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This paper proposes a data-driven strategy to assist online rapid decision-making for
an unmanned aerial vehicle that uses sensed data to estimate its structural state, uses
this estimate to update its corresponding flight capabilities, and then dynamically re-plans
its mission accordingly. Our approach comprises offline and online computational phases
constructed to address the sense-plan-act information flow while avoiding a costly online
inference step. During the offline phase, high-fidelity finite element simulations are used
to construct reduced-order models and classification criteria: proper orthogonal decom-
position approximations and self-organizing maps are combined to realize a fast mapping
from measured quantities to system capabilities. During the online phase, the surrogate
mapping is employed to directly estimate the vehicle’s evolving structural capability from
sensor data. The approach is demonstrated for a test problem of a composite wing panel
on an unmanned aerial vehicle that undergoes degradation in structural properties.

Nomenclature

amij ith coefficient of the response surface for the jth POD coefficient to approximate qm
bcij ith coefficient of the local response surface for the jth POD coefficient to approximate sc
C Number of capability quantities of interest
dd Number of remaining plies (damage depth)
E Number of elements of the FEM model
e1 Normalized root mean square error between the original snapshot q and its approximation q̃

e2 Normalized root mean square error between the original FImax and its approximation F̃Imax

emg Error between reconstructed and sensed qm using gappy norm
fm Gappy measurement vector for qm
FI Failure Index
FI Failure Index vector
FImax Maximum value of Falure Index in vector FI
FImax Vector of all FImax in the validation set
Gm Gappy POD matrix for qm
l Panel loads
`c Number of retained POD modes to approximate sc
M Number of measured quantities of interest
Nα Number of reconstructed measurement POD coefficients
Nβ Number of evaluated capability POD coefficients
Nc Number of SOM clusters
nm Number of retained POD modes to approximate qm
npod Total number of POD modes over all quantities of interest
ns Number of snapshots of the evaluation set computed for each quantity of interest
nsv Number of snapshots of the validation set computed for each quantity of interest
nv Number of state variables xi that constitute the state vector x
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nw Number of SOM weight vectors
qm mth measured quantity of interest
sc cth capability quantity of interest
t̄ Mean computational runtime computed over the evaluation set
T SOM training matrix with ns training row vectors τ i
wj jth SOM weight vector
xi ith component of state vector x
x Vehicle state vector
yd Damage centroid location along y-direction
∆y Damage size along y-direction
zd Damage centroid location along z-direction
∆z Damage size along z-direction
αmj jth POD modal coefficient for qm
α Vector of all Nα measurement POD coefficients
αg Vector of all Nα measurement POD coefficients reconstructed with gappy POD
αmg Vector of gappy reconstruction of POD coefficients for qm
βcj jth POD modal coefficient for sc
ε Strain component (µε)
λmj jth POD eigenvalue for qm
Λ Diagonal matrix of normalized POD eigenvalues
µcj jth POD eigenvalue for sc
σ Experienced stress
σmax Maximum allowable stress
ϕmj jth POD basis vector for qm
ψcj jth POD basis vector for sc
τ i ith SOM training vector collecting POD coefficients over all quantities of interest

Subscript
max Maximum value in a snapshot
min Minimum value in a snapshot
n1 Normal component along first main orthotropic axis
n2 Normal component along second main orthotropic axis
s12 Shear component on ply plane

Superscript
c Capability quantity of interest number
m Measured quantity of interest number
test Test case

I. Introduction

This paper develops computational methods to support real-time decision-making in the face of dynamic
data. Our setting is the specific challenge of an unmanned aerial vehicle (UAV) that uses sensed structural
data to estimate its structural state, uses this estimate to update its corresponding flight capabilities, and
then dynamically re-plans its mission accordingly. Figure 1 depicts the overall sense-infer-plan-act framework,
in which we seek not just to make estimates but also to characterize their uncertainties. This paper focuses
specifically on structural assessment at the wing panel level. Our strategy is to conduct simulations in an
offline phase and build a surrogate model that maps sensed quantities (strain) to structural capabilities
(failure indices). In this way, we avoid conducting an expensive inference problem in the online phase,
although we capture its essence through the offline construction of the surrogate models. The surrogate
models are approximate and intended to yield rapid first-cut estimates to support online decision-making.

Structural health monitoring and structural reliability analysis have received considerable research atten-
tion in the past decades. As stated by Ref. 1, structural health monitoring can be defined as “the process of
implementing a damage-detection strategy”; on the other hand, structural reliability assessment relates to
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Figure 1. The sense-infer-plan-act framework and our mapping strategy (offline process in black and online process in
red).

the evaluation of the probability of failure of the system. Thus, the former focuses on methods for damage
identification, while the latter deals with methods for the identification of limit state functions for binary
(failure/no-failure) problems. Since our work targets online structural assessment in order to enable dynamic
mission re-planning, we require both damage identification and system capability evaluation, thus drawing
on both fields.

There is a wide range of approaches to model-based structural health assessment. Many of these works
rely on vibration-based strategies that evaluate changes in structural properties through dynamic analysis
and modal characterization.2–4 The estimation of structural parameters via static responses (in terms of
displacements5–9 or strain10,11) is becoming more popular due to a growing interest in real-time continu-
ous structural monitoring and improvements in distributed sensing systems.12,13 Both dynamic and static
assessment strategies aim to solve a parameter identification problem with signature analysis, pattern recog-
nition, system identification and model updating being the main approaches used.12,14 Ref. 15 outlines four
levels of increasing knowledge about the condition of a damaged structure: (i) damage detection, (ii) dam-
age localization (iii) damage severity/size quantification, and (iv) remaining life prediction. The first three
steps concern the diagnosis phase, while the fourth step relates to prognosis. During the last decade, many
efforts have extended damage diagnosis to the cases of multiple cracks16–19 and delamination problems for
composite structures;13,20 other works have focused on strategies for the quantification of the uncertainties
that affect the measurements and the different levels of knowledge about the damage.21–23 In addition,
investigations using neural networks and surrogate modeling techniques have been employed for rapid online
structural assessment. A neural network approach interprets damage identification as a pattern recogni-
tion problem,1,4, 9, 24–26 while surrogate modeling allows efficient representations of the behavior of damaged
structures.16–18,27

