and global error bounds on the resulting
reduced models. Despite their appealing theoretical
properties, the computational requirements associated
with these methods make them impractical for appli-
cation to large-scale systems of order 105 or higher.
Several other methods have been developed that are ap-
plicable to large-scale systems, including Krylov-based
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methods [5,7], approximate balanced truncation [8,12],
and proper orthogonal decomposition [10,11,17]. In
many cases, this latter group of methods trades compu-
tational efficiency for a lack of rigorous guarantees and
global error bounds.

In this paper, we investigate the Fourier model reduc-
tion (FMR) method [18]. FMR preserves stability by
first performing a bilinear transformation and then ap-
plying model reduction in the discrete-frequency domain
via a truncated Fourier expansion. Despite its theoreti-
cal properties such as guaranteed stability and a global
error bound, and its success in yielding good reduced
models [18], the underlying projection framework and
Krylov-based (interpolation) features of FMR have gone
unnoticed. This paper analyzes the FMR method from
a projection framework and shows the underlying ratio-
nal Krylov projection behind FMR. Through this anal-
ysis, we illustrate the interpolation and restricted opti-
malH2 properties of FMR; and show how the FMR re-
duced model can be computed in a numerically efficient
and robust manner in a Krylov-based model reduction
setting. Moreover, a new, more robust stopping criterion
for FMR is proposed.

2 Model Reduction via Projection

Consider a single-input/single-output (SISO) dynamical
system G(s) with transfer function

G(s) = h(sI− F)−1g + J, (1)

Preprint submitted to Automatica 26 February 2007



where F ∈ Rn×n, g,hT ∈ Rn, and J ∈ R. The goal of
model reduction, in this setting, is to produce a much
smaller order system Gr(s) with transfer function

Gr(s) = hr(sIr − Fr)−1gr + Jr, (2)

where Fr ∈ Rr×r, g,hT ∈ Rr, and Jr ∈ R, such that the
reduced system Gr(s) approximates G(s) well. In model
reduction via projection, Gr(s) in (2) is obtained as

Fr = WT FV, gr = WT g, hr = hV, and Jr = J, (3)

where V ∈ Rn×r and W ∈ Rn×r with WT V = Ir. The
corresponding oblique projector is given by VWT . Since
Jr = J, without loss of generality, we assume that J = 0.

2.1 Rational Krylov based model reduction

In model reduction by rational Krylov projection, the
goal is to find a reduced model Gr(s) as in (2) and
(3) that interpolates G(s) and a certain number of its
derivatives (called moments) at selected points sk in the
complex plane. In other words, the goal is to find the
reduced system matrices Fr, gr, and hr so that

(−1)j

j!
djG(s)

dsj

∣∣∣∣
s=sk

= h(skIn − J)−(j+1)g (4)

= hr(skIr − Fr)−(j+1)gr =
(−1)j

j!
djGr(s)

dsj

∣∣∣∣
s=sk

for k = 1, . . . ,K and for j = 1, . . . , J where K and J de-
note, respectively, the number of interpolation points sk

and the number of moments to be matched at each sk.
The quantity h(skIn − F)−(j+1)g is the jth moment of
G(s) at sk. If sk = ∞, the moments are called Markov
parameters and are given by hFjg for j = 0, 1, 2, . . ..
Since the moments are extremely ill-conditioned to com-
pute, the goal in rational Krylov-based model reduction
is to find Gr(s) that satisfies (4) without computing the
moments explicitly. Skelton et al. in [3] showed that the
matrices V and W chosen so that

Ran(V) = Im{(s1I− F)−1g, . . . , (s1I− F)−K1g,

. . . , (sJI− F)−1g, . . . , (sJI− F)−KJ g}
Ran(W) = Im{(s1I− FT )−1hT , . . . , (s1I−HT )−K1hT ,

. . . , (sJI− FT )−1hT , . . . , (sJI− FT )−KJ hT },
produce reduced-order models Gr(s) via (3) matching
2Ki moments of G(s) at the interpolation points si for
i = 1, . . . , J , i.e. Gr(s) interpolates G(s) and its first
2Ki − 1 derivatives at each si; hence matching the mo-
ments without ever computing them. Grimme [7] showed
how one can obtain the required matrices V and W as
above in a numerically efficient way using the rational
Krylov method, and hence showed how to solve the mo-
ment matching problem using Krylov projection meth-
ods in an effective way.

