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This paper presents methodology to enable path planning for an unmanned aerial vehicle
that uses dynamic data-driven flight capability estimation. The main contribution of the
work is a general mathematical approach that leverages offline high-fidelity physics-based
modeling together with onboard sensor measurements to achieve dynamic path planning.
The mathematical framework, expressed as a Constrained Partially Observable Markov
Decision Process, accounts for vehicle capability constraints and is robust to modeling error
and disturbances in both the vehicle process and measurement models. Vehicle capability
constraints are incorporated using Probabilistic Support Vector Machine surrogates of high-
fidelity physics-based models that adequately capture the richness of the vehicle dynamics.
Sensor measurements are treated in a general manner and can include combinations of
multiple modalities such as that through Global Positioning System signals, inertial mass
unit outputs, as well as structural strain data of the airframe. Results are presented for a
simulated 3-D environment and point-mass airplane model. The vehicle can dynamically
adjust its trajectory according to the observations it receives about its current state of
health, thereby retaining a high probability of survival and mission success.

Nomenclature

BG Discrete belief space
b ∈ B Belief state and space
C Capability set
C, c Constraint and marginalized con-

straint function
cs Damage severity parameter
DKL Kullback-Leibler Divergence
Dl Damage library
d ∈ D Damage state and space
Ddata Data set of sampled points used for

SVM and observation model training
E Expectation operator
f Transition model
fX Kinematic state transition model
h Observation model
kloss Material moduli loss of damaged ele-

ments
lc Airframe structure affected by dam-

age
lchord, wchord Chordwise location and width of dam-

age
lspan, wspan Spanwise location and width of dam-

age
lwing, cwing Length and chord of the wing
Mb′ M largest contributing b ∈ BG in

ϕ(b′, b)
m, g Mass and gravitational acceleration
Np Number of data points in Ddata

Nr Number of response surface basis
functions

nv, ns Number of quantities in zv and zs, re-
spectively

O Observation probability distribution
P Engine power
p(·) Probability function
pthresh Constraint threshold
Q Observation model noise term covari-

ance matrix
R, r Reward and marginalized reward

function
Sv Support Vector Machine discriminant
s ∈ S Total vehicle state and space
T,D,L Thrust, drag, and lift force
Tavail Available engine thrust
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Tr Transition probability distribution
tdepth Damage depth into the skin
tskin Skin thickness of wing
u ∈ U Control input and space
V Capability volume
V π Value function for control policy π
V, ψ, γ Velocity, heading, and flight path an-

gle
V ∗ Optimal value function
W Transition model noise term covari-

ance matrix
w Transition model noise term
x ∈ X Kinematic state vector and space
xg, yg, zg Global x,y,z-coordinates
z ∈ Z Measurement vector and space
zs ∈ Zs Component of measurement vector re-

lating to vehicle structural state and
associated space

zv ∈ Zv Component of measurement vector re-
lating to vehicle kinematic state and
associated space

α, φ Angle of attack and bank angle
α1, α2 Interpolation function tuning param-

eters

α
(n)
L , α

(n)
D nth response surface basis function co-

efficient for lift and drag, respectively

α
(n)
zs nth response surface basis function co-

efficient for measurement quantities zs
β1, β2 Probabilistic Support Vector Machine

tuning parameters
∆t Time step
εallow Allowable strain levels in structure
εpeak Peak strain levels in structure
η Appropriate normalizing term
λ Discount factor
ν Observation model noise term
π Control policy
ψn nth response surface basis function
τ Bayes posterior
ϕ Interpolation function in Bellman

equation

Subscripts

k Quantity at the kth time step
trim Designation of vehicle trim condition

variables

Superscripts

(i) ith data point of Ddata

I. Introduction

Recent advances and affordability in aerospace sensing technologies have brought forth a new era of large-
scale data acquisition in the aerospace industry. Synonymous with Big Data or the Internet of Things (IoT),
data from thousands of sensors on board aircraft along with data analytics will enable aerospace agencies
to improve upon operational efficiencies of individual aircraft components as well as reduce costs in service
and maintenance through monitoring and prognosis. Looking farther ahead, these sensing technologies will
enable the next generation of self-aware unmanned aerial vehicles (UAVs) that can make decisions based
on the observations they receive.1 In particular, such vehicles will have higher reliability, survivability, and
therefore reduced fiscal risk, by making informed decisions in flight that incorporate real-time monitoring
of their health as well as the environment around them. Of particular relevance to the self-aware UAV
concept are circumstances where structural damage is accumulated during a mission through discrete events
or through fatigue over a long life cycle. Such in-flight decisions can potentially impact mission objectives
such as the trajectory the UAV takes. As a consequence, path planning for a self-aware UAV that leverages
online sensor information about its health is fundamental to the decision loop and is the topic of this paper.

A graphical depiction of a self-aware UAV is shown in Figure 1. Here onboard sensors embedded across
the entire airframe collect data of internal conditions, external signals, and the environment around the UAV.
In particular, if structural damage is encountered, it will manifest as a change in sensor output. The UAV
will then use the sensor output to infer the change in its flight envelope and re-plan its mission if needed.
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Figure 1. Envisioned self-aware aerospace vehicle with sensors embedded across its airframe.