A traditional approach to structural reliability assessment relies on first and second order reliability
methods (FORM and SORM),28 which approximate the limit state function around the most probable
points of failure. FORM and SORM work well for smooth failure surfaces characterized by one design point,
but become inefficient for more complex problems involving multiple design points. Monte Carlo sampling
is a more general but more costly approach to identify the failure surface. Many samples are needed,
especially to estimate low probability of failures (rare events), which becomes prohibitively expensive when
considering detailed models of complex structures and/or nonlinear problems. This challenge has been
addressed by using surrogate modeling techniques, such as polynomial regression, moving least-squares,
Gaussian process based interpolations (kriging models), polynomial chaos expansions, radial basis functions
and artificial neural networks, to approximate the limit state function.29–34 In particular, Ref. 30 interprets
the estimation of limit state functions as a classification problem and opens a spectrum of possible approaches
based on statistical learning. It groups the methods in three main categories: (i) probabilistic methods (e.g.,
Bayesian approaches, Fisher discriminant, radial basis functions, probabilistic neural networks), (ii) distance
based methods (e.g., nearest neighbor, classification trees, constrained topological mapping, self-organizing
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maps), (iii) boundary methods (e.g., multi-layer perceptron, support vector machines). Several strategies
for structural reliability analysis using support vector machines can be found in the literature.33,35–39 More
recent work combines reduced-order modeling (to compress the information about the state using a small
number of characteristic features), clustering algorithms (to group different response behaviors), and neural
network boundary methods (to obtain an identification of the limit state function) to address computational
cost for dynamic nonlinear problems.38,40

In this paper we focus on the use of static strain data rather than dynamic structural responses. We
propose a formulation that avoids solving an inverse for damage identification—we bypass identification
of the damage itself, and instead identify directly an estimate of the damage impact on the structural
capability. Our methodology is non-intrusive—that is, it applies generally to black-box simulation models—
and it combines computational modeling outputs with real system data. Our specific problem setup is
characterized by measured quantities of interest (strain data), a set of parameters that define the structural
state (damage location and damage extent), and output quantities of interest that represent vehicle capability
(failure indices). In the offline phase, we use high-fidelity finite element plate models and simulated data
to obtain the surrogate models and to train a clustering algorithm. In the online phase, we use parametric
proper orthogonal decomposition (POD)41–45 to obtain a reduced-order model representing the structural
response. This reduced-order model is combined with a self-organizing map (SOM),46–49 which provides a
rapid classification criterion to map measurements directly to capabilities.

Section II of this paper describes our surrogate modeling approach. In Section III we describe our specific
problem setup, which considers structural assessment of a composite wing panel, and present results for our
approach. Section IV discusses the results, and Section V presents concluding remarks.

II. Offline/online surrogate modeling approach

Our proposed approach comprises two phases: an offline phase and an online phase (Figure 2). The
following subsections describe the steps and associated methods that characterize these two phases.

II.A. The offline phase

In the offline phase, high-fidelity models are used to obtain detailed information about the system and its
possible responses for different conditions. The simulated information is then used to build a fast mapping
via surrogate models. We consider two kinds of quantities of interest:

• The quantities that are measured during flight, referred to as the measured quantities of interest. We
denote these by qm(x), m = 1, . . . ,M , where qm is the mth measured quantity of interest (generally
a vector representing a discretized field quantity) and we consider M such quantities.

• The quantities employed in the decision process that give information about capability and performance
constraints, referred to as the capability quantities of interest. We denote these by sc(x), c = 1, . . . . , C,
where sc is the cth capability quantity of interest (generally a vector representing a discretized field
quantity) and we consider C such quantities.

Both quantities of interest are functions of the vehicle state, x. Two sets of reduced-order models (ROMs)
are obtained by analyzing simulations of the quantities of interest (Figure 1). We define M ROMs that map
vehicle state to measured quantities of interest, and a second group of C ROMs that map vehicle state into
capability quantities of interest.

II.A.1. Parametric proper orthogonal decomposition for measurement and capability quantities of interest

We derive the two sets of ROMs using parametric proper orthogonal decomposition (POD). This requires
sampling over different vehicle states, {xi}ns

i=1, and computing the corresponding measurement vectors
{qim}ns

i=1, m = 1, . . . ,M , and capability vectors {sic}ns
i=1, c = 1, . . . , C. These sampled vectors are re-

ferred to as “snapshots”, where the superscript i denotes the ith snapshot, qim ≡ qm(xi), sic ≡ sc(x
i), and

we compute ns snapshots for each quantity of interest. Then for each quantity of interest we compute a
POD basis in the standard way: we assemble the snapshot matrix, which has ns columns containing the
snapshots of that quantity of interest; we compute the singular value decomposition of the snapshot matrix;
and we retain the dominant left singular vectors as the POD basis vectors, ranked in order of importance
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Figure 2. Diagram of the offline (black boxes) and online (red boxes) steps of our approach: POD models and clusters
are obtained offline and employed online as indicated by the gray arrows.

by the magnitude of their corresponding singular value. To improve numerical conditioning and avoid the
magnitude of the first singular value numerically dominating all others, we first compute the average quantity
of interest over its snapshot set and subtract that mean from each snapshot. The POD was chosen because
it has been shown to be effective in compressing high-dimensional information arising from discretized fields
such as those in our problems of interest. For problems of the kind we consider here, the POD often leads to
efficient yet accurate low-dimensional representations; however, our modeling and reconstruction approach
is general and could be applied to other representations of the quantities of interest (e.g., other choices of the
basis). The key is that the representation be low-dimensional, since online costs will scale with the number
of coefficients in the approximations.