3 Fourier Model Reduction

Given G(s) as in (1), let the nth-order discrete-time sys-
tem H(z) = c(zI −A)−1b + d be obtained from G(s)
via a bilinear transformation, i.e.

A = (ω0I + F)(ω0I− F)−1, b =
√

2ω0 (ω0I− F)−1g,

c =
√

2ω0 h(ω0I− F)−1, d = J + h(ω0I− F)−1g,

where ω0 > 0. It is well known that

G(s) = H
(

ω0 + s

ω0 − s

)
or G

(
ω0

z − 1
z + 1

)
= H(z). (5)

Let ηi denote the Markov parameters of the discrete-
time system H(z), i.e. η0 = d, and ηi = cAi−1b, i ≥ 1.

FMR was proposed in [18] as an efficient method to
compute reduced models with guaranteed stability and
a rigorous error bound. FMR uses discrete-time Fourier
coefficients to compute an intermediate discrete-time
reduced model, to which balanced truncation can be
subsequently applied using explicit formulae. The rth-
order intermediate reduced model Hr(z) = cr(zIr −
Ar)−1br + d is defined by

Hr(z) =
r∑

k=0

ηkz−k, (6)

and has the form

Ar = [e2, e3, · · · , er,0], br = e1,

cr = [η1, η2, · · · , ηr], and dr = η0, (7)

where ei denotes the ith unit vector and 0 is a vector
of zeroes. If desired, a continuous-time reduced model
Gr(s) can be obtained from Hr(z) by an inverse bilinear
transformation. As shown in [18], both the intermediate
discrete-time model Hr(z) and the final continuous-time
reduced model G(s) are stable. Moreover, let E(z) :=
H(z)−Hr(z) be the discrete-time error system. Then,

‖E(z)‖2H∞ ≤ r1−2q

2π(2q − 1)

π∫

−π

∣∣∣H(q)
(
eθ

)∣∣∣
2

dθ, (8)

where H(q) is the qth derivative of H
(
eθ

)
with respect

to θ.

For the rest of the paper, H(z) denotes the discrete-
time system in (5) obtained via bilinear transforma-
tion of G(s). Hr(z) denotes the intermediate reduced-
order model as in (6) and (7) obtained from H(z) via
FMR. Finally, Gr(s) is the final continuous-time re-
duced system obtained via inverse bilinear transforma-
tion of Hr(z).
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4 Interpolation and Optimality Properties of
FMR and H2/H∞ error bounds

It follows from the construction of Hr(z) in (6) and (7)
that Hr(z) matches the first r Markov parameters of
H(z). Hence, Gr(s) interpolates the first r moments of
G(s) at s = ω0.

Lemma 1 Hr(z) is the rth-order optimal H2 approxi-
mation to H(z) among all models having all r poles lo-
cated at z = 0. In other words, define

H̃(z) = d +
β1z

r−1 + β2z
r−2 + · · ·+ βr−1z

r−1

zr
.

Then, Hr(z) = arg min
n(z)

‖H− H̃‖H2 .

The following theorem, slightly modified from [4,14], is
used in proving Lemma 1.