Designing a path-planning strategy for a self-aware UAV foremost requires the ability to convert sensor
data of damaged structure into estimates of the modified flight envelope. Such technologies have emerged
from a synthesis of smart materials, machine learning, physics-based modeling, statistics, and signal pro-
cessing within the structural health monitoring (SHM) community. For detection of structural damage in
particular, guided waves, ultrasonic, and nonlinear acoustic techniques combined with signal array processing
and transducers made of piezoelectric and/or optical fiber materials are becoming popular tools for detect-
ing small cracks or microcracks.2,3 In application, these tools find use in the broader class of Integrated
Vehicle Health Management (IVHM) and Prognostic Health Management (PHM) systems for detection,
diagnosis, and prognosis of faults in electrical, software, and structural subsystems.4,5 Once damage is de-
tected and characterized, the task of determining the modified flight envelope can be formulated as a pattern
recognition problem.6 One such approach is to construct libraries characterizing the flight envelope for a
range of different damage events and trim motion primitives using computational or wind-tunnel experi-
ments.7–10 These libraries can be represented, queried, or modified using techniques in machine learning,
filtering methods, or statistical inference for parameter estimation and determination of the modified flight
envelope.11,12 Parameters that are commonly estimated and used for subsequent control of damaged aircraft
include stability/control derivatives, lift, drag, stall, and inertia shifts.8,9

Upon recognizing that the flight envelope or handling has changed significantly as a result of damage, a
self-aware UAV must be able to maintain stability and tracking as well as change course if needed. Stability
and tracking control systems for damaged aircraft, or alternatively reconfigurable flight control or fault tol-
erant flight control, can be accomplished with control laws that derive from adaptive control architectures,
model reference control, model predictive control, or neural networks.13–19 In these works, common damage
scenarios include engine-out20,21 or power loss conditions, loss of airframe structure (e.g., vertical or hori-
zontal tail loss, partial wing loss), structural softening, or jamming of major control surfaces. Such control
systems have found successful applications on Boeing UAVs (X-36, X-40A, X-45, T-33), General Dynam-
ics’s VISTA F-16, and Eurofighter Typhoon.4 In the context of path planning, planning solutions generally
account for reduced capability (structural, actuator, sensor, communication, and fuel) as an increased risk,
usually in a probabilistic sense, to find safe trajectories or to change mission strategies.16,22–25

Building upon the techniques discussed, this paper focuses in particular on the path-planning problem
involved for a single self-aware UAV that becomes damaged but is equipped with sensors that can monitor
its dynamics and internal state of health. An illustrative scenario of interest is depicted in Figure 2. Here a
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self-aware UAV is initially tasked to navigate through a series of obstacles to the target location in minimum
time. However, it becomes damaged and must quickly learn of its reduced maneuverability as a result of
damage and re-plan its trajectory if necessary. Multiple routes are possible that require different degrees
of vehicle capability in order to perform successfully. If the vehicle recognizes itself to be mildly damaged
then the vehicle will take shorter and more aggressive routes, whereas if the vehicle recognizes itself to be
severely damaged it will take longer and more conservative routes. The path planning solution is inherently
data-driven and thus embodies the ideas of Dynamic Data-Driven Application Systems26 (DDDAS), where
observational data are used in a feedback loop to drive the actions the UAV takes. In addition, the path-
planning problem is complicated by modeling uncertainty and noise, fusion of sensor data from multiple
modalities, and the possibility of a dynamically changing flight envelope based on further actions the UAV
takes.

Figure 2. Illustration of scenario of interest.

To address this problem, we leverage a combination of physics-based modeling, machine learning, Bayesian
statistics, and decision theory. We extend prior work on dynamic capability estimation from Ref. 12 into a
probabilistic constraint model for path planning. The novelty in our approach lies in the ability to incorporate
offline high-fidelity physics-based simulation results into the constraint model using probabilistic surrogates.
As a result, we leverage a combination of both offline and online information sources to achieve gains in
vehicle operation. In addition, the method we propose is flexible with respect to the physics-based models
describing the aerostructural and dynamical characteristics of the vehicle and measurement processes. We
demonstrate our methodology on a 3-D path planning example, where a UAV is tasked to reach a target
location while avoiding obstacles and not exceeding available capability as a result of damage. The vehicle
must ultimately decide which route to take after determining its health. This determination is based on
collected measurements as well as offline information embodied in scenario libraries.

The remainder of the paper is organized as follows. Section II presents the data-driven methodology.
Section III gives demonstration and implementation of the proposed approach on an example scenario.
Section IV provides results and discussion of the example scenario. Finally, Section V provides concluding
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remarks.

II. Methodology

This section describes the mathematical aspects of our methodology. We begin by defining the notion
of a self-aware aerospace vehicle and an outline of the computational roadmap in Subsection II.A. We next
define the concepts of vehicle state, control, and measurements used throughout the paper in Subsection II.B.
Subsection II.C describes the models for state transitions and measurements while Subsection II.D describes
the belief state representation. Vehicle damage and capability representation is described Subsection II.E.
Construction of the damage library used in the approach is discussed in Subsection II.F. Finally, the path
planning formulation is described in Subsection II.G.

II.A. Path Planning for a Self-Aware Aerospace Vehicle

A self-aware aerospace vehicle is one that can collect information about its internal conditions and its sur-
roundings through measurements from onboard sensors, and then use this information in real-time dynamic
decision-making. In this work, the internal conditions considered are related to damage incurred to the
vehicle such that its flight envelope is reduced. The path-planning solution is then one that determines the
modified flight envelope through an inference problem and uses this knowledge to re-plan the trajectory in
flight if necessary.

The proposed approach divides computational effort between offline and online phases, using the general
approach proposed in Ref. 12. In the offline phase, we compute probabilistic damage libraries characterizing
capability using high-fidelity physics-based models as well as determine allowable control actions for different
vehicle state distributions. In the online phase, we infer change in capability and the modified flight envelope
due to damage, using noisy sensor data and the precomputed library database in a Bayesian inference
problem. The updated capability estimate is then used to re-plan the vehicle’s trajectory if necessary.
Figure 3 shows the path-planning process for the offline/online approach.

Figure 3. Offline/online approach to proposed dynamic path planner.