For each measurement quantity of interest, qm, we denote the POD basis by {ϕmj }ns
j=1, where ϕmj is the

jth POD basis vector for qm. The corresponding POD eigenvalues are given by the squares of the singular
values, and for qm are denoted as {λmj }ns

j=1. The importance of a given POD mode is often assessed by the

normalized magnitude of its eigenvalue, that is by the quantity λmj /λ̄
m, where λ̄m =

∑ns

j=1 λ
m
j . The ratio

λmj /λ̄
m represents the relative energy (measured in terms of L2-norm) captured by the jth basis vector, thus

the quantity
∑j
i=1 λ

m
i /λ̄

m is referred to as the cumulative energy recovered by the first j dominant modes.
Similarly, for each capability quantity of interest, sc, the POD basis is denoted {ψcj}ns

j=1, with corresponding

POD eigenvalues {µcj}ns
j=1. We also define µ̄c =

∑ns

j=1 µ
c
j , giving the relative importance of POD mode ψcj as

µcj/µ̄
c and the related cumulative energy as

∑j
i=1 µ

c
i/µ̄

c.
The surrogate model for each quantity of interest is defined using its POD basis. For the measurement
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quantities of interest, the POD models are:

qm(x) ≈ q̄m +

nm∑
j=1

αmj (x)ϕmj , m = 1, . . . ,M, (1)

where q̄m is the average value of qm over the snapshots {qim}ns
i=1, nm ≤ ns is the number of POD basis

vectors retained in the approximation of qm, and αmj (x) is the POD modal coefficient for the jth POD basis
vector ϕmj . Similarly, for the capability quantities of interest, the POD model is:

sc(x) ≈ s̄c +

`c∑
j=1

βcj (x)ψcj , c = 1, ..., C, (2)

where s̄c is the average value of sc over the snapshots {sic}ns
i=1, `c ≤ ns is the number of POD basis vectors

retained in the approximation of sc, and βcj (x) is the POD modal coefficient for the jth POD basis vector
ψcj .

II.A.2. Clustering of similar states in the POD coefficients space using self-organizing maps

The next step in our approach is to create a model that maps the measurement POD coefficients αmj (x) to
the capability POD coefficients βcj (x). This mapping could be done in a variety of ways. Here, we use a
neural network classifier combined with a polynomial mapping of the coefficients. In particular self-organizing
maps (SOM) are chosen as the clustering algorithm.46,48 To train the SOMs, we must define the training
matrix, which collects all the training data. In our case, the training data are the POD modal coefficients
corresponding to all the snapshots. That is, for each sampled xi, we have the corresponding coefficients
αmj (xi), j = 1, . . . , nm, m = 1, . . . ,M , and βcj (x

i), j = 1, . . . , `c, c = 1, . . . , C. We define Nα =
∑M
m=1 nm

to be the total number of retained measurement POD modes and, similarly, Nβ =
∑C
c=1 `c to be the total

number of retained capability POD modes; accordingly, npod = Nα +Nβ is the total number of POD modes
over all quantities of interest. For each snapshot xi, we collect all its POD coefficients in the npod-dimensional
vector τ i. The training matrix T is then the ns × npod matrix defined as

T = [τ 1, τ 2, . . . , τns
]>. (3)

The SOM is built from this set of training data. In the training phase, the SOM computes a set of nw
weight vectors, wj , j = 1, . . . , nw, each of dimension npod. These weight vectors (the neurons) are computed
using an iterative unsupervised learning process that clusters similar training vectors.50–52 Each cluster is
characterized with a representative weight vector (neuron) that can be interpreted as the centroid/prototype
of the cluster, although not all the nw weight vectors of the SOM network end up leading a cluster (Nc ≤ nw).
For further details about SOMs we refer the reader to Ref. 46–49.

During the SOM training phase, a given training vector τ i is associated with its closest cluster, found
by minimizing a distance metric. Typically, the cluster k chosen for τ i is found by

k = arg min
j∈1,...,nw

{‖τ i −wj‖}. (4)

In our particular setting, we modify the distance metric to have better coverage along the most important
directions (i.e., those directions corresponding to the dominant POD modes for each quantity of interest).
To achieve this, we define a scaled L2-norm using the POD eigenvalues:

‖τ i −wk‖Λ =
√

(τ i −wk)>Λ(τ i −wk), (5)

where Λ ∈ Rnpod×npod is a diagonal matrix whose entries are the normalized POD eigenvalues:

Λ = diag

({{λmj }j=1,...,nm

λ̄m

}
m=1,...,M

,

{{µcj}j=1,...,`c

µ̄c

}
c=1,...,C

)
. (6)

The distance defined by (5) is the criterion by which SOM groups the input dataset in T into Nc clusters.
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II.A.3. Local response surface models for capability POD coefficients βcj (α)

In the last step of the offline phase, each cluster is characterized by models that express each retained
coefficient βcj as a function of the measurement POD coefficients. For each cluster, we build a local polynomial
response surface model (noting again that other representations could be employed) for each capability POD
coefficient βcj (x) as a function of the measurement POD coefficients α = {αmj (x)}j=1,...,nm

m=1,...,M
. This then

completes the mapping from measurement quantities of interest to capability quantities of interest.

II.B. The online phase

The online phase is characterized by the need to process information rapidly in order to make a decision.
During this phase, sensors provide data on the measurement quantities of interest. We use the gappy POD
method53,54 to rapidly reconstruct the measurement POD coefficients αmj given the sensor measurement
data q̂m.

II.B.1. Reconstruction of measurement POD coefficients using gappy POD

Consider reconstruction of the mth measured quantity of interest qm. Given a partial measurement q̂m,
which contains only those elements of qm that correspond to sensor locations, we wish to reconstruct a full
estimate q̃m. Using the POD model, q̃m can be expressed as follows:

q̃m = q̄m +

nm∑
j=1

αmj ϕ
m
j . (7)

The gappy POD method estimates the POD coefficients αmj by minimizing the so-called “gappy norm” of
the error emg between the reconstructed q̃m and the sensed data q̂m:

emg = ‖q̂m − q̃m‖2g, (8)

where g indicates the gappy norm which computes the L2-norm only over those elements of the vectors
corresponding to available sensed data. The POD coefficients αmg = [αm1 , α

m
2 , . . . , α

m
nm ]> that minimize (8)

can be shown to satisfy the linear system of equations:

Gmαmg = fm, (9)

where the ijth entry of the matrix Gm is Gmij =
(
ϕmi , ϕ

m
j

)
g
, the ith entry of the vector fm is fmi = (q̂m, ϕ

m
i )g,

and (·, ·)g denotes the gappy inner product which again considers only those elements in the vectors that
correspond to the available sensed data. The POD coefficients αmj are reconstructed for the M measured

quantities of interest and collected in αg =
[
(α1

g)
>, ..., (αMg )>

]
.

