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Abstract

This work presents a data-driven online adaptive model reduction approach for
systems that undergo dynamic changes. Classical model reduction constructs a
reduced model of a large-scale system in an offline phase and then keeps the
reduced model unchanged during the evaluations in an online phase; however, if
the system changes online, the reduced model may fail to predict the behavior of
the changed system. Rebuilding the reduced model from scratch is often too
expensive in time-critical and real-time environments. We introduce a dynamic
data-driven adaptation approach that adapts the reduced model from incomplete
sensor data obtained from the system during the online computations. The
updates to the reduced models are derived directly from the incomplete data,
without recourse to the full model. Our adaptivity approach approximates the
missing values in the incomplete sensor data with gappy proper orthogonal
decomposition. These approximate data are then used to derive low-rank updates
to the reduced basis and the reduced operators. In our numerical examples,
incomplete data with 30-40% known values are sufficient to recover the reduced
model that would be obtained via rebuilding from scratch.

Keywords: model reduction; online adaptivity; dynamic data-driven reduced
models; incomplete sensor data; gappy proper orthogonal decomposition;
dynamic data-driven application systems

1 Introduction
Dynamic online (near real-time) capability estimation is a pivotal component of fu-

ture autonomous systems to dynamically observe, orient, decide, and act in complex

and changing environments. We consider the situation where the dynamics of the

system are modeled by a parametrized partial differential equation (PDE) and sen-

sor data are generated that provide information on the current state of the system.

The system dynamics are approximated by a large-scale parametrized computer

model, the so-called full model, resulting from the discretization of the underlying

PDE. We rely on (projection-based) model reduction [7, 29, 45] to derive a low-cost

reduced model of the full model to meet the real-time demands of online capability

estimation. Reduced models are typically built with one-time high-computational

costs in an offline phase and then stay unchanged while they are repeatedly evalu-

ated in an online phase. However, in changing environments, the properties and the

behavior of the system might change even during the online phase. Rebuilding the

reduced model from scratch to take into account the changes in the system is often

too time consuming. We therefore rely on dynamic data-driven reduced models, as

introduced in [42]. Dynamic data-driven reduced models adapt directly from sensor
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Figure 1: The system depends on observable parameters, which are inputs to the system,
and latent parameters, which model the external influence on the system and cannot
be controlled. Dynamic data-driven reduced models adapt directly from sensor data to
changes in the latent parameters (i.e., external influence), without recourse to the full
model. (Figure from [42].)

data to changes in the underlying system, without recourse to the full model; how-

ever, the dynamic data-driven approach as presented in [42] requires sensor samples

that measure the full large-scale state of the system.

Here, we present an extension to the dynamic data-driven approach that han-

dles incomplete sensor samples. We consider the situation where we might have the

ability to sense the full large-scale state of the system, but where we can afford

to process only a subset of the sensor data. For example, new sensor technologies

(e.g., “sensor skins”) provide high-resolution sensor data of an entire component

(e.g., an aircraft wing) but processing these tremendous amounts of data online is

computationally challenging. Note that this is in contrast to settings where we have

sparse sensors that are in fixed locations. Our methodology processes a selection

of the sensor data—an incomplete sensor sample—that contains the essential infor-

mation for updating the reduced model. Furthermore, we can dynamically change

this selection of the sensor data during the online phase, so that at each step we

process the subset of sensor data that are most informative to the event at hand.

To model changes in the system, the parameters of the system are split into ob-

servable and latent parameters, see Figure 1. The observable parameters are inputs

to the system and therefore the values of these parameters are known. Latent pa-

rameters describe external influences on the system (e.g., damage, fatigue, erosion).

The values of the latent parameters are unknown, except for the nominal latent

parameters that describe the nominal state of the system (e.g., no-damage condi-

tion). Since the values of the latent parameters are unknown, a reduced model can

be built in the offline phase for the nominal latent parameter only. If the latent

parameters change online (e.g., the system gets damaged), the reduced model fails

to predict the behavior of the system. Rebuilding the reduced model from scratch

requires inferring the value of the changed latent parameters from the sensor data

with a model of the changed system, then assembling the full model operators
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Figure 2: Dynamic data-driven reduced models adapt directly from sensor data, without
recourse to the full model. (Figure adapted from [42].)

corresponding to the inferred latent parameters, and deriving the reduced model.

Rebuilding from scratch therefore is often too expensive in the context of online

capability estimation, see, e.g., [1, 33, 42, 37] for a discussion. The dynamic data-

driven approach introduced in [42] exploits the sensor data of the system to adapt

the reduced model to changes in the latent parameters online, without the compu-

tationally expensive inference step and without assembling the full model operators

for the inferred latent parameters, see Figure 2.

There are several online adaptation approaches for reduced models. We distinguish

between approaches that solely rely on pre-computed quantities for the adaptation

and approaches that adapt the reduced model from new data that are generated dur-

ing the online phase. Interpolation between reduced operators and reduced models

[39, 18, 2, 51], localization approaches [20, 36, 21, 3, 19, 11, 40, 9, 46], and dictionary

approaches [30, 35] rely on pre-computed quantities but do not incorporate informa-

tion from new data into the reduced model online. In [4], local reduced models are

adapted from partial data online to smooth the transition between the local models.