II.B. Vehicle State, Control, and Measurement Definitions

The vehicle state represents both the vehicle kinematics and the vehicle’s current damage state. To that
end, we define the vehicle state by two components. The first component describes the kinematic quantities
of the vehicle (global position, velocity, heading, flight path angle, etc.) and is given by a continuous
vector called the kinematic state x ∈ X ⊆ Rn, where X denotes the kinematic state space. The second
component represents a particular damage state (which may be represented by a finite parametrization
involving severity, location, and size; or may be represented by a field quantity such as that used in continuum
damage mechanics) and is given by d ∈ D, where D denotes the damage state space. The total vehicle state
is given by the vector s = [x, d]T ∈ S ⊆ X ×D, where S denotes the total state space.
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The vehicle is controlled through an input vector u ∈ U ⊆ Rm, where U denotes the space of control
inputs. These inputs can include deflections of the ailerons, elevators, rudder, or other control surface
components or signals.

The vehicle receives measurements in the form of a vector z = [zv, zs]
T ∈ Z where zv ∈ Zv ⊆ Rnv

contains nv quantities relating to the vehicle kinematic state and zs ∈ Zs ⊆ Rns contains ns quantities
relating to the vehicle structural state. The space of all measurements is denoted by the set Z ⊆ Zv × Zs,
where Zv is the space associated to zv and Zs is the space associated to zs. Examples of zv are Global
Positioning System readings, accelerometer readings, velocity, heading and other quantities related to the
kinematic state. Examples of zs are readings from sensor strain gauges located throughout the airframe
structure.

II.C. Transition and Observation Models

The vehicle system (“Vehicle System” block in Figure 3) is described using a transition model and an
observation model. The transition model, which governs the evolution of the vehicle state, is given by a
model of the form:

sk+1 = f(sk, uk, wk), (1)

where f : S ×U ×Rp → S, w ∈ Rp is the transition model noise term accounting for model uncertainty and
disturbances, and the subscript k ∈ N0 denotes the value of a quantity at the kth time step. The transition
model encodes how the state of the vehicle transitions from one state to another given a particular control
input. The kinematic state will change through the vehicle dynamics while the damage state will change as
result of progressive damage induced by aggressive vehicle dynamics or by external events.

The observation model, which relates the vehicle state and control to a measurement, is given by the
following model:

zk = h(sk, uk−1, νk), (2)

where h : S ×U ×Rr → Z and ν ∈ Rr is the observation model noise term accounting for model uncertainty
and disturbances. Measurements considered here include combinations of different modalities ranging from
output about the vehicle kinematics to that of the internal structural state. This observation model allows
flexibility to what quantity can be considered a measurement. A measurement can come from output of an
arbitrary combination or arrangement of sensors but more importantly can come from quantities that may
be the result of a post-process (e.g., Fourier analysis, pattern recognition, statistical inference techniques,
etc.) provided a model is available that relates the vehicle state and control back to those quantities. The
latter becomes important where strain-only information is insufficient to detect and characterize damaged
structure, in which case some form of spectral analysis of structural response is required.

II.D. Belief State Representation and Hidden Markov Model Assumption

Due to partial observability, the true state of the vehicle is hidden and unavailable. Instead, we track a
quantity known as the belief state.27 Formally, the belief state is the probability distribution of the state
conditioned on the history of measurements and control:

bk(s) = p(s|z0:k, u0:k−1), (3)

where bk ∈ B is the belief state at time step k and lives in the belief space B, p is a probability distribution,
and the subscript 0 : k denotes quantities for each time step from 0 up to k. The belief state is the output
of the “Estimator” block in Figure 3. To simplify estimation, we assume the total vehicle state evolves
according to a hidden Markov model (see Figure 4). Under this model, the belief state updates according to
the definition of the Bayes filter:27

bk(s) = τ(bk−1, uk−1, zk)(s) = ηkp(zk|s, uk−1)

∫
s′∈S

p(s|s′, uk−1)bk−1(s′) ds′, (4)

where η−1k = p(zk|bk−1, uk−1) is the normalizing term. The function τ : B×U×Z → B is the Bayes posterior
and can be thought of as the transition model for the belief state. The belief state together with τ provides
an equivalent representation of the vehicle system, originally expressed with the two models f and h, in
terms of a single new model given by τ . This representation is used in the path planning formulation.
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The control action is a function of the data, namely the history of measurements and control. However,
since the belief state is a sufficient statistic,28 the control can be expressed as a function of the current belief
state.

Figure 4. Hidden Markov model for state evolution. The vehicle states (blue) are hidden and so the control action is
a function of past measurements and control. It can be expressed as a function of the current belief state.

II.E. Damage and Capability Representation

We treat damage as a reduction in capability where capability is defined as a set C ⊆ X × U such that
the pair [x, u] ∈ C is feasible. Here [x, u] corresponds to a particular maneuver such as pull-up, pull-down,
banked turn, or any other combination of vehicle kinematic state and control. A maneuver is feasible if
it does not exceed structural, engine, or aerodynamic limits such as stall, maximum velocity, or maximum
structural component strengths. Thus, C is the space of feasible maneuvers.

To quantify capability, we assign a probability of whether a maneuver is feasible given a particular damage
state configuration by the following probability distribution:

p([x, u] ∈ C|d). (5)

Note we could have just as easily defined a generative model where we infer p([s, u] ∈ C). However, construct-
ing and working with the conditional distribution Eq. 5 is of more interest to us since vehicle constraints
subject to specific damage finds additional practical relevance for design tasks (structural sizing and con-
troller design), an example being for certification of rotor-burst conditions required by the Federal Aviation
Administration.29 Eq. 5 is evaluated for each damage state d of interest as outlined in Subsection II.F and
is used to form the offline damage library.