II.B.2. Classification of the reconstructed measurement POD coefficients αg into the closest SOM cluster

The estimated POD coefficients αg are then used to assign the sensed condition to one of the Nc SOM
clusters. To perform this classification, the first step is to choose the closest cluster, using the distance
metric weighted with the POD eigenvalues, as defined in (5), such that:

k = arg min
j∈1,...,Nc

{‖τ i −wj‖Λα}, (10)

where ‖ · ‖Λα indicates that the weighted norm is computed only over the coefficients αg, that is, over the
first Nα elements of the vectors. More specifically, recall that τ i = [αg, β

1
1 , β

1
2 , ..., β

1
`1
, β2

1 , ..., β
C
`C

], and at this
stage of the online mapping we know only the values of the elements that correspond to the measurement
coefficients reconstructed via gappy POD and collected in αg. The last Nβ elements of τ i are still unknown
(and will be estimated in the next step); thus, they are not used in computing the distance in (10).
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Figure 3. Panel layout and layer sequence. Panel state variables: damage location, damage size, and load definition.

II.B.3. Approximation of the capability POD coefficients βcj (αg) using local response surface models

In the offline phase, we characterized each cluster by a set of polynomial response surface models that
express each retained coefficient βcj as function of the Nα measurement POD coefficients. Therefore, once
αg is obtained and the closest cluster k is identified, using these response surface models the unknown
capability coefficients are estimated as polynomial functions of the reconstructed measurement coefficients
such that βcj (αg) ≈ βcj (x).

II.B.4. Estimation of capability quantity of interest s̃c(αg)

In the last step of the online phase, given the approximated βcj coefficients, the capability quantities of
interest are estimated as a combination of the corresponding POD modes using the expansion (2):

s̃c(αg) = s̄c +

`c∑
j=1

βcj (αg)ψ
c
j , c = 1, ..., C. (11)

The entire process described in Sections II.B.1 to II.B.4 exploits the map from measurements directly to
capability quantities of interest, thus avoiding the need to infer the actual state of the system. The process
is efficient because it focuses on reconstruction of a small number of POD coefficients αmj and βcj . Figure 2
summarizes the offline and online steps of the overall approach.

III. Application

The methodology described in Section II is applied to a structural capability assessment problem. We
first describe the problem setup, then apply our approach. We provide a detailed assessment of errors and
present computational runtime results.

III.A. Problem setup and data collection

Our specific test problem considers an 18 × 18 square-inch composite wing panel. The panel is made up of
four plain weave carbon fiber plies with the symmetric stacking sequence [45◦, 0◦, 0◦, 45◦] such that the whole
panel behaves in a quasi-isotropic manner. Four clamped edges define boundary conditions that simulate
the presence of fastening bolts along the panel perimeter. The border area that hosts the holes is reinforced
with two additional woven plies with orientation 0◦ and 45◦. Figure 3 shows the panel layout and a sketch
of the section with the layer sequence.

A high-fidelity finite element method (FEM) model of the panel is employed to simulate and analyze the
panel behavior under different loading and damage scenarios: the specific FEM solver we use is NASTRAN.
The model has E = 3921 two-dimensional laminate plate elements: mostly quadrilateral elements with four
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nodes and a few triangular elements with three nodes for transitional locations in proximity of the bolt
holes, characterized by the properties of the carbon fiber composite layup. The loading is specified, where
the loads are defined by a prescribed aircraft maneuver. For the simulations presented in this paper, the
loading conditions (indicated with l in Figure 3) are fixed and represent a uni-axial compression load applied
in terms of imposed nodal displacements of −0.01 in. The panel has four clamped edges and fastening bolts
placed in the holes along the perimeters. The presence of damage is simulated by weakening the stiffness
properties of the FEM elements that belong to the prescribed damaged area. This model is used to explore
the state space and generate the snapshot sets by evaluating, for each condition, the measured quantities of
interest and the capability quantities of interest.

This problem setup provides a representative test case that relates to our motivating application of a
wing panel on a UAV. This particular choice of geometry, boundary conditions and material properties is
also motivated by ongoing experimental efforts that will provide experimental data to further investigate our
approach. However, it is also important to note that the methodology proposed in this paper is general; our
method is directly applicable to other problem setups, including those that might stretch beyond structural
analysis. In particular, one attractive feature of our approach is that the simulation data used to build the
POD models and the coefficient mappings can be obtained from black-box simulation models, with no need
to access the details of the governing equations or the specific numerical simulation implementation.

The complete structural state is defined by three classes of parameters: (1) the panel layout and boundary
conditions, (2) the maneuver and related load cases, and (3) the characteristics of the damage. The first
two sets of parameters indicate the panel features and loading (l); in our analysis, these are considered
fixed as shown in Figure 3. The damage characteristics then define our state variable vector x. Referring
to Figure 3, the state vector x is given by five components prescribing damage size along the y-direction
(∆y), damage size along the z-direction (∆z), damage centroid location along the y-direction (yd), damage
centroid location along the z-direction (zd), and damage depth in terms of number of remaining undamaged
plies (dd):

x = [∆y,∆z, yd, zd, dd]
>. (12)

The measured quantities of interest are the components of strain. We consider a specific case where the
strain gauges are placed on ply 4 and distributed so that three components of strain can be measured: the
normal components along the main orthotropic axes of the ply (εn1 and εn2), and the shear component (εs12)
on the ply plane. Our three measurement quantity of interest vectors, q1(x),q2(x),q3(x), contain the finite
element representations of the discretized strain fields εn1