In [12], an h-adaptive refinement is presented that splits basis vectors based on an

unsupervised learning algorithm and residuals that become available online. The

online adaptive approach [43] adapts the approximation of nonlinear terms from

sparse data of the full model. There is also a body of work that rebuilds reduced

models from scratch, e.g., in optimization [27, 50, 32], inverse problem [17, 25], and

multiscale methods [38]. We also mention that reduced models have been used in the

context of dynamical data-driven application systems (DDDAS), which dynamically

incorporate data into an executing application, and, in reverse, dynamically steer

the measurement process. In [26], proper generalized decomposition [16] is used in

a DDDAS to recover from device malfunctions by reconfiguring the simulation pro-

cess. In [28], online parameter identification from measurements is considered for

DDDAS with proper generalized decomposition. The work [1, 33, 37, 34] considers

model reduction for structural health monitoring in DDDAS.

Our extension to handle incomplete sensor samples in the dynamic data-driven re-

duced model adaptation builds on gappy proper orthogonal decomposition (POD),

which is a method to approximate unknown or missing values in vector-valued data
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[22]. Gappy POD reconstructs the unknown values by representing the data vec-

tor as a linear combination of POD basis vectors. Applications of gappy POD in

model reduction include flow field reconstruction [49, 10], acceleration of efficient

approximations of nonlinear terms [5, 13, 24], and forecasting for time-dependent

problems [14]. In our adaptation approach, we first construct a gappy POD basis

from incomplete sensor samples using an incremental POD basis generation algo-

rithm. The missing values of the incomplete sensor samples are then approximated

in the space spanned by the obtained gappy POD basis. These approximate sensor

samples are used in the dynamic data-driven adaptation to derive updates to the

reduced model.

This paper is organized as follows. Section 2 introduces the full model and the

dynamic data-driven adaptation. Section 3 defines incomplete sensor samples and

describes the problem setup in detail. Section 4 introduces the extension to the

dynamic data-driven adaptation approach that handles incomplete sensor samples.

The numerical results in Section 5 demonstrate that in our examples 30-40% of the

values of the sensor samples are sufficient to recover reduced models that accurately

capture the changes in the latent parameters. Section 6 gives concluding remarks.

2 Preliminaries and adaptation from complete data
This section briefly discusses model reduction for systems with observable and la-

tent parameters and summarizes the dynamic data-driven adaptation approach pre-

sented in [42].

2.1 Systems with latent parameters

Consider a parametrized system of equations stemming from the discretization of

a parametrized PDE

Aη(µ)yη(µ) = f(µ) . (1)

The full model (1) depends on the observable parameter µ ∈ D, where D ⊂ Rd with

d ∈ N, and on the latent parameter η ∈ E , where E ⊂ Rd′ with d′ ∈ N. In general,

the value of the latent parameter is unknown, only the value of a nominal latent

parameter η0 ∈ E is known, see Section 1. The linear operator Aη(µ) ∈ RN×N is

an N × N matrix, where N ∈ N is the number of degrees of freedom of the full

model (1). The linear operator Aη(µ) depends on the observable and on the latent

parameter. The operator Aη(µ) has an affine parameter dependence with respect

to the observable parameter

Aη(µ) =

lA∑
i=1

Θ
(i)
A (µ)A(i)

η ,

where lA ∈ N and Θ
(1)
A , . . . ,Θ

(lA)
A : D → R. The linear operators A

(1)
η , . . . ,A

(lA)
η ∈

RN×N are independent of the observable parameter. Note that an affine parameter

dependence with respect to µ can be approximated with sparse sampling methods,

e.g., [22, 6, 5, 15, 13]. Note further that no affine parameter dependence with respect

to the latent parameter is required. The state yη(µ) ∈ RN is an N -dimensional



2.2 CLASSICAL MODEL REDUCTION FOR SYSTEMS WITH LATENT

PARAMETERS
5

vector. The right-hand side f(µ) ∈ RN depends on the observable parameter but is

independent of the latent parameter. The right-hand side has an affine parameter

dependence with respect to µ

f(µ) =

lf∑
i=1

Θ
(i)
f (µ)f (i) ,

with lf ∈ N, Θ
(1)
f , . . . ,Θ

(lf )
f : D → R, and the µ-independent vectors f (1), . . . ,f (lf ) ∈

RN .

2.2 Classical model reduction for systems with latent parameters

Let Yη0 ∈ RN×M be the snapshot matrix that contains as columns M ∈ N state

vectors yη0(µ1), . . . ,yη0(µM ) ∈ RN of the full model (1) corresponding to the

observable parameters µ1, . . . ,µM ∈ D and the nominal latent parameter η0 ∈ E .

The POD basis matrix Vη0
∈ RN×n contains as columns the first n ∈ N left-singular

vectors of the snapshot matrix Yη0
that correspond to the largest singular values.

The POD basis vectors, i.e., the columns of the POD basis matrix Vη0 , span the

n-dimensional POD space Vη0
.

The reduced linear operator Ãη0
(µ) ∈ Rn×n is obtained via Galerkin projection

of the equations of the full model onto the POD space Vη0 . Consider therefore the

projected µ-independent operators

Ã(i)
η0

= V T
η0
A(i)
η0
Vη0 , i = 1, . . . , lA .