Theorem 2 [4,14] Given a stable discrete-time dynam-
ical H(z) = c(zI −A)−1 + d, and a fixed stable pole α,

define Ĥr(z) := d +
β0 + β1z + · · ·+ βr−1z

r−1

(z − α)r
. Then

∥∥∥H− Ĥr

∥∥∥
H2

is minimized if and only if

djH(z)
dzj

=
djĤr(z)

dzj
at z =

1
α

, for j = 0, . . . , r − 1. (9)

Proof of Lemma 1: It follows from (7) that Hr(z) has
all of its poles located at z = 0. Hence, due to Theorem
2, what remains to show is that Hr(z) satisfies (9) for
z = ∞. However, this is true as stated at the beginning
of this section; Hr(z) interpolates first r moments of
H(z) at z = ∞, i.e. the first r Markov parameters. 2

Lemma 3 Given the above set-up,

‖H(z)−Hr(z)‖H2
=

∞∑

i=r+1

| ηi |2 . (10)

Moreover, let A be diagonalizable and let A = UΛU−1 be
the eigenvalue decomposition with Λ = diag(λ1, . . . , λn).
Define κA = ‖U‖‖U−1‖ and ρA = maxi | λi |. Then

‖H(z)−Hr(z)‖H2
≤ ‖c‖2‖b‖2 κ2

A

ρ2r
A

1− ρ2
A

. (11)

Proof: (10) follows from the fact that by definition
of Hr(z) in (6), H(z) − Hr(z) =

∑∞
k=r+1 ηkz−k. To

prove (11), first use the definition of ηi = cAi−1b in
(6) and note that |ηi|2 ≤ ‖c‖2‖b‖2‖Ai−1‖2. Plugging
A = UΛU−1 into the last inequality and using ‖A‖ ≤
‖U‖‖Λ‖‖U−1‖ leads to the desired formula (11) after
realizing ‖Λ‖ = ρA < 1. 2

Remark 4 Note that (10) is a global error expres-
sion, and does not involve reduced-order matrices. Since
ρ(A) < 1, for sufficiently large values of i, η2

i will de-
crease quickly. We note that even though (10) contains
an infinite sum, since ηi = cAi−1b and ρA < 1, it
is always bounded as shown in (11). This behavior is
similar to the decay of Hankel singular values and the
error bound (10) has a similar structure to that in the
balanced truncation framework. On the other hand, (11)
gives an a priori global error bound, which can be easily
computable for small-to-medium scale problems.

Remark 5 In the case that A is not diagonalizable, one
could use the Schur decomposition of A instead of the
eigenvalue decomposition. Let A = Y(Λ + N)YT be the
Schur decomposition of A, where YYT = I, Λ is diago-
nal, and N is strictly upper triangular. Then in (11), ρA

should be replaced by ρA+ε, where ε > 0 with ρA+ε < 1,

and κA should be replaced by κε =
(
‖N‖F

ε

)2(n−1)

, where
‖N‖F denotes the Frobenius norm of N. Note that such
an ε always exists [9].

Corollary 6 For q = 1, 2, . . .,

‖G(s)−Gr(s)‖2H∞ ≤ r1−2q

2π(2q − 1)

π∫

−π

∣∣∣H(q)
(
eθ

)∣∣∣
2

dθ,

where H(q) is the qth derivative of H
(
eθ

)
with respect

to θ.

Proof: The result follows from combining (8) with
the fact that bilinear transformation preserves the H∞
norm. 2

Remark 7 If the derivatives H(q) can be computed us-
ing some quadrature rule, then Corollary 6 provides a
computable H∞ error bound for the continuous-time er-
ror system.