Online the true damage state of the vehicle is unknown, so we instead consider the probability of whether
a maneuver is feasible given the history of measurements and control:

p([x, u] ∈ C|z0:k, u0:k−1). (6)

To put Eq. 5 in a form amenable to calculation using the damage library, we marginalize over the damage
state d using the Law of Total Probability and apply the Markov model assumption of Subsection II.D,
yielding:

p([x, u] ∈ C|z0:k, u0:k−1) = Ed
[
p([x, u] ∈ C|d)

∣∣z0:k, u0:k−1], (7)

which is a weighted average of Eq. 5 with respect to the marginal posterior distribution of d. Note that this
expectation changes in time based on the evolution of the marginal posterior distribution p(d|z0:k, u0:k−1)
and hence encodes the notion of “dynamic capability” through a weighted average of this marginal posterior,
as shown in Figure 5. This figure illustrates how the estimated capability (here parametrized in terms of
velocity and bank angle) changes as a function of the marginal posterior damage state distribution. When
this distribution is more heavily weighted towards states of lower damage, the estimated capability is higher
since the contributions to the expectation in Eq. 7 come from states that have higher overall capability. In
contrast, when the distribution is more heavily weighted towards states of higher damage, the estimated
capability is lower since the contributions come from states that have reduced capability.

Alternatively, one can think of the marginal posterior of d in the context of a model selection problem,
where the marginal posterior is the probability that the vehicle damage state is described by the model given
by d conditioned on the history of data. These probabilities or weights change as new information is made
available, reflecting the growing confidence of one model over another.
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Figure 5. Illustration of dynamic capability as a weighted average with the marginal posterior damage state distribution.
Plots are notional.

II.F. Damage Library Construction and Surrogate Modeling

The offline phase of the methodology shown in Figure 3 involves computation using high-fidelity physics-
based models of a damage library database to be used for inference online. This amounts to computing
p([x, u] ∈ C|d) and the observation model h for each damage state d of interest. Construction of the
capability and the observation model for each d is as follows (the reader is referred to Ref. 12 for more
details):

1. In the preliminary step, a data set Ddata(d) = {x(i), u(i), z(i), l(i)}Npi=1 for each damage state d is gen-
erated where (i) designates the ith data point of the Np total points in the data set, [x(i), u(i)] is a
particular maneuver sampled from the combined vehicle state-control space X ×U , while l(i) is a label
assigned +1 if a maneuver is feasible or −1 if a maneuver is infeasible. Infeasibility of a maneuver
is assessed by running high-fidelity physics based models at the specified maneuver and determining
whether that maneuver satisfies the requirements of feasibility given by our earlier definition. Initial
sampling is performed using a design of experiments for Np sample points. The observation model h
is constructed for each Ddata using a response surface or other technique.

2. In the second step, a Support Vector Machine (SVM) is generated for each Ddata. An adaptive sampling
algorithm can be used to refine the SVM boundaries and augment the data sets if necessary.30

3. In the final step, the SVM discriminant is used as an argument to a sigmoid to generate the Probabilistic
Support Vector Machine (PSVM). The PSVM defines the capability for a given damage state d as:

p([x, u] ∈ C|d) =
1

1 + eβ1(d)Sv(s,u)+β2(d)
, (8)

where Sv : S × U → R is the SVM discriminant and β1, β2 : D → R are tuning parameters.

The use of a PSVM provides an inexpensive and data-source-flexible surrogate that captures the richness
of the vehicle constraints. Moreover, it allows for direct application of dynamic capability in the Bayesian
context as specified in Eq. 7. Figure 6 shows an example capability PSVM generated over the combined
vehicle-control space for one particular damage state using the above procedure. For this case, the combined
vehicle kinematic state and control space is parametrized in terms of velocity, bank angle, and angle of attack.
Here we see that with either a high velocity, bank angle, and/or angle of attack, there is low probability
given by the PSVM of being able to perform the corresponding maneuver due to reaching of aerodynamic
stall or exceeding structural limitations. Figure 7 illustrates how the PSVM contours change as a result
of increased damage to the vehicle. Here, PSVM contours for 5 example damage states are shown ranked
from lowest severity (pristine) to highest (worst case damage). The parametrization of the combined vehicle
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kinematic state and control is again velocity and bank angle but the angle of attack is fixed. The immediate
observation is that the region underneath the SVM discriminant equal to 0 shrinks as damage is worsened.
This motivates the following definition of a damage severity parameter to characterize the extent of damage.
We define the damage severity parameter cs : D → [0, 1] by the following relation:

cs(d) =
Vpristine − V(d)

Vpristine
, (9)

where V ∈ R+ represents the volume underneath the associated capability boundary (SVM discriminant
equal to 0) for damage state d and the pristine structural state denoted by the subscript “pristine”. We use
the damage severity parameter to rank and downselect damage states for the library made available to the
path planner. This library, which we denote by Dl ⊂ D, serves as the limited set of damage states over which
we perform inference and take expectations. Note that this set is incomplete in that it does not contain
every conceivable damage state. However, the assumption is that the library contains enough damage states
to adequately account for the extent of damage in which the vehicle finds itself. New conditions that emerge
as a result of recurrent inspection and maintenance of the vehicle can be easily added to the library over
time, reflecting a growing and maturing knowledge database for that vehicle over its lifecycle.

Figure 6. Capability boundary and PSVM contour slice for a given vehicle damage state. Points underneath the
boundary lie in the feasible maneuver region while points above lie in the infeasible region of the combined vehicle
state-control space.
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Figure 7. Comparison of PSVM capability contours at a fixed angle of attack for different damage states. Damage
states are ordered based on increasing cs from left to right and top to bottom.