(x), εn2
(x) and εs12(x), respectively. Thus, each

qm vector has dimension equal to the number of elements in the FEM mesh.
The capability quantity of interest is the failure index (FI), which is an indicator of the structural condi-

tion that is translated into a scaling factor for maneuver parameters. FI is defined as the ratio between the
experienced stress σ and the maximum allowable stress σmax (i.e., the compression/tension/shear strengths
that are characteristic properties of the material) for each element in the FEM mesh. For each ply, five
failure modes and their related maximum allowable stresses are considered, namely compression along the
main orthotropic axes of the ply (Cn1

and Cn2
), tension along the main orthotropic axes of the ply (Tn1

and
Tn2

), and shear on ply plane (Ss12). The application of these criteria to the stress field, obtained by running
the FEM model of the panel, provides a set of FI(x) values for each discrete plate element (e = 1, ..., E), for
each ply (ply = 1, ..., 6), and for each failure mode (mode = Cn1 ,Cn2 ,Tn1 ,Tn2 ,Ss12) considered:

FImode(e, ply,x) =
σmode(e, ply,x)

σmode
max

. (13)

We condense the resulting large set of data to define a vector FI that contains for each element the maximum
failure index computed over the five failure modes and over all plies:

FI(x) =

{
max

ply, mode

(
FImode(e, ply,x)

)}E
e=1

. (14)

The vector FI(x) then defines our single capability quantity of interest, s1(x), which has dimension equal to
the number of elements (E) in the FEM mesh.

Table 1 summarizes the state variables, measured quantities of interest, and capability quantities of
interest for our particular problem setup. In order to apply and test our proposed offline/online approach,
we use the FEM model to generate samples of the quantities of interest: three measurement quantities εn1

,
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Table 1. Problem setup: state variables, measurement quantities of interest, and capability quantities of interest.

State variable x = [x1, x2, x3, x4, x5]> notation unit dimension

x1 damage centroid coordinate along y-direction yd [in] 1

x2 damage centroid coordinate along z-direction zd [in] 1

x3 damage size along y-direction ∆y [in] 1

x4 damage size along z-direction ∆z [in] 1

x5 damage depth as undamaged remaining plies dd [plies] 1

Measured quantities of interest {qm}Mm=1 M = 3 notation unit dimension

q1 normal strain component along first orthotropic axis εn1
[µε] 3921

q2 normal strain component along second orthotropic axis εn2
[µε] 3921

q3 shear strain component on ply plane εs12 [µε] 3921

Capability quantities of interest {sc}Cc=1 C = 1 notation unit dimension

s1 failure index FI [-] 3921

εn2
and εs12 , and one capability quantity FI. Two Latin hypercube explorations of the state-space over the

ranges defined in Table 2 yield reference data for different cases of damage size and damage locations. We
use the Latin hypercube sampling implemented in the MATLAB R© function lhsdesign. In particular, we
choose the criterion correlation such that the sampling is progressively improved with an iterative reduction
of samples correlation, leading to a Latin hypercube design with improved orthogonality properties.55–57 We
generate a first set of ns = 3000 snapshots, which constitutes the evaluation set used to obtain our surrogate
models during the offline phase, and a second validation set of nsv = 500 snapshots, which are used to test
the performance of the online mapping strategy.

Table 2. State variables and related bounds of variation for snapshot generation. Evaluation set: ns = 3000 snapshots,
sampled using a Latin hypercube. Validation set: 500 snapshots, sampled using a Latin hypercube.

state variable min value max value units

∆y 2 8 [in]

∆z 2 8 [in]

yd 4 14 [in]

zd 4 14 [in]

dd 1 3 [plies]

III.B. Application of the surrogate modeling approach

According to the procedure described in Section II.A.1, ROMs are obtained for each quantity of interest,
q1(x) = εn1

(x), q2(x) = εn2
(x), q3(x) = εs12(x), and s1(x) = FI(x). Figure 4 shows the POD eigenvalue

spectra for all four quantities of interest, while the related cumulative energies (defined in Section II.A.1)
are plotted in Figure 5. The circles in Figure 5 indicate the number of modes retained for each POD
approximation to recover the 95% of cumulative energy, with the specific numerical results quoted in each
figure. Note that, as discussed below, we can employ fewer POD modes than those indicated in Figure 5 in
the final mapping to estimate the capability with βcj (α).

Figures 6, 7 and 8 compare the FEM and the POD approximations of the three strain components for
a case where the panel has a 7.85 × 7.91 square-inch damaged region located at (yd = 5.47, zd = 7.15) that
involves plies 4 to 6 (i.e., xtest = [7.85, 7.91, 5.47, 7.15, 3]). For the same case, Figure 9 shows the reference
FEM estimate of FI and Figure 10 plots its representation in the POD basis (i.e., the approximation using
the actual POD coefficients, but not yet using any online reconstruction). Figures 6–8 demonstrate that

10 of 22

American Institute of Aeronautics and Astronautics



0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

10
5

Strain n1 - εn1

POD modes

λ
i

(a)

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

10
5

Strain n2 - εn2

POD modes

λ
i

(b)

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

10
5

Strain s12 - εs12

POD modes

λ
i

(c)

0 500 1000 1500 2000 2500 3000
10

−20

10
−15

10
−10

10
−5

10
0 Failure Index - FI

POD modes
λ
i

(d)

Figure 4. POD eigenvalues for the modes computed from ns = 3000 snapshots for each quantity of interest.
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Figure 5. Cumulative energy,
∑i
j=1 λ

m
j /λ̄

m and
∑i
j=1 µ

c
j/µ̄

c, for each POD mode i computed from the ns = 3000 snapshots

for each quantity of interest. Circles denote the number of modes retained for each POD approximation, recovering
the 95% of the cumulative energy.
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the POD models do a reasonable job of approximating the strain fields, although they do not represent
accurately the local fields around the damaged region. However, our goal is not to recover these fields fully,
but rather to use sparse sensor measurements of strain to infer the coefficients of the failure index POD
model, and ultimately to assess the panel’s structural integrity.