5 Rational Krylov Projection Framework for
FMR

In this section, we analyze FMR from a (rational
Krylov) projection framework and derive an algo-
rithm that constructs Hr(z) in (7) from H(z) using a
Krylov-based algorithm without directly computing the
Markov parameters ηi. The motivation for this analysis
is twofold. First, in the case where the spectral radius of
A is close to unity, the Krylov-based approach provides
a numerically more robust way to compute the FMR
reduced model. Second, in [18] it was proposed that
magnitudes of the Markov parameters should be used
as a guidance to select r, the size of the FMR reduced
model. We will show that the Krylov approach provides
a better way to determine an appropriate value of r.
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5.1 Projection matrices

To derive the rational Krylov framework for FMR, we
must construct matrices V and W where V and/or W
span a Krylov subspace with WT V = Ir such that the
projections

Ar = WT AV, br = WT b, cr = cV (12)

yield the matrices in (7). Since Hr(z) matches the first
r Markov parameters of H(z), it follows that the matrix
V is given by

V = [b, Ab, A2b, . . . , Ar−1b]. (13)

Eq. (13) shows that V spans a regular Krylov subspace,
hence reflecting the underlying Krylov projection frame-
work for FMR. Next, we need to determine W. Let WT

be any left inverse of V. Since WT V = Ir, one has

[WT b, WT Ab, WT A2b, . . . , WT Ar−1b] = Ir,

or equivalently WT Ai−1b = ei, i = 1, . . . , r. For this
selection of W, the resulting reduced system matrices
are given by

Ar = WT AV = WT [Ab, A2b, . . . , Arb]
= [e2, e3, . . . , er, WT Arb], (14)

br = WT b = e1, and cr = cV = [η1, η2, . . . , ηr].(15)

As can be seen from (15), br and cr are already in the
desired form (7) for any left inverse WT of V. Also, (14)
shows that the first r−1 columns of Ar have the desired
form. In order to achieve the appropriate last column
of Ar as in (7), we require W to satisfy WT V = Ir

and WT Arb = 0. The following lemma specifies this
selection of W:

Lemma 8 Let V be as given in (13). Moreover, let

[V Arb] = [Q1 q2]

[
R1 x

0 α

]
(16)

be the QR-decomposition of [V Arb], i.e. QT
1 Q1 = Ir,

qT
2 q2 = 1, QT

1 q2 = 0, R1 ∈ IRr×r is an upper-triangular
matrix, x ∈ IRr, and α is a scalar. Then, using

W = (Q1 − 1
α
q2xT )

(
R−1

1

)T
(17)

together with V in the projection (12) yields the desired
reduced-order matrices in (7), and thus an equivalent pro-
jection framework for FMR.

Proof: If we only required WT to be a left inverse of V,
a straightforward choice would be WT = R−1

1 QT
1 . How-

ever, to force the additional constraint WT Arb = 0,

this selection must be modified so that the left inverse
property still holds with the additional property that
Arb is in the kernel of WT . To achieve this, one needs
to use the QR-decomposition of the appended matrix
[V Arb]. From (16), a potential selection is of the form

WT = R−1
1 (QT

1 + zqT
2 ). (18)

We observe that this selection still satisfies WT V = 0.
So, what is left is to find the appropriate z so that
WT Arb = 0. It follows from (16) that Arb = Q1x +
q2α. Plugging this expression, together with WT as in
(18), into the equation WT Arb = 0 and solving for z

yields the solution z = − 1
α
x. Finally, using this selec-

tion of z in (18) completes the proof. 2

Remark 9 The formulation in Lemma 8 puts FMR
into a rational Krylov projection framework: one simply
uses an Arnoldi-type algorithm to compute an orthogo-
nal basis for [V Arb] = [b, Ab, A2b, . . . , Arb], which
spans a Krylov subspace. Even though the required sub-
space is a regular Krylov subspace in terms of the discrete-
time matrices, it is a rational Krylov subspace in terms
of the original continuous-time matrices. However, only
one shift has been used, and hence only one sparse decom-
position is required. Hence, this formulation of FMR can
be implemented in a numerically effective way. As noted
above, direct computation of the Markov parameters is
avoided.

Remark 10 In a systems theoretical setting, going from
H(z) to Hr(z) amounts to direct truncation of the con-
trollable canonical form of H(z). LetQ be the full control-
lability matrix for H(z), i.e. Q = [b, Ab, . . . , An−1b].
Then, the projection (12) amounts to choosing V as the
first r columns of Q and WT as the first r rows of Q−1.