By exploiting the affine parameter dependence of the linear operator Aη0
(µ) on the

observable parameter µ ∈ D, the reduced linear operator Ãη0(µ) is

Ãη0(µ) =

lA∑
i=1

Θ
(i)
A (µ)Ã(i)

η0
.

Similarly, the reduced right-hand side is

f̃η0(µ) =

lf∑
i=1

Θ
(i)
f (µ)f̃ (i) ,

where f̃ (i) = V T
η0
f (i) ∈ Rn for i = 1, . . . , lf . The reduced model for the latent

parameter η0 is

Ãη0
(µ)ỹη0

(µ) = f̃η0
(µ) , (2)

where ỹη0(µ) ∈ Rn is the reduced state. The reduced right-hand side f̃η0(µ) ∈ Rn in

the reduced model (2) depends on the latent parameter η0 because of the projection

onto the POD space Vη0
, in contrast to the right-hand side vector f(µ) ∈ RN in

the full model (1).
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2.3 Dynamic data-driven adaptation for reduced models

The reduced model (2) is derived from snapshots with the latent parameter η = η0
set to the nominal latent parameter η0. This means that if the latent parameter

changes online, the reduced model (2) cannot predict the behavior of the system. In

[42, 41], a dynamic data-driven adaptation approach is presented that successively

adapts a reduced model in M ′ ∈ N adaptivity steps to changes in the latent param-

eter. Consider therefore the h = 1, . . . ,M ′ adaptivity steps, in which the reduced

model is adapted from the nominal latent parameter η0 to the changed latent param-

eter, say, η1 ∈ E [1]. In each adaptivity step h, a sensor sample ŷη1(µM+h) ∈ RN is

received. The sensor sample ŷη1
(µM+h) is an approximation of the state yη1

(µM+h)

for the changed latent parameter η1 and an observable parameter µM+h ∈ D. The

difference ‖ŷη1(µM+h) − yη1(µM+h)‖ between the sensor sample and the state in

a norm ‖ · ‖ is noise, measurement error, and the discrepancy of the full model and

reality (model discrepancy [31]). At step h, the sensor samples matrix Sh ∈ RN×h

contains the received sensor samples ŷη1(µM+1), . . . , ŷη1(µM+h) ∈ RN as columns

Sh = [ŷη1
(µM+1), . . . , ŷη1

(µM+h)] ∈ RN×h .

At each adaptivity step h = 1, . . . ,M ′, the dynamic data-driven adaptation first

adapts the POD basis and then the reduced operators. Consider the POD basis

adaptation first. At step h = 1, the first snapshot, i.e., the first column, in the

snapshot matrix Yη0 is replaced with the sensor sample ŷη1(µM+1) ∈ RN and the

snapshot matrix at step h = 1 is obtained

Y1 = [ŷη1(µM+1),yη0(µ2), . . . ,yη0(µM )] ∈ RN×M .

Note that there is no particular ordering of the snapshots in the snapshots matrix.

We replace the first column of Yη0 because we are at step h = 1. By reordering

the columns of Yη0
, any other snapshot can be replaced at step h = 1. The matrix

Y1 is the result of an additive rank-one update to the snapshot matrix Yη0
. Let

ei ∈ {0, 1}N be the canonical unit vector with 1 at component i and 0 at all other

components for i = 1, . . . , N . Then, the snapshot matrix Y1 is

Y1 = Yη0 + aeT1 ,

where a = ŷη1
(µM+1) − yη0

(µ1) ∈ RN . Therefore, the POD basis matrix V1 ∈
RN×n corresponding to the snapshot matrix Y1 can be approximately derived from

Vη0
via the adaptation algorithm [8]. The algorithm extracts the components α =

a−Vη0
V T
η0
a and β = e1−Vη0

V T
η0
e1 of a and e1, respectively, that are orthogonal

to Vη0
. The vectors α and β are used to derive a rotation matrix V ′ ∈ Rn×n of size

n× n and an additive rank-one update γδT with γ ∈ RN and δ ∈ Rn. Computing

the rotation matrix and the rank-one update requires computing the singular value

decomposition (SVD) of an (n+1)×(n+1) matrix. The adapted POD basis matrix

V1 is then given by

V1 = Vη0
V ′ + γδT .

[1]Note that the adaptation can be repeated to adapt from η1 to η2 ∈ E and so on.
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Note that an SVD of a typically small (n + 1) × (n + 1) matrix is required by

the adaptation algorithm, instead of the SVD of an N × M matrix if the POD

basis matrix were computed directly from Y1 without reusing Vη0 . We refer to [8]

for details on the adaptation of the POD basis matrix. The adaptation algorithm is

summarized in [42, Algorithm 1] for the case of the dynamic data-driven adaptation.