II.G. Path Planning

We formulate the path planning problem as a Constrained Partially Observable Markov Decision Process
(CPOMDP).27,31 Formally, a CPOMDP is a tuple 〈S,U ,Z, Tr, O,R,C, λ〉 where:

� S,U ,Z is the vehicle state space, control input space, and measurement space as defined in Subsec-
tion II.B.

� Tr(s, u, s
′) : S × U × S → R+ is the transition probability distribution associated with the vehicle

transition model and gives the probability of transitioning to state s′ from the initial state s after
applying control input u. It is defined as Tr(s, u, s

′) ≡ p(s′|s, u) and describes the statistics of the
transition model f .

� O(s, u, z) : Z ×U ×S → R+ is the observation probability distribution associated with the observation
model and gives the probability of observing z after applying control input u when the vehicle is in
state s. It is defined as O(s, u, z) ≡ p(z|s, u) and describes the statistics of the observation model h.

� R(s, u, s′) : S ×U ×S → R is the one-step reward function for the vehicle being in state s and applying
control action u, as well as the reward for the transitioned state s′. The reward function encodes
penalties for obstacles in the environment, rewards for reaching the goal location, and penalties/rewards
for other states.

� C(s, u, s′) : S × U × S → R is the constraint function. For our purposes, C(s, u, s′) = p([x′, u] ∈ C|d′).
Note that the constraint function here considers the control action u and the transitioned state s′ since
what is of importance is that the transitioned state remains under the current dynamically estimated
capability.

10 of 22

American Institute of Aeronautics and Astronautics



� λ ∈ [0, 1) is the discount factor.

The objective of a CPOMDP is to find a feedback control policy π : B → U that maximizes the total expected
discounted reward subject to the requirement that the expectation of the constraint function be above some
threshold. That is:

max
π

V π(b) =

∞∑
k=0

λkE
[
r(sk, uk)|π, b0 = b

]
s.t. E

[
c(sk, uk)|π, b0 = b

]
≥ pthresh ∀k ∈ N0,

(10)

where

r(s, u) =

∫
s′∈S

R(s, u, s′)p(s′|s, u) ds′,

c(s, u) =

∫
s′∈S

C(s, u, s′)p(s′|s, u) ds′.

(11)

The threshold pthresh ∈ [0, 1) tunes how aggressive or cautious is the resulting control policy and how much
on average the constraints are satisfied. A high value (pthresh → 1) corresponds to a conservative policy,
a medium value (pthresh → 0.5) corresponds to a more aggressive policy, while a low value (pthresh → 0)
corresponds to an aggressive policy that will lead to a high likelihood of vehicle failure. The expectation of
the discounted reward is conditioned on the policy π and the initial belief state b0 being equal to the input
belief state b.

Solving Eq. 10 exactly is intractable and approximate solution techniques remain an active area of re-
search. However, there exist numerous techniques for stochastic path planning or planning in belief space that
one can employ to solve the above optimization statement. These techniques include dynamic programming,
sampling-based algorithms,32,33 and search-based algorithms.34–37

III. Example Problem

This section applies our approach to an example scenario where a damaged aircraft must navigate its way
through a series of obstacles to a target location while using dynamic capability estimation. Section III.A
describes the problem setup and the parametrization of damage. Section III.B describes the damage states
assessed. Section III.C details the physics-based models as well as process and measurement models used
while Section III.D discusses the solution to the path planning formulation.

III.A. Problem Setup

The problem scenario involves a UAV that is tasked to reach a goal location in minimum time while avoiding
obstacles, as depicted in Figure 8. However, the UAV encounters damage and must quickly react and re-
plan its trajectory. The path planner is tested for a range of different damage states, some that are in the
library and some that are not. The vehicle starts at a lower elevation than the target location and must
simultaneously climb and maneuver around obstacles as it makes its way to the target location.
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Figure 8. 3-D environment for example problem.

We parametrize a damage state d by the tuple 〈lc, lspan, wspan, lchord, wchord, tdepth, kcenter, kedge〉. Here, lc
is a categorical variable that indicates the affected airframe structure (wing, horizontal stabilizer, etc.), lspan
is the spanwise location of damage, wspan is the spanwise width of damage, lchord is the chordwise location
of damage, wchord is the chordwise width of damage, tdepth is the damage depth into the skin, and kloss is
the material moduli of affected elements. An example parametrization for a damage state d is given by

〈Upper Right Wing Surface, 0.1lwing, 0.05lwing, 0.3cwing, 0.1cwing, 0.7tskin, 0.99〉,

which corresponds to damage of the upper right wing surface at spanwise location 0.1 times the length of
the wing, chordwise location 0.3 times the chord of the wing, spanwise width of 0.05 times the length of the
wing, chordwise width of 0.1 times the chord of the wing, depth of 0.7 times the skin thickness of the wing,
and 99% material moduli loss of affected elements. Other damage states are defined similarly.

III.B. Damage State Selection and Methodology Assessment

We test our methodology by providing the path planner a limited damage library (as mentioned in Subsec-
tion II.F) and running the path planner on the vehicle for different damage states. Some of these damage
states will be in the library while others will not. Our objective is to characterize how the path planner
performs when 1) the vehicle has undergone damage that is in the library and 2) the vehicle has undergone
damage that is not contained in the library.

To begin, we restrict ourselves to damage of the upper right wing surface of the vehicle, as shown in
Figure 9. We then generate 73 damage states by performing a full factorial exploration of the parameters
listed in Table 1. Ten of these states populate the damage library. These 10 states are used to build the
PSVM surrogates, observation models, and also to do the dynamic inference. The 10 states for the library
are determined by ranking all 73 damage states by increasing values of cs and selecting states at uniform
increments from lowest severity (pristine) to highest (worst case damage), as shown in Figure 10. Damage
parametrizations of the 10 states in the library are summarized in Table 2.
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Table 1. Damage state parametrization. A full factorial exploration is performed with the indicated parameters.