5.2 Computational implementation

Even though the above analysis puts FMR into Krylov
projection framework, it uses the power basis V explic-
itly, which is numerically ill-conditioned. Here, we will
resolve this issue and show how to avoid explicit com-
putation of V while still obtaining the quantities R1,x
and α that result from the QR-decomposition of V as
defined in (16).

One can show that

A[V Arb] = [V Arb][e2, e3 . . . er+1, hr+1]
+ f eT

r+1, (19)

where hr+1 and f are vectors of appropriate size. Based
on (16) and (19), we make the following definitions:

Q := [Q1 q2], R :=

[
R1 x

0 α

]
,

4



H := [e2, e3 . . . er+1, hr+1]. (20)

Therefore, (19) becomes AQR = QRH + f eT
r+1. Mul-

tiplying this expression by R−1 from right, we obtain

AQ = QRHR−1︸ ︷︷ ︸
:=Ĥ

+ feT
r+1R

−1

︸ ︷︷ ︸
:=f̂ eT

r+1

, (21)

i.e. AQ = QĤ + f̂ eT
r+1. (22)

Eq. (22) is precisely what one would obtain if r+1 steps
of the Arnoldi algorithm were run on A and b. This is
done without explicitly forming the powers of A. How-
ever, to obtain the desired matrix W in (17), we need to
extract R from Ĥ. Because of the specific upper Hes-
senberg structures of H and Ĥ, this can be done as fol-
lows. Note that, by definition, ĤR = RH. Let ĥij and
ρij denote the (i, j)th entry of Ĥ and R, respectively.
Also, let ĥj and rj denote, respectively, the jth columns
of Ĥ and R. r1 is explicitly known: r1 = ‖b‖e1 (hence,
ρ11 = ‖b‖). Multiplying ĤR = RH with e1 from the
left yields ρ11ĥ1 = r2; hence, the second column of R
is obtained. Then, similarly, multiplication by e2 yields
r3, and so on. Continuing in this way, one extracts R
from Ĥ iteratively without forming V as desired. This
approach of obtaining R is numerically efficient since it
only requires r matrix-vector multiplications with the
small matrix Ĥ ∈ R(r+1)×(r+1). Moreover, the vector
multiplying the matrix Ĥ at the kth step has only k
non-zero entries. Upon completion of the iterative pro-
cess, one can construct the required reduced model by
re-defining V and W as

V = Q1 and W = Q1 − 1
α
q2xT , (23)

without forming the power basis. The resulting reduced-
model will have the same transfer function Hr(z) as in
(6) as desired and be only a similarity transformation
away from the state-space matrices in (7). (23) completes
the effective numerical computation of FMR through
rational Krylov projection. As explained above, this is
achieved by first running r+1 steps of Arnoldi algorithm
on A and b, then extracting R from the Arnoldi basis
and finally reducing the system via projection using V
and W in (23).

5.3 A stopping criterion for FMR

Ref. [18] proposed that magnitudes of the Markov pa-
rameters should be used as a guidance to select r, the
size of the FMR reduced model. Even though this ap-
proach works effectively for the cases where the magni-
tudes of the Markov parameters ηi decrease rapidly, it
might lead to unnecessarily large reduced-order dimen-
sion r when the ηi decrease very slowly. This can be

explained by observing that even if the magnitudes of
the Markov parameters are not decreasing, the Krylov
subspace V underlying FMR will not necessarily carry
new information with the addition of another column;
in other words, even though the ηi are not decreasing,
it is possible that the Krylov subspace V is almost rank
deficient and another column does not bring any new
information.