Consider now the adaptation of the operators at step h = 1. The goal is to

approximate the reduced operators

Ã(i)
η1

= V T
1 A

(i)
η1
V1 , i = 1, . . . , lA ,

without assembling the full operators A
(1)
η1 , . . . ,A

(lA)
η1 ∈ RN×N corresponding to the

changed latent parameter η1. Therefore, at adaptivity step h = 1, the operators

Ā
(i)
1 = V T

1 A
(i)
η0
V1 , i = 1, . . . , lA , (3)

are constructed. The operator Ā
(i)
1 is the full operator A

(i)
η0 for latent parameter

η0 projected onto the adapted POD space V1 with the adapted POD basis matrix

V1, for i = 1, . . . , lA. Note that (3) projects the full operators corresponding to the

nominal latent parameter η0, and not the operators corresponding to the changed

latent parameter η1. Then, additive updates δÃ
(1)
1 , . . . , δÃ

(lA)
1 ∈ Rn×n are derived

from the sensor sample matrix S1 with the optimization problem

min
δÃ

(1)
h ,...,δÃ

(lA)

h ∈Rn×n

h∑
j=1

∥∥∥∥∥
lA∑
i=1

Θ
(i)
A (µM+j)

(
Ā

(i)
h + δÃ

(i)
h

)
V T
h ŷη1

(µM+j)− f̃h(µM+j)

∥∥∥∥∥
2

2

,

(4)

where f̃h(µM+j) ∈ Rn is the reduced right-hand side with respect to the POD basis

Vh. Note that the optimization problem (4) is formulated for general h ≥ 1, and

not only for h = 1. The solution of the optimization problem (4) are the updates

δÃ
(1)
h , . . . , δÃ

(lA)
h that best-fit the sensor samples in the sensor sample matrix Sh.

The optimization problem (4) is a least-squares problem that can be solved with,

e.g., the QR decomposition. For h < lAn, the least-squares problem is underdeter-

mined, and only low-rank approximations of δÃ
(1)
h , . . . , δÃ

(lA)
h are computed [42].

At step h = 1, the adapted operators are

Ã
(i)
1 = Ā(i)

η0
+ δÃ

(i)
1 , i = 1, . . . , lA ,

and the adapted reduced operator Ã1(µ) ∈ Rn×n can be assembled using the affine

parameter dependence as

Ã1(µ) =

lA∑
i=1

Θ
(i)
lA

(µ)Ã
(i)
1 .

In each adaptivity step h = 1, . . . ,M ′, this POD basis and operator adaptation

is repeated. This means, at step h, the POD basis matrix is adapted from Vh−1 to
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Vh by exploiting that the snapshot matrix Yh at step h is the result of a rank-one

update to the snapshot matrix Yh−1 from the previous step. The adapted reduced

operator Ãh(µ) is derived via the additive rank-one updates δÃ
(1)
h , . . . , δÃ

(lA)
h ∈

Rn×n, which are obtained via optimization from the sensor samples matrix Sh =

[ŷη1
(µM+1), . . . , ŷη1

(µM+h)] ∈ RN×h. For sufficiently many sensor samples, and if

the sensor samples are noise-free, the reduced operator Ãη1
(µ) with respect to the

POD basis matrix Vh equals the adapted reduced operator Ãh(µ), see [42].

3 Incomplete sensor samples
The dynamic data-driven adaptation derives updates to a reduced model from sen-

sor samples. We consider here the situation where we receive incomplete sensor

samples, i.e., partial measurements of the state. This section mathematically de-

fines incomplete sensor samples, and the next section develops the extension to the

dynamic data-driven adaptation to handle incomplete sensor samples.

Let ŷη1(µM+h) ∈ RN be the (complete) sensor sample that is received at adap-

tivity step h. Let k ∈ N with k < N and let ph1 , . . . , p
h
k ∈ {1, . . . , N} be pairwise

distinct indices of the sensor sample ŷη1(µM+h) ∈ RN . The indices ph1 , . . . , p
h
k give

rise to a point selection matrix

Ph = [eph1 , . . . , ephk ] ∈ RN×k .

The point selection matrix Ph selects the components with indices ph1 , . . . , p
h
k . For

example, consider the vector x = [x1, . . . , xN ]T ∈ RN , then we have
xph1

...

xphk

 = P T
h x .

From the point selection matrix Ph, we derive the matrix Qh ∈ RN×(N−k) that

selects the components of the (complete) sensor sample ŷη1(µM+h) that are missing

in the incomplete sensor sample ŷincp
η1

(µM+h). The matrices Ph and Qh lead to the

decomposition

ŷη1(µM+h) = PhP
T
h ŷη1(µM+h) +QhQ

T
h ŷη1(µM+h) .

The matrix PhP
T
h selects all components that correspond to the indices ph1 , . . . , p

h
k

and sets the components at all other indices {1, . . . , N} \ {ph1 , . . . , phk} to zero. The

matrix QhQ
T
h has the opposite effect and selects all components with indices in

{1, . . . , N}\{ph1 , . . . , phk} and sets the components with indices {ph1 , . . . , phk} to zero.

We define the incomplete sensor sample ŷincp
η1

(µM+h) of the (complete) sensor

sample ŷη1(µM+h) corresponding to the point selection matrix Ph as

ŷincp
η1

(µM+h) = PhP
T
h ŷη1

(µM+h) ∈ RN . (5)

The values at the components of the incomplete sensor sample ŷincp
η1

(µM+h) with

indices ph1 , . . . , p
h
k are set to the corresponding components of the (complete) sensor

sample ŷη1
(µM+h). All other components are missing in the incomplete sensor

sample and their values in ŷincp
η1

(µM+h) are zero through the definition (5).
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4 Dynamic data-driven adaptation from incomplete sensor
samples

We propose an extension to the dynamic data-driven adaptation approach that han-

dles incomplete sensor samples. Consider the adaptation from the nominal latent

parameter η0 to the latent parameter η1 in the M ′ adaptivity steps h = 1, . . . ,M ′.