Parameter Value

lc Upper Right Wing Surface

lspan/lwing [0.1 0.2 0.3 0.4]

wspan/lwing [0.05]

lchord/cwing [0.3 0.5 0.7]

wchord/cwing [0.1 0.3 0.5]

tdepth/tskin [0.7 0.9]

kloss 0.99

Table 2. Parametrization for the 10 members in the damage library. URWS denotes Upper Right Wing Surface.

Parameter 1 2 3 4 5 6 7 8 9 10

lc URWS URWS URWS URWS URWS URWS URWS URWS URWS URWS

lspan/lwing 0 0.30 0.30 0.40 0.30 0.30 0.10 0.40 0.20 0.10

wspan/lwing 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

lchord/cwing 0 0.70 0.50 0.50 0.50 0.30 0.30 0.30 0.70 0.70

wchord/cwing 0 0.30 0.10 0.50 0.30 0.30 0.10 0.30 0.10 0.50

tdepth/tskin 0 0.90 0.70 0.90 0.90 0.70 0.70 0.90 0.70 0.70

kloss 0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Figure 9. Location of damage to the UAV and strain sensor placement.

Next, for each of the 73 damage states, we apply the corresponding damage to the vehicle and perform
the mission of moving the vehicle from the start location to the goal using the path planner with the
aforementioned damage library. We repeat this mission 50 times for each damage state for a total of
N = 73× 50 = 3650 missions. For each mission i, we store the following information: mission success (Si),
mission time (termination time) (ti), and peak strain levels across the airframe structure (εpeak,i) during the
mission. Mission success Si = 1 if the vehicle reaches the target location without collisions and structural
failure, and Si = 0 otherwise. Mission time is the time to reach the target objective or the time of termination
as a result of structural failure or collision with an obstacle. Structural failure occurs when the peak strain
level εpeak across the airframe structure exceeds allowable levels εallow at any time during the mission. Since
we are interested in survivability of the vehicle, we quantify survivability as the number of successful missions
divided by the total number of missions:

P (S) =
1

N

N∑
i=1

Si. (12)
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Thus, the goal of the path planner is to maximize P (S) across all missions.

Figure 10. Selection of library. Damage states used for the library are circled in red.

III.C. Vehicle Models

III.C.1. Aerostructural Model

The aerostructural model used to generate the PSVM library as well as the lift, drag, and strain quantities for
all damage states assessed, is a combination of ASWING38 and Variational Asymptotic Beam Cross-Sectional
Analysis (VABS).39 ASWING is a nonlinear aerostructural solver for flexible-body aircraft configurations of
high to moderate aspect ratio. We use ASWING to calculate internal wing loads and deflections as functions
of input vehicle state and control. We can obtain internal structural loads for both static and dynamic flight
conditions but restrict ourselves to quasi-static maneuvers. VABS is used primarily to resolve local effects
due to stiffness weakness of the aircraft wing for different damage states. Full implementation details for this
aerostructural model are given in Ref. 12. It is important to note that the extent of damage modeling of this
tool is reduction in the moduli of damaged elements in the 2D cross section of VABS via the kloss parameter.
More sophisticated damage models can be described with higher-fidelity modeling such as continuum damage
models of thin shell composites.40

III.C.2. Vehicle Transition Model

For the vehicle transition model, we restrict ourselves to static damage for the assessment, i.e., dk+1 = dk.
This model takes the form:

f(s, u, w) =

[
fX (s, u, w)

d

]
. (13)

The function fX represents the transition model for the kinematic state which we take as the point-mass
zero-side slip airplane model with an additive noise term:41

fX (s, u, w) = x+



V cos γ cosψ

V cos γ sinψ

V sin γ
T cosα−D(s,u)

m − g sin γ
L(s,u)+T sinα

mV cosφ− g
V cos γ

L(s,u)+T sinα
mV cos γ sinφ


∆t+ w, (14)

where x = [xg, yg, zg, V, γ, ψ]T , u = [T, α, φ]T , and w ∼ N (0,W ). Here xg, yg, zg denote global x,y,z-
coordinates, V is the velocity, γ is the flight path angle, ψ is the heading angle, T is the thrust force, α
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is the angle of attack, φ is bank angle, L is the lift force, D is the drag force, m is the mass, g is the
gravitational acceleration, ∆t is the timestep, and w is the transition model noise term with covariance
matrix W . Parameters lift L and drag D are calculated at sampled maneuver points [x, u] for a given
damage state d in the library using ASWING+VABS and fit with response surface models for use of the
form:

L(s, u) =

Nr∑
n=0

α
(n)
L (d)ψn(x, u)

D(s, u) =

Nr∑
n=0

α
(n)
D (d)ψn(x, u),

(15)

where α
(n)
L is the nth coefficient in the expansion for lift, α

(n)
D is the nth coefficient in the expansion for drag,

ψn is the nth response surface basis function, and Nr is the number of response surface basis functions in
the expansion.

The control is expressed as u = utrim + ∆u, where the utrim term represents the control component that
ensures trim conditions of the aircraft (γ̇ = 0 and V̇ = 0), and ∆u represents the perturbations from these
conditions and is the component used for path planning. Trim conditions are found by solving the following
set of equations for αtrim at each timestep:

Ttrim cosαtrim −D(s, utrim)

m
− g sin γ = 0, Constant Velocity

L(s, utrim) + Ttrim sinαtrim

m
cosφ− g cos γ = 0, Constant Flight Path Angle

(16)

Note that changes in stability of the UAV as a result of damage (changes in lift and drag as a result of
damage) are handled by the trim component of the control. Time integration of Eq. 14 is approximately
computed using a fourth-order Runga-Kutta scheme and the trim condition equations in Eq. 16 are solved
using Newton-Raphson iteration.