The new Krylov-based formulation of FMR provides an
easy and more effective way to determine an appropri-
ate value of r. We will simply monitor the rank of V and
will use this information as a stopping criterion without
computing V. There are two possible ways to achieve
this goal. The first one is simply to use the diagonal en-
tries of R as a measure for the rank deficiency of V.
Note that R is obtained iteratively at each step. Once

the ratio
R(1, 1)
R(k, k)

drops below certain tolerance, one can

deduce that V is rank deficient and the reduced model
will not be improved with an additional step since no
new information will be added to V. The second way is
to monitor the condition number of V, which is equal
to the condition number of R, by computing the singu-
lar value decomposition of R and examining the ratio
σ1(R)
σk(R)

. Once this number is below a tolerance value,

one can terminate the algorithm. We note that at the
kth step, R has dimension k×k, where k is small; hence
SVD of R is cheap. However, one still does not need to
re-compute the SVD of R at each step. The SVD of R
at the (k+1)th step can be effectively updated using the
SVD of R from the kth step since each step corresponds
adding one column to R; see, for example, [9].

6 Numerical Example

In this section, we illustrate the concepts of Section 5
by a numerical example. The full-order model we use
describes the dynamics between the lens actuator and
the radial arm position of a portable CD player; it has
120 states, i.e., n=120, with a single input and a single
output. The goal is to create a reduced model in order
to control the arm position dynamics. For more details
on this system, see [7].

We apply the original formulation of FMR and the new
rational Krylov formulation, denoted by RK-FMR,
with the frequency ω0 = 300 rad/sec and reduce the or-
der to k = 1 : 20. The results are shown in Figures 1-(a)
and 1-(b). Fig. 1-(a) depicts how the two ratios R(1,1)

R(k,k)

and σ1(V)
σk(V) evolve as k increases. The figure reveals that

the ratio R(1,1)
R(k,k) follows the behavior of the true condi-

tion number quite well. Moreover, even for k = 20, the
Krylov subspace V is full-rank, which, in turn, implies
that every iteration step brings in new information. This
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Fig. 1. FMR vs RK-FMR for ω0 = 300

can also be seen in Fig. 1-(b) which shows that the H∞
error is reduced after each step, i.e. the reduced model
is improved at each step. On the other hand, as Fig.
1-(b) illustrates, RK-FMR produces the same result
as FMR without explicit moment computation.

For the second case, we apply FMR and RK-FMR
with the frequency ω0 = 1.5 rad/sec and reduce the or-
der to k = 1 : 20 as above. The evolution of R(1,1)

R(k,k) and
σ1(V)
σk(V) , and the relative H∞ error are depicted in Fig-
ures 2-(a) and (b), respectively. As Fig. 2-(a) illustrates,
for this choice of ω0, the Krylov subspace V becomes
numerically rank deficient after a small number of itera-
tions. Once more, the ratio R(1,1)

R(k,k) predicts the behavior
of true condition number well. We set a tolerance value
as ε = 10−10 and terminate RK-FMR once R(1,1)

R(k,k) is

below ε; this is the reason why the graph of R(1,1)
R(k,k) stays

constant after k = 9 (since no more steps are taken in
RK-FMR). However, as Fig 2-(b) reveals there is al-
most no loss of accuracy in terms of the H∞ norm of
the error. Since V becomes almost rank-deficient, run-
ning FMR after k = 9 barely improves the quality of
the resulting error system. As can be seen from Fig. 2-
(b), with k = 9, RK-FMR yields a relative H∞ error
of 0.9997, while FMR with k = 20 results in 0.9995.
This indicates that, as expected from the conditioning
of the Krylov subspace V, almost no improvement has
occurred despite increasing the reduced model size from
k = 9 to k = 20.