We next assess the error induced by approximating the FI POD coefficients as function of the strain POD
coefficients. For this step, we find that we can use many fewer POD modes to create an acceptable mapping
than are needed for full reconstruction of the field. Thereafter, we set a filter to down-select the modes to be
retained for the online overall mapping: for each cluster, we preserve only the POD coefficients that achieved
a reconstruction percentage error less than 30% on the evaluation set. This error level is set according to
the evaluation data during the offline training; although it seems quite a high value by itself, we will see in
Section III.C that it leads to a final mapping characterized by small errors. In the particular test case under
consideration, this criterion translates into including in the mapping only the dominant seven POD modes
for the capability quantity of interest (Nβ = 7). However, the number of POD modes Nβ retained for the
capability estimate changes for different cases, depending on the cluster into which they are classified.

The next step is to use the response surface models that characterize the closest cluster to estimate the
unknown capability POD coefficients. In this example, we use linear response surface models, so that each
capability POD coefficient is represented as a linear function of the retained measurement POD coefficients.
In this example, we obtain appropriate models for βcj = βcj (α) in each cluster (that is, on each subdomain in
the POD coefficient space), using local response surface models that depend only on six measurement POD
coefficients, the two dominant POD modes for each measurement quantity of interest:

β1
j (α) = b10j + b11jα

1
1 + b12jα

1
2 + b13jα

2
1 + b14jα

2
2 + b15jα

3
1 + b16jα

3
2 j = 1, ..., Nβ . (15)

Figure 11 shows the resulting approximation of the FI distribution given by the POD with the SOM mapping.
Section IV) provides more discussion on the tradeoffs of selecting the number of POD coefficients to include
in the mapping.

Finally, Figure 12 shows the full online approach (Section II.B): the coefficients of the measurement
POD approximations are reconstructed from sparse strain sensor data using the gappy POD, and then the
capability POD coefficients are estimated from the SOM mapping. For all figures, the test case is again xtest

and the gappy POD estimate is obtained from incomplete distributions of strain components missing 50%
information, that is, we consider the case where we have online sensor measurements at half the FEM grid
points.

To summarize the results, Figure 9 shows the original FEM estimate of the FI over the panel and
Figure 12 shows the final result using our approach described in Section II. Figures 10 and 11 demonstrate
the intermediate cumulative errors due to the POD approximation and the SOM mapping. Section III.C
provides a quantitative assessment of the method’s performance over the full validation set, giving the reader
a better idea of how the method performs for difference damage cases. For completeness, we also include
field plots for two additional test cases within the validation set in the appendix. Figures 16 and 18 in the
appendix show the original data, while Figures 17 and 19 display the final approximations provided by the
complete online rapid mapping procedure. Overall, as will be seen quantitatively in the next section, the
reconstructions of the failure indices over a large range of test cases are sufficiently accurate to provide a
first-cut assessment for online decision-making.

12 of 22

American Institute of Aeronautics and Astronautics



0 5 10 15
0

2

4

6

8

10

12

14

16

18

y location

z
lo
ca
ti
o
n

Original

 

 

−800

−600

−400

−200

0

200

400

600

(a) Ply 4 - Original FEM data
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Figure 6. Strain εn1 (microstrain [µε]) for xtest = [7.85, 7.91, 5.47, 7.15, 3]: comparison between FEM reference data

q1(xtest) = εn1
(xtest) and POD approximation q̃1(xtest) = q̄1 +

∑n1
j=1 α

m
j (x)ϕmj , n1 = 176. e1 is the normalized root mean

square error defined in Eq. (16).
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Figure 7. Strain εn2
(microstrain [µε]) for xtest = [7.85, 7.91, 5.47, 7.15, 3]: comparison between FEM reference data

q2(xtest) = εn2 (xtest) and POD approximation q̃2(xtest) = q̄2 +
∑n2
j=1 α

m
j (x)ϕmj , n2 = 152. e1 is the normalized root mean

square error defined in Eq. (16).
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Figure 8. Strain εs12 (microstrain [µε]) for xtest = [7.85, 7.91, 5.47, 7.15, 3]: comparison between original FEM data

q3(xtest) = εs12 (xtest) and POD approximation q̃3(xtest) = q̄3 +
∑n3
j=1 α

m
j (x)ϕmj , n3 = 143. e1 is the normalized root

mean square error defined in Eq. (16).
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Figure 9. Failure Index FI, Ply 4 for xtest = [7.85, 7.91, 5.47, 7.15, 3]: original FEM data s1(xtest) = FI(xtest).
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Figure 10. Failure Index FI, Ply 4 for xtest = [7.85, 7.91, 5.47, 7.15, 3]: approximation with 153 POD modes, computed

with direct projection from the FEM solution (no reconstruction), s̃1(xtest) = s̄1 +
∑`1
j=1 β

c
j (x)ψcj , `1 = 153. e1 is the

normalized root mean square error defined in Eq. (16).
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Figure 11. Failure Index FI, Ply 4 for xtest = [7.85, 7.91, 5.47, 7.15, 3]: approximation using POD coefficients computed

from SOM mapping, s̃1(α) = s̄1 +
∑Nβ
j=1 β

c
j (α)ψcj , Nβ = 7. e1 is the normalized root mean square error defined in Eq. (16).
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Figure 12. Failure Index FI, Ply 4 for xtest = [7.85, 7.91, 5.47, 7.15, 3]: approximation using POD coefficients reconstructed

from sensor data using gappy POD and SOM mapping, s̃1(αg) = s̄1 +
∑Nβ
j=1 β

c
j (αg)ψcj , Nβ = 7. e1 is the normalized root

mean square error defined in Eq. (16).

III.C. Error assessment

An analysis of the kind reported in Section III.B is replicated for each of the nsv = 500 snapshots in the
validation set. We define the normalized root mean square error (e1) between an approximated quantity of
interest q̃ and its corresponding “truth” solution q as

e1 =
‖q̃− q‖2√

E(qmax − qmin)
× 100%. (16)

In this expression, the generic vector q represents the original FEM snapshot corresponding to any one of
the measured or capability quantities of interest (i.e., the three strain components εn1 , εn2 , εs12 or the failure
index FI). The quantities qmax and qmin are, for each snapshot q, the maximum and minimum values among
its E elements, respectively. The generic vector q̃ represents our approximation of q. This approximation
could be achieved in a number of different ways: it could be the POD approximation of εn1

, εn2
and εs12

for the measured quantities of interest, or it could be the different estimates of the capability quantity of
interest FI given by POD, POD+SOM or POD+gappy+SOM. Its specific meaning will be clear when we
report numerical results. All approximations are compared to the original values provided by the FEM
simulations and normalized with the quantity

√
E(qmax − qmin).