At each adaptivity step h = 1, . . . ,M ′, we receive incomplete sensor samples

ŷincp
η1

(µM+h) ∈ RN and the corresponding point selection matrices Ph. The point

selection matrix depends on h and might change at each adaptivity step, see the

discussion on future sensor technologies in Section 1. The number of known com-

ponents k is independent of h and stays constant for all h = 1, . . . ,M ′.

We split the adaptivity steps M ′ = Mbasis + Mupdate into Mbasis ∈ N and

Mupdate ∈ N steps. In the first h = 1, . . . ,Mbasis steps, a gappy POD basis is derived

from the incomplete sensor samples ŷincp
η1

(µM+1), . . . , ŷincp
η1

(µM+Mbasis) ∈ RN . At

the subsequent Mupdate steps h = M+Mbasis +1, . . . ,M ′, the missing values of the

incomplete sensor samples ŷη1(µM+Mbasis+h) ∈ RN are approximated using gappy

POD with the obtained gappy POD basis. The approximations of the missing values

and the components in the incomplete sensor sample are combined to approximate

the complete sensor sample. The dynamic data-driven adaptation is then applied

to these approximate sensor samples to update the reduced model. Section 4.1

discusses the construction of the gappy POD basis and Section 4.2 presents the

adaptation of the reduced model from the approximate sensor samples. Section 4.3

summarizes the procedure and presents Algorithm 1.

4.1 Deriving the gappy POD basis

In the first h = 1, . . . ,Mbasis adaptivity steps, we derive a gappy POD basis from

the incomplete sensor samples. Let r ∈ N be the dimension of the gappy POD basis

with gappy POD basis matrix Uh ∈ RN×r. The initial gappy POD basis matrix

U0 ∈ RN×r contains as columns the r-dimensional POD basis vectors corresponding

to the snapshot matrix Yη0 .

At step h = 1, we receive the incomplete sensor sample ŷincp
η1

(µM+1) and the

corresponding point selection matrix P1 ∈ RN×k with Q1 ∈ RN×(N−k). We use

the initial gappy POD basis matrix U0 to derive the approximate sensor sample

ŷapprx
η1

(µM+1) ∈ RN using gappy POD [22, 49, 10]

ŷapprx
η1

(µM+1) = Q1Q
T
1U0(P T

1 U0)+P T
1 ŷ

incp
η1

(µM+1) + ŷincp
η1

(µM+1) . (6)

The matrix (P T
1 U0)+ ∈ Rr×k is the Moore-Penrose pseudoinverse of the ma-

trix P T
1 U0 ∈ Rk×r. Since P T

1 ŷ
incp
η1

(µM+1) = P T
1 ŷη1

(µM+1), we have that

(P T
1 U0)+P T

1 ŷ
incp
η1

(µM+1) is the solution of the regression problem

arg min
c∈Rr

‖P T
1 (U0c− ŷη1(µM+1))‖22 . (7)

Note that the regression problem is overdetermined and has a unique solution if the

matrix P T
1 U0 has full column rank, which we typically ensure by selecting k > r.

Therefore, the vector U0(P T
1 U0)+P T

1 ŷ
incp
η1

(µM+1) ∈ RN is the best approxima-

tion with respect to (7) of the complete sensor sample ŷη1(µM+1) in the space
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spanned by the columns of the POD basis matrix U0. The approximate sensor

sample ŷapprx
η1

(µM+1) combines this best approximation and the known values in

the incomplete sensor sample. The values at the components corresponding to the

missing components of the incomplete sensor sample are set to the best approxi-

mation, and the values at all other components are set to the values obtained from

the incomplete sensor sample.

We then use the approximate sensor sample ŷapprx
η1

(µM+1) to adapt the gappy

POD basis from U0 to U1. Consider therefore the snapshot matrix Y0 and note

that U0 is the k-dimensional POD basis derived from Y0. We adapt the snapshot

matrix Y0 to Y1 ∈ RN×M via a rank-one update that replaces column 1 of Y0

with the approximate sensor sample ŷapprx
η1

(µM+1) ∈ RN . Since Y1 is the result of

a rank-one update to Y0, the k-dimensional POD basis corresponding to Y1 can

be approximated in a computationally efficient manner using the incremental POD

algorithm [8]. Note that this is the same approach as used in the dynamic data-

driven adaptation, see Section 2.3. Thus, the adapted gappy POD basis matrix U1

can be derived cheaply from the basis matrix U0.

At step h = 2, the approximate sensor sample ŷapprx
η1

(µM+2) is constructed with

the gappy POD basis matrix U1, which is then used to adapt from U1 to U2. This

process is continued until step h = Mbasis, where the gappy POD basis matrix

UMbasis is derived. Note that the number of columns in the snapshot matrix is fixed

and that columns are replaced following the first-in-first-out principle if h > M .