Finally, we examine if the behavior of V for the second
case, i.e. for ω0 = 1.5, can be recovered from inspecting
the Markov parameters ηi of H(z); in other words, we
examine if magnitudes of ηi would be a reasonable stop-
ping criterion. Figure 3 plots the Markov parameters ηi

of H(z) for ω0 = 1.5 and shows that the ηi do not decay
at all; on the contrary, they grow even until k = 40. This
means that a stopping criterion based on the decay of ηi

will yield unnecessarily large reduced order, even though
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Fig. 2. FMR vs Krylov-FMR for ω0 = 1.5

this does not improve the quality of the reduced-order
model as shown in Fig. 2-(b) above. Hence, the Krylov-
based stopping criterion is more appropriate and numer-
ically effective for FMR. Moreover, monitoring the rank
of V as done in RK-FMR can also be used to deter-
mine if the choice of ω0 is poor at a much earlier stage.
In this case, simply looking at the H∞ error behavior in
Fig. 2-(b) and the decay of ηi in Fig. 3, one might decide
to continue the FMR steps expecting that the error will
decay. However, monitoring σ1(V)

σk(V) as in Fig. 2-(a) reveals
that the subspace has become rank-deficient, and that
the next step will not bring in new information; hence
one should choose a different frequency ω0.
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Fig. 3. FMR vs Krylov-FMR for ω0 = 1.5

7 Conclusions

In this note, we have developed the rational Krylov pro-
jection framework for FMR, and introduced its inter-
polation and optimality properties. A numerically effi-
cient Krylov-based setting has been illustrated to per-
form FMR and a new, more robust stopping criterion
has been proposed.
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Approximation of Large-Scale Dynamic Systems with
Lanczos Methods. Proceedings of the 33rd IEEE Conference
on Decision and Control, December 1994.

[6] K Glover. All Optimal Hankel-norm Approximations of
Linear Mutilvariable Systems and their L∞-error Bounds.
International Journal of Control, 39:1115–1193, 1984.

[7] E. Grimme. Krylov Projection Methods for Model Reduction.
PhD thesis, Coordinated-Science Laboratory, University of
Illinois at Urbana-Champaign, 1997.

[8] S. Gugercin and A. Antoulas. A survey of model reduction
by balanced truncation and some new results. International
Journal of Control, 77:748–766, 2004.

[9] S. Gugercin, D.C. Sorensen, and A.C. Antoulas. A modified
low-rank Smith method for large-scale Lyapunov Equations.
Numerical Algorithms, 32:27–55, 2003.

[10] P. Holmes, J.L. Lumley, and G. Berkooz. Turbulence,
Coherent Structures, Dynamical Systems and Symmetry.
Cambridge University Press, Cambridge, UK, 1996.

[11] K. Kunisch and S. Volkwein. Control of Burgers’
equation by reduced order approach using proper orthogonal
decomposition. Journal of Optimization Theory and
Applications, 102:345–371, 1999.

[12] J. Li and J. White. Low rank solution of Lyapunov equations.
SIAM Journal on Matrix Analysis and Applications,
24(1):260–280, 2002.

[13] Y. Liu and B.D.O. Anderson. Singular perturbation
approximation of balanced systems. International Journal
of Control, 50(44):1379–1405, 1989.

[14] L. Meier and D.G Luenberger. Approximation of Linear
Constant Systems. IEEE Trans. Automat. Contr., 12:585–
588, 1967.

[15] B.C. Moore. Principal Component Analysis
in Linear Systems: Controllability, Observability, and Model
Reduction. IEEE Transactions on Automatic Control, AC-
26(1):17–31, August 1981.

[16] C.T Mullis and R.A. Roberts. Synthesis of minimum roundoff
noise fixed point digital filters. IEEE Trans. on Circuits and
Systems, 23:551–562, 1976.

[17] L. Sirovich. Turbulence and the Dynamics of Coherent
Structures. Part 1 : Coherent Structures. Quarterly of Applied
Mathematics, 45(3):561–571, October 1987.

[18] K. Willcox and A. Megretski. Fourier series for accurate,
stable, reduced-order models in large-scale applications.
SIAM J. Scientific Computing, 26(3):944–962, 2005.

7