The available thrust Tavail derives from a simple constant power (P ) engine model (Tavail = P/V ) where
the engines are modeled after two Austro Engine AE300 Series (168 hp peak).42,43 The total thrust is
bounded between zero thrust and the available thrust:

0 ≤ Ttrim + ∆T ≤ Tavail. (17)

III.C.3. Vehicle Observation Model

For the vehicle observation model, we use direct measurements of all kinematic state variables and strain
sensor output from different locations on the vehicle wing. This model takes the form:

h(s, u, ν) =

[
x∑Nr

n=0 α
(n)
zs (d)ψn(x, u)

]
+ ν, (18)

where ν ∼ N (0, Q). Here α
(n)
zs is the nthcoefficient (a vector containing all strain sensor components and

locations) in the expansion of the strain quantities and ν is the observation model noise term with covariance
matrix Q. As is done for the parameters lift and drag, the strain sensor model is constructed for the damage
states in the library by evaluating strains using ASWING+VABS at sampled maneuver points [x, u] and
fitting with response surface models, per Step 1 in Subsection II.F. Strain sensors are placed at 0.1lwing

spanwise increments at chord-wise locations 0.2cwing and 0.7cwing from the side of body to the wing tip for
both the left and right wings, as shown in Figure 9.

III.D. Path Planning Solution using Dynamic Programming

We solve Eq. 10 using dynamic programming. In particular, the optimal value function V ∗(b) can be rewritten
into the following Bellman equation:

V ∗(b) = max
u∈U

{
r(b, u) + λ

∫
z∈Z

V ∗(τ(b, u, z))p(z|b, u) dz

}
s.t. c(b, u) ≥ pthresh,

(19)
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where

r(b, u) =

∫
s∈S

r(s, u)b(s) ds,

c(b, u) =

∫
s∈S

c(s, u)b(s) ds.

(20)

This equation can be solved approximately by using a grid-based approach and interpolation scheme44

as described in the following paragraphs. The grid-based approach is attractive in order to handle the
constraint in a simple and direct manner. Furthermore, it converts the continuous state CPOMDP to a
grid-based Markov Decision Process (MDP) over the belief states.

Following Ref 44, we begin by defining a finite set of belief states BG ⊂ B for which each element bi ∈ BG
defines a single belief distribution over the total vehicle state space. The Bellman equation over BG is then
expressed as:

V ∗(bi) = max
u∈Ui

{
r(bi, u) + λ

∫
z∈Z

V ∗(τ(bi, u, z))p(z|bi, u) dz

}
(21)

where the constraint is now encoded in Ui.
In general, the Bayes posterior τ will not be a member of BG and therefore interpolation between belief

states in BG is done, as illustrated in Figure 11.

Figure 11. Discretization of belief states of BG and interpolation of transitions.

The interpolation scheme takes the form:

V ∗(τ) ≈ ητ
∑
j∈Mτ

ϕ(τ, bj)V ∗(bj), (22)

where ϕ is the interpolating function, η−1τ =
∑
j∈Mτ

ϕ(τ, bj), andMτ denotes the set of the M belief states

bj ∈ BG with the largest value of ϕ(τ, bj). The purpose of Mτ is to truncate the sum in Eq. 22 to those
belief states with the highest contribution rather than retaining all belief states in BG in the sum. This
then sets up a sparse coupling between states in the Bellman equation leading to memory efficiency. For the
interpolating function, the following is used:

ϕ(τ, bj) = exp

{
1

α1

[
DKL(τ ||bj) +DKL(bj ||τ)

]α2
}
. (23)

Here DKL denotes the Kullback-Leibler Divergence, and the variables α1 and α2 are tuning parameters. With
the interpolation scheme defined in Eq. 22 and the associated interpolating function in Eq. 23 satisfying the
set of convex rules (0 ≤ ητϕ(τ, bj) ≤ 1 and

∑
j∈Mτ

ητϕ(τ, bj) = 1),44 the resulting finite-state Bellman
equation is by design a contraction mapping, which yields a unique solution. Substituting the interpolation
scheme into the Bellman equation yields:

V ∗(bi) = max
u∈Ui

{
r(bi, u) + λ

∫
z∈Z

ητ
∑
j∈Mτ

ϕ(τ, bj)V ∗(bj)p(z|bi, u) dz

}
, (24)

where the arguments of τ have been suppressed for brevity. To compute the expectation over the mea-
surements, Monte Carlo simulations are performed following the sampling procedure of the MC-POMDP
algorithm in Table 16.3 of Ref. 27. The approximate dynamic program represented in Eq. 24 is solved using
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value iteration. This computation is performed offline where once solved, each belief point bi will have as-
sociated to it an approximate value of V ∗(bi) and an action to take u(bi). Online, the control u for a given
belief distribution b is determined by averaging over the offline control values using the same interpolation
scheme. That is,

u(b) = ηb
∑
i∈Mb

u(bi)ϕ(b, bi), (25)

where b comes from the state estimator. State estimation is performed using a Particle Filter.

IV. Results

This section provides the results of the example problem using the proposed methodology. Figure 12
shows realizations of the vehicle trajectory for the pristine case and a heavily damaged case for pthresh = 0.9.
Immediately apparent is that the vehicle selects a longer and less aggressive route to the goal in the heavily
damaged case. The realizations also show the stochastic nature of the problem where different routes can
be selected based on the belief distribution the vehicle sees, even if the vehicle is in the pristine structural
state.

Figure 12. Realizations of vehicle trajectory for the cases where the vehicle is in the pristine state (left) and a heavily
damaged state (right).