4.2 Dynamic data-driven adaptation from approximate sensor samples

In the Mupdate steps h = M+Mbasis +1, . . . ,M ′, we adapt the reduced model from

approximate sensor samples using the dynamic data-driven adaptation. Consider

therefore an adaptivity step h > Mbasis, at which the incomplete sensor sample

ŷincp
η1

(µM+h) ∈ RN and the corresponding point selection matrix Ph ∈ Rk×N are

received. We use the gappy POD basis UMbasis to derive the approximate sensor

sample ŷapprx
η1

(µM+h) of the complete sensor sample with the gappy POD basis

UMbasis . The approximate sensor sample ŷapprx
η1

(µM+h) is then used to adapt the

reduced model with the dynamic data-driven adaptation as described in Section 2.3.

4.3 Computational procedure

Algorithm 1 summarizes the dynamic data-driven adaptation that can handle in-

complete sensor samples. Inputs of Algorithm 1 are the POD basis matrix Vh−1,

the operators Ã
(1)
h−1, . . . , Ã

(lA)
h−1, and the right-hand sides f̃

(1)
h−1, . . . , f̃

(lf )
h−1 derived at

the previous adaptivity step h − 1. If h ≤ Mbasis, the algorithm adapts the gappy

POD basis from Uh−1 to Uh using the approach presented in Section 4.1. First, the

approximate sensor sample is constructed with gappy POD. Then, the adapted ba-

sis matrix Uh is computed with the incremental POD algorithm [8]. Only the gappy

POD basis is adapted and the reduced model is returned unchanged. If h > Mbasis,

the approximate sensor sample is derived with gappy POD and UMbasis . The ap-

proximate sensor sample is then used with the dynamic data-driven adaptation to

derive the adapted POD basis Vh, the adapted operators Ã
(1)
h , . . . , Ã

(lA)
h , and the

adapted right-hand sides f̃
(1)
h , . . . , f̃

(lf )
h .
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Algorithm 1 Dynamic data-driven adaptation from incomplete sensor samples

1: procedure adaptIncomplete(Mbasis,Uh−1,Vh−1, Ã
(1)
h−1, . . . , Ã

(lA)
h−1, f̃

(1)
h−1, . . . , f̃

(lf )

h−1)

2: Receive incomplete sensor sample ŷincp
η1

(µM+h) ∈ RN and point selection matrix Ph ∈ Rk×N

3: Construct matrix Qh ∈ R(N−k)×N

4: if h ≤Mbasis then
5: Compute approximate sensor sample using gappy POD basis matrix Uh−1

ŷapprx
η1

(µM+h) = QhQ
T
hUh−1(P

T
h Uh−1)

+P T
h ŷ

incp
η1

(µM+h) + ŷ
incp
η1

(µM+h) .

6: Update snapshot matrix Yh−1 with ŷapprx
η1

(µM+h) to obtain Yh

7: Derive adapted gappy POD basis matrix Uh from Uh−1 using [8]

8: Set Ã
(i)
h = Ã

(i)
h−1 for i = 1, . . . , lA

9: Set f̃
(i)
h = f̃

(i)
h−1 for i = 1, . . . , lf

10: Set Vh = Vh−1

11: else
12: Compute approximate sensor sample using basis UMbasis

ŷapprx
η1

(µM+h) = QhQ
T
hUMbasis (P

T
h UMbasis )

+P T
h ŷ

incp
η1

(µM+h) + ŷ
incp
η1

(µM+h) .

13: Get Vh, Ã
(1)
h , . . . , Ã

(lA)
h , f̃

(1)
h , . . . , f̃

(lf )

h from dynamic adaptation with ŷapprx
η1

(µM+h)
14: end if

15: return Vh, Ã
(1)
h , . . . , Ã

(lA)
h , f̃

(1)
h , . . . , f̃

(lf )

h
16: end procedure

5 Numerical results
This section demonstrates the dynamic data-driven adaptation from incomplete sen-

sor samples on a model of a bending plate. The latent parameter describes damage

of the plate. The damage is a local decrease of the thickness of the plate. The model

is based on the Mindlin plate theory [23, 47] that takes into account transverse shear

deformations but neglects important nonlinear effects such as postbuckling behav-

ior. Therefore, the model that we use in this section is a simple description of a

plate in bending. We use the plate model only to provide a proof of concept of our

adaptation approach. More advanced plate models are used in real-world engineer-

ing applications. We refer to Section 6 for a discussion on further applications of

our adaptation approach.

We first build a reduced model for the nominal problem, i.e., the latent parameter

is set to the nominal latent parameter η0 ∈ D that corresponds to the no-damage

condition. We then decrease the thickness of the plate stepwise and adapt the re-

duced model. After each change in the latent parameter, synthetic incomplete sen-

sor samples are computed with the full model, which are used to adapt the reduced

model. The following sections give details on the problem setup and report the

numerical results.

5.1 Plate problem

We consider the static analysis of a plate in bending. The plate is clamped into

a frame and a load is applied. Our problem is an extension of the plate prob-

lems introduced in [23, 42, 44]. The geometry of our plate problem is shown in

Figure 3a. The spatial domain Ω ∈ [0, 1]2 ⊂ R2 is split into two subdomains

Ω = Ω1 ∪ Ω2. The problem has three observable parameters µ = [µ1, µ2, µ3]T ∈ D
with D = [0.05, 0.1]2 × [1, 100]. The observable parameters µ1 and µ2 control the

nominal thickness of the plate in the subdomain Ω1 and Ω2, respectively. The third

observable parameter µ3 defines the load on the plate.
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Figure 3: The spatial domain of the plate problem is split into two subdomains as shown
in (a). The plot (b) shows the decay of the singular values of the snapshot matrix for
nominal latent parameter η0 (no-damage condition).