Figure 13 plots histograms of the normalized root mean square error e1 for the entire validation set
(nsv = 500 cases). Table 3 shows the minimum, maximum and mean values of e1 for each of these cases,
where ē1 denotes the mean value of e1 over the validation set.

Next, we assess our ability to estimate the maximum value of FI experienced by the structure over all
elements, which we denote as FImax:

FImax = max
e
{FI} e = 1, ..., E. (17)

For this specific quantity we consider the normalized root mean square error e2 evaluated over the validation
set and defined as follows:

e2 =
‖F̃Imax − FImax‖2√

nsv ((FImax)max − (FImax)min)
× 100%. (18)

Table 3. Normalized root mean square errors (e1): mean (ē1), maximum, and minimum values computed over the 500
snapshots in the validation set for various levels of approximation of the POD coefficients.

εn1

POD
εn2

POD
εs12

POD
FI
POD

FI
POD+SOM

FI
POD+gappy+SOM

ē1 (%) 4.3450 2.4278 3.3419 0.9470 1.0763 1.0378

maximum e1 (%) 9.4305 7.5604 8.2350 2.0857 2.3610 2.1860

minimum e1 (%) 2.5804 0.8986 1.4425 0.4144 0.4401 0.5506
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Figure 13. Normalized root mean square error (e1) distributions for the 500 snapshots in the validation set.

FImax = {FIimax}nsv
i=1 is a vector collecting the FImax “truth” values provided by the FEM reference data for

the nsv = 500 points in the validation set. Similarly, the vector F̃Imax = {F̃Iimax}nsv
i=1 collects the related

approximations provided by POD, POD+SOM, or POD+gappy+SOM. (FImax)max and (FImax)min are the
maximum and minimum values of the reference FImax among the nsv points of the validation set. Figure 14
compares the values of FImax estimated by the FEM and the POD approximations for the snapshots in the
validation set. The figure also shows the corresponding normalized root mean square error e2, indicating
promising performance of the strategy.

Note that the approximation of FI obtained with POD and POD+SOM are intermediate steps evaluated
here to provide insight to the strategy, but would not actually be used as approximations in a practical
application of our method. These two intermediate approximations do not use the gappy POD to reconstruct
the measurement POD coefficients, α; instead each αmj (x) is approximated with a different polynomial
quadratic response surface model:

α̃mj (x) = am0j +

nv∑
i=1

amijxi +

nv∑
i<k

amikjxixk +

nv∑
i=1

amiijx
2
i ≈ αmj (x),

where ai are the coefficients of the response surface model and x = [x1, . . . , xnv ]> is the nv-dimensional
state vector. For this particular example, reconstruction of the measurement coefficients via gappy POD
leads to a final better approximation of the overall capability snapshot than using the α̃ given by the set
of response surface models defined above. This is the reason for the smaller values on average of e1 for
the POD+gappy+SOM estimates (Figure 13(f)) with respect to the POD+SOM approximations (Figure
13(e)) and the corresponding smaller mean value ē1 reported in Table 3. In general, the relative errors of
the various levels of approximation will depend on the case at hand, as well as the quantity and quality of
available sensor data.
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Figure 14. Comparison of estimated FImax between FEM and POD models.

III.D. Computational runtimes

The procedure has been implemented in MATLAB R© and tested on an Intel Core i7-2600 @ 3.40 GHz.
Table 4 shows the runtime for each step of the online phase, as well as the cumulative runtime for the
complete mapping. The table reports the mean values t̄ over the entire validation set. On average, the
entire online procedure mapping from data to capability estimates executes in 7.5 ms. In the next section
we discuss how this computational cost scales with the size of the models and representations.

Table 4. Mean runtime (t̄) evaluated over the 500 snapshots in the validation set for each step of the online phase.

Online mapping phase t̄ [ms]

αg reconstruction 6.579

coefficients clustering 0.799

βcj RS approximation 0.038

capability final estimate 0.081

Complete online mapping 7.498

IV. Discussion

This section discusses the role of the tuning parameters Nα, Nβ and Nc, including a discussion of the
criteria that drive their choice and the way they affect the procedure in terms of cost and accuracy.

For the general approach presented in Section II, the cost of the online process depends on three param-
eters: (i) the overall number of measurement POD coefficients to be reconstructed from the sensed data,
Nα, (ii) the overall number of capability POD coefficients to be evaluated as a function of measurement
POD coefficients, Nβ , and (iii) the number of clusters that characterize the space of POD coefficients, Nc.
Recall that, given sensor data, we first recover the Nα measurement POD coefficients via gappy POD, then
classify the result into the closest cluster among the Nc available clusters. Then the Nβ capability POD
coefficients are evaluated as functions of the Nα measurement POD coefficients according to the polynomial
relationships associated with the chosen cluster.

The accuracy of the overall mapping relies not only on the number of POD modes we consider in our
approximations, but also on the quality of the estimated POD coefficients. Therefore, the selected αmj and
βcj should be well reconstructed and should also represent the dominant POD modes. In our numerical
experiments, these two conditions largely overlap—most likely because the dominant POD modes generally
represent the smoothest spatial modes, which are most informed by sparse sensor data. Because of this,
choosing a small number Nα of POD measurement coefficients to reconstruct does not introduce significant
errors in the final result. Similarly, choosing a small Nβ captures the most important information and yields
satisfactory results. In contrast, the choice of Nc is a trade-off between a good characterization of the training
set and avoidance of over-fitting.
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The measurement POD coefficients αmj contribute to the online mapping in two ways: (i) the identification
of the closest SOM cluster according to (10), and (ii) the response surface approximations of capability POD
coefficients βcj (α). The choice of Nα is thus a tradeoff between computational cost (cost of the mapping scales
with the number of coefficients), and the risk of misclassification for task (i) and poor estimation for task
(ii). We note that it is not necessary to use the same number of coefficients for both tasks. In the examples
shown in Section III, we found that a successful strategy is to use a higher number of coefficients to identify
the SOM cluster and a reduced number of coefficients to construct the response surface approximations.