Survivability of the UAV across all 3650 missions is summarized in Figure 13. For comparison, we include
a baseline policy that makes no use of dynamic capability and performs maneuvers under the assumption
that the UAV is in the pristine state at all times. For the test cases run, we see that the path planner with
dynamic capability is able to increase total survivability by 15%. To examine further the performance of the
path planner, Figure 14 shows the peak strain level during the mission versus the obtained distance to the
goal. A successful mission is obtained if the vehicle is able to stay under the allowable strain level (here we
have a safety factor of 2 for a threshold ratio 2εpeak/εallow = 1) while reaching within 0.2 miles of the goal.
We see that a large fraction of missions under the baseline policy exceed the threshold peak strain, while the
policy using dynamic capability is able to stay below the threshold for all but one mission. The location of
failures is visualized in Figure 16. The majority of failures under the baseline policy occur from exceeding
allowable strain levels upon the vehicle entering the first corner between the two large obstacles.
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Figure 13. Survivability comparison of the path planner under the baseline and dynamic capability policy.

Figure 14. Peak strain during mission versus achieved distance to goal. “X” markers correspond to obstacle collisions.

We can understand how the policy under dynamic capability is performing for individual damage cases
by looking at Figure 15. Here, we see two clusters corresponding to the two trajectories plotted in Figure 12.
That is, the path planner selects different trajectories based on the particular damage state the vehicle is
in, taking longer paths when necessary and taking shorter paths otherwise. In contrast, the baseline policy
almost always attempts to take the fastest route and thus has a higher likelihood of exceeding allowable
strain values and failing the mission for more heavily damaged scenarios. We note that due to the stochastic
nature of the problem, even the baseline policy has a few cases where the path taken can vary, as can be
seen by the cluster of points between 45-50 seconds in Figure 15.

The rare collisions observed in the tests are the results of filter instability of the underlying Particle Filter
used for state estimation. In these cases, the unstable filter outputs inconsistent state estimates that lead
to conflicting control actions. These conflicting control actions then lead to a higher likelihood of obstacle
collisions. The source of filter instability can be attributed to standard issues with the Particle Filter related
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to degeneracy and re-sampling. These issues can be mitigated by using proper regularization techniques.
As mentioned in Subsection III.B, the offline library for the tests is sparse, which presses upon the

assumption that the library contains sufficient depth and richness to adequately estimate all possible vehicle
damage states. For cases where the damage test case was not in the library, we noticed three behaviors
in the marginal distribution of the damage state as a consequence of this sparsity. The first and the most
common was that the highest weight was given to the most similar library member while the other members
received moderate to low weight. The second was that the weights were uniform across all members in the
library. The third and the least common was rapid fluctuation of the weights resulting in a posterior that
failed to converge. The third behavior was caused by the damage test case being different enough from
the members in the library such that the likelihoods across all members were low. As a result, these low
likelihoods introduced high numerical noise when normalizing to calculate the Particle Filter weights. On a
higher level, the second and third behaviors indicate that the vehicle is unable to properly estimate its flight
envelope using the current members in its library for the new damage case encountered. In addition, the
severity of damage and its impact on the flight envelope for the new case can be unclear, especially if the
damage is in a new physical location of the vehicle that is not in the library. The safest strategy to take when
observing these behaviors is to assume the worst case scenario, which is what we implemented for the path
planner with dynamic capability. Nevertheless, the behavior of the marginal damage state distribution can
serve as a useful diagnostic to determine whether the vehicle has been damaged in a new way not captured
in the library. This can then motivate further analysis, inspection of the vehicle, and updates to the library
for the new cases encountered.

Figure 15. Peak strain during mission versus total time to goal. “X” markers correspond to obstacle collisions.
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Figure 16. Locations reached before success/failure. The baseline policy fails as the UAV makes its way around the first
corner and exceeding allowable strain levels as a result of the aggressive climb and tight turn.“X” markers correspond
to obstacle collisions.

V. Conclusions

This paper presented a data-driven methodology that leverages offline high-fidelity physics-based mod-
els together with onboard sensor information to achieve dynamic path planning. An illustrative example
highlighted the key properties of the approach where a vehicle is tasked to reach a target location while
avoiding obstacles and staying within capability. The example showed the intricate nature of the problem
where, based on what the vehicle senses, different trajectories can be taken to the goal location. Heavily
damaged cases result in conservative control actions while less damaged cases yield more aggressive actions
to the goal. Results show that a policy that uses dynamic capability has a higher chance of survival when
compared to a baseline policy that only knows of the pristine structural state. We note that controlling a
damaged UAV also involves accommodation of changes in handling characteristics. Modeling such changes
requires models of sufficient fidelity. For our implementation, the extent of damage modeling is via stiffness
weakness and not drastic changes in the UAV aerodynamic profile (i.e., removal of airframe sections). As a
result, lift and drag profiles turn out to be very similar to the pristine case. This is not a limitation of the
methodology but of the limitation of the tools used for implementation.

In the example problem, we solved Eq. 10 approximately using dynamic programming and a grid-based
approach. Discretization of the vehicle state space comes with some nuisances. Too fine a discretization
suffers from the curse of dimensionality, while too coarse of a discretization results in poor quality of the
solution, sub-optimal policies, and inadequate capturing of the corners of the reward and constraint functions.
We note that the literature on path planning and control is vast, however the path planning problem can
be broken down into two main sub-problems: motion planning and trajectory tracking. For larger and
more sophisticated environments and state spaces, numerous algorithms exist for both and can be used
interchangeably to solve the motion planning and trajectory tracking problem inherent in the optimization
statement of Eq. 10.

Future work will address larger and more sophisticated environments, wind conditions, different sensor
types, and higher-fidelity damage models. Nevertheless, results show promise towards an aerospace vehicle
that can dynamically adapt its trajectory according to the observations it receives about its current state of
health, thereby retaining a high probability of mission success and survivability.
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