The latent parameter η = [η1, η2]T ∈ E controls the damage of the plate, i.e., the

latent parameter defines the local decrease of the thickness that corresponds to the

damage. The domain of the latent parameter is E = [0, 0.2]×(0, 0.05]. The thickness

of the plate at position x ∈ Ω is given by the function t : Ω×D × E → R with

t(x;µ,η) = t0(x;µ)

(
1− η1 exp

(
− 1

2η22
‖x− z‖22

))
,

and

t0(x;µ) =

µ1 if x1 > 0.5

µ2 if x1 ≤ 0.5
,

with position z = [0.7, 0.4]T ∈ Ω. The function t is nonlinear in x,µ and η. We set

the nominal latent parameter η0 to η0 = [0, 0.01]T ∈ E that corresponds to no local

decrease of the thickness and therefore to the no-damage condition.

The full model of the plate problem is a finite element model, see [23]. The corre-

sponding system of equations is of the form (1), where lA = 4, lf = 1, Θ
(1)
f (µ) = µ3,

Θ
(1)
A (µ) = µ3

1 , Θ
(2)
A (µ) = µ3

2 ,

and

Θ
(3)
A (µ) = µ1 , Θ

(4)
A (µ) = µ2

The system of equations has N = 4719 degrees of freedom. The thickness of the

plate with µ = [0.08, 0.07, 50]T ∈ D and with η = η0 is visualized in Figure 4a

and the deflection in Figure 4c. The thickness and the deflection of the plate with a
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Figure 4: Local damage at z = [0.7, 0.4]T ∈ Ω (i.e., a local decrease of the thickness) leads
to a larger deflection of the plate.

damage up to 20%, i.e., a local decrease of the thickness of the plate at z by 20%,

is shown in Figure 4b and 4d, respectively.

We draw M = 1000 observable parameters µ1, . . . ,µM ∈ D uniformly in D and

compute the corresponding state vectors with the full model to assemble the snap-

shot matrix

Yη0
= [ŷη0

(µ1), . . . , ŷη0
(µM )] ∈ RN×M .

Note that the latent parameter η = η0 is set to the nominal latent parameter η0.

Figure 3b plots the decay of the singular values of the snapshot matrix Yη0
. We

construct a reduced model via Galerkin projection onto the space spanned by the

first n = 8 POD basis vectors of Yη0
.

5.2 Setup of numerical experiments

We now describe the details of our numerical experiments. We have ten latent pa-

rameters η0,η1, . . . ,η9 ∈ E , where η0 is the nominal latent parameter corresponding

to the no-damage condition and

ηi =

[
2i

90
,

2i

360

]T
∈ E , i = 1, . . . , 9 .

This means that from latent parameter ηi−1 to ηi the thickness at position z is

decreased by a factor of two, for i = 1, . . . , 9. After each change of the latent
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parameter, the sensor window is flushed and M ′ ∈ N incomplete sensor samples are

received to adapt the reduced model.

Number of sensor samples We receive incomplete sensor samples, and therefore we

use the extension to the dynamic data-driven adaptation described in Section 4. This

means that the adaptivity steps h = 1, . . . ,M ′ required for adapting from latent

parameter ηi−1 to ηi are split into Mbasis ∈ N steps to derive the gappy POD basis

and Mupdate ∈ N steps to update the reduced model. We chose Mbasis and Mupdate

conservatively in the following, because we are primarily interested in studying the

effect of the number of missing components in the incomplete sensor samples onto

the adaptation, rather than the number of sensor samples; see [42] for studies on

the effect of the number of samples on the dynamic data-driven adaptation in the

case with complete sensor samples. We set Mbasis = 5000 and therefore derive

the gappy POD basis from Mbasis = 5000 incomplete sensor samples. We buffer

50 incomplete sensor samples and use them in the incremental basis generation

procedure described in Section 4.1.

The theory of the dynamic data-driven adaptation with complete sensor samples

gives guidance on the selection of Mupdate. In case of complete sensor samples,

setting Mupdate = lA × n is sufficient to recover the reduced model that would

be obtained via rebuilding from scratch [42]. Note that lA = 4 is the number of

µ-independent operators and n = 8 the dimension of the POD basis space. We set

Mupdate = 5 × lA × n = 160 since we adapt from incomplete sensor samples and

therefore expect that the approximation of the missing values introduces additional

error into the adaptation. In total, we receive M ′ = Mbasis + Mupdate = 5160

incomplete sensor samples to adapt from ηi−1 to ηi for i = 1, . . . , 9.

Sensor sample generation The number of missing components N − k in the in-

complete sensor samples is controlled by the number of known components k. To

discuss the effect of k on the adaptation, we introduce separate numbers of known

components kbasis ∈ N and kupdate ∈ N for the gappy POD basis construction and

the update, respectively. Furthermore, we introduce the sensor rates

ρbasis =
kbasis

N
× 100 , ρupdate =

kupdate

N
× 100 ,

which are the percent of the number of known components of the total number of

components N in the incomplete sensor samples. Thus, for example, ρbasis = 100%

means that all components are known and therefore that we have a complete sensor

sample.