For the capability POD coefficients βcj , the number of modes retained for the final estimate of the
capabilities varies for different cases, according to the cluster into which they are classified. Thus, the
methodology allows naturally for adaptivity over the state space. This is determined offline, where we
employ the training vectors grouped into a given cluster to determine the set of characteristic response
surface models for βcj (α). The specific elements of βcj included in the model for a given cluster (and the
corresponding number of coefficients) are determined by evaluating the reconstruction error using the set of
evaluation snapshots. This means that Nβ differs for each cluster and the retained modes are not necessarily
those corresponding to the largest POD eigenvalues. In our test cases, we observe that it is usually the
dominant POD modes that are selected, while the reconstruction accuracy decreases for higher order modes,
leading them to be discarded.

Finally, the number of clusters Nc is determined offline and represents an output of the SOM training.
Since each neuron of the SOM network can become the centroid of a cluster, the maximum number of
possible clusters is given by the overall number of neurons nw that constitute the network, that is Nc ≤ nw.
Therefore, Nc is limited by the size of the network chosen to characterize the space of the POD coefficients.
Moreover, since the number of training vectors in the evaluation set is limited, the final value of Nc must
guarantee a minimum number of vectors in each cluster in order to have the necessary samples with which
to construct the local response surface models.

To demonstrate some of these tradeoffs for our test problem, Figure 15 shows two limiting cases, both
assessed for all snapshots in the validation set. In Figure 15(a), instead of considering a POD approximation
of the full capability quantity of interest FI, we map directly to the scalar value of FImax. In this case SOM
is trained with a matrix T that includes the FImax values for each snapshot but excludes the capability POD
coefficients βcj . This option reduces the number of operations in the online phase, but does not provide any
information about the distribution of FI. It shows a small improvement over Figure 14(c). In Figure 15(b),
we use only a single cluster, Nc = 1. This amounts to using the same mapping relationship between βcj and
the αmj coefficients for the entire space of coefficients. In other words, we replace the SOM with a simple
polynomial mapping between measurement and capability POD coefficients. Figure 15(b) shows that this
simplification leads to a larger error. This approach could be suitable for simpler problems, but does not
perform well in our application case.
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Figure 15. Comparison of FImax between FEM and POD approximation for limiting cases.

The discussion in this section provides qualitative guidance in selecting the three algorithm tuning pa-
rameters Nα, Nβ and Nc. For a given problem, quantitative selection can be achieved in a systematic way
through careful analysis of the method’s performance on the set of evaluation snapshots. It is also important
to note that the specific tradeoffs that inform these choices will depend not only on the problem at hand, but
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also on the available resources (quantity/quality of sensor data and online computational time requirements).

V. Conclusions

This paper proposes an offline/online strategy for the data-to-decision problem of on-board structural
assessment. The strategy invokes multiple sources of information—high-fidelity finite element model simu-
lations, sensor data, low-fidelity approximations of the quantities of interest—and reduced-order modeling
techniques. Our approach combines proper orthogonal decomposition and self-organizing maps to obtain a
fast mapping from measurements to capabilities. The approach is demonstrated for assessment of a dam-
aged composite panel of a UAV wing, in which strain components are measured and the failure index is the
capability quantity of interest. The methodology permits a choice among several levels of assessment of a
damaged structure in order to meet different requirements or different constraints in resource availability.
For example, one could pursue a complete diagnosis of the damage using a reconstruction of the failure
index distribution over the panel, or one could assess the structure capability directly with an estimate of
maximum failure index. Furthermore, the accuracy of the assessment can be controlled through the complex-
ity of the models invoked, from expensive finite element models to cheaper reduced-order approximations.
The demonstration of structural assessment of a wing panel presented here shows that the approach is a
promising strategy to enable on-board data-driven decision-making. Further developments require a deeper
investigation of the interface with actual sensor data, consideration of sensor noise, consideration of compu-
tational resource allocation, and the extension of the state variable to consider loading provided by realistic
maneuver simulations. Another important open question relates to the fidelity of the FEM model itself, here
taken to be our reference solution. The use of actual sensor data will provide an avenue to investigate this
question and its impact on decision-making.

Appendix

We present here detailed results for two additional test cases within the validation set. Compared
to the results presented in the main body of the paper, the first additional test case here considers a
smaller damage region but with two plies unaffected. The damage state vector for this case is xtest =
[2.99, 5.38, 12.55, 12.71, 2]. The second additional test case considers a medium damage region again with
two plies unaffected, with xtest = [7.81, 4.87, 4.99, 11.45, 2]. Figures 16 and 18 show the FEM failure index
data, while Figures 17 and 19 display the final approximations provided by our complete online mapping
procedure.
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Figure 16. Failure Index FI, Ply 4 for xtest = [2.99, 5.38, 12.55, 12.71, 2]: original FEM data s1(xtest) = FI(xtest).
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Figure 17. Failure Index FI, Ply 4 for xtest = [2.99, 5.38, 12.55, 12.71, 2]: approximation using POD coefficients recon-

structed from sensor data using gappy POD and SOM mapping, s̃1(αg) = s̄1 +
∑Nβ
j=1 β

c
j (αg)ψcj , Nβ = 9.
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Figure 18. Failure Index FI, Ply 4 for xtest = [7.81, 4.87, 4.99, 11.45, 2]: original FEM data s1(xtest) = FI(xtest).
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Figure 19. Failure Index FI, Ply 4 for xtest = [7.81, 4.87, 4.99, 11.45, 2]: approximation using POD coefficients reconstructed
from sensor data using gappy POD and SOM mapping, s̃1(αg) = s̄1 +

∑
j β

c
j (αg)ψcj , j = 1, 3, 4, 5, 6, 8, 9.
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