We synthetically generate incomplete sensor samples with the full model at each

step h = 1, . . . ,M ′. We therefore first draw uniformly an observable parameter

µM+h in D and compute the state vector yη(µM+h) with the full model for the cur-

rent latent parameter µ. We then draw k ∈ N unique indices uniformly in {1, . . . , N}
and construct the point selection matrix Ph ∈ RN×k. The incomplete sensor sample

is ŷincp
η (µM+h) = PhP

T
h yη(µM+h).
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Error computation We compare three reduced models:

• A static reduced model that is built as described in Section 2.2. The static

reduced model is not adapted to changes in the latent parameter.

• A rebuilt reduced model that is derived as in Section 2.2 but from Mupdate

complete sensor samples corresponding to the current changed latent param-

eter. This requires repeating the computation of the POD basis and the op-

erator projections, which is prohibitively expensive to conduct online.

• An online adaptive reduced model that is adapted to changes in the latent pa-

rameter from incomplete sensor samples with the dynamic data-driven adap-

tation described in Algorithm 1.

To assess the quality of the reduced models quantitatively, we draw ten observable

parameters µ′1, . . . ,µ
′
10 ∈ D uniformly in D and compute the relative L2 error with

respect to the full model

er =
1

10

10∑
i=1

‖ȳη(µ′i)− yη(µ′i)‖2
‖yη(µ′i)‖2

, (8)

where η is the current latent parameter and ȳη(µ′1), . . . , ȳη(µ′10) ∈ Rn are the state

vectors obtained with either the static, the rebuilt, or the adapted reduced model.

5.3 Gappy POD basis from complete sensor samples

We first consider the situation where ρbasis = 100% is fixed and the sensor rate

ρupdate varies. This means that we have available complete sensor samples (without

missing components) for deriving the gappy POD basis in the first Mbasis steps

but incomplete sensor samples for updating the reduced model in the final Mupdate

adaptivity steps.

Figures 5 and 6 demonstrate the effect of the sensor rate ρupdate on the dynamic

data-driven adaptation. First consider the static reduced model. As the latent pa-

rameter changes from η0 (no damage) to η9 (20% decrease of thickness), the error

of the static reduced model increases by three orders of magnitude. The steps in

the error curve reflect the changes in the latent parameter. The error of the rebuilt

reduced model stays near 10−4. Consider now the adaptive reduced model. The di-

mension of the gappy POD basis is set to r = 30. Figure 5 shows that a sensor rate

ρupdate = 0.6% leads to an adapted reduced model with large errors. A sensor rate

of ρupdate = 0.6% means that kupdate = 29 components of the incomplete sensor

sample are known, and therefore kupdate < r. This violates the condition of gappy

POD that requires a full-column rank P T
h UMbasis , see Section 4.1. For a slightly

larger sensor rate ρupdate = 0.8%, and kupdate > r, our dynamic data-driven adap-

tation from incomplete sensor samples recovers the rebuilt reduced model. Figure 6

indicates that increasing the sensor rate ρupdate reduces the error of the adapted re-

duced model in the first few adaptivity steps after a change in the latent parameter,

cf. Figure 5.

Note that the adapted reduced model achieves a slightly lower error than the

rebuilt reduced model in Figure 5 and Figure 6. The dynamic data-driven adaptation

constructs the adapted operators with an optimization problem from the sensor

samples projected onto the POD space. This projection and the optimization cause
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(a) sensor rate ρupdate = 0.6% (b) sensor rate ρupdate = 0.8%

Figure 5: The steps in the error curve corresponding to the static reduced model reflect
the changes in the latent parameter. Changing the latent parameter from η0 (no damage)
to η9 (20% decrease of thickness) increases the error of the static reduced model by three
orders of magnitude. The adaptive reduced model uses the incomplete sensor samples to
adapt to changes in the latent parameters. The gappy POD basis is derived from complete
sensor samples (i.e., ρbasis = 100%), the sensor rate ρupdate for deriving the updates to the
reduced model is set to ρupdate = 0.6% (a) and to ρupdate = 0.8% (b). The dimension of the
reconstruction basis is set to r = 30. For ρupdate = 0.6%, the number of known components
in the incomplete sensor samples is kupdate = 29 < r and therefore the regression problem
underlying gappy POD becomes underdetermined, see Section 4.1. This leads to large
errors. Increasing the sensor rate to ρupdate = 0.8% leads to an overdetermined regression
problem and therefore to lower errors of the adapted reduced model.

the difference in the error of the adapted and the rebuilt reduced model, if the

dimension of the reduced model is low. The difference decreases if the dimension of

the reduced model is increased, see [42, Theorem 1].

Figure 7 reports the error behavior of an adapted reduced model that uses a

gappy POD basis of dimension r = 40. For ρupdate = 0.6% and ρupdate = 0.8%,

we again obtain the situation kupdate < r and therefore obtain an underdetermined

least-squares problem that introduces large errors in the adaptation. However, if the

sensor rate ρupdate is increased, the approximation quality of the adapted reduced

model increases too. The results in Figure 6 for r = 30 are similar to the result

obtained in Figure 7 for r = 40. This shows that a gappy POD basis with r = 30

dimensions is sufficient in this example.

5.4 Gappy POD basis from incomplete sensor samples

We now consider the situation where ρbasis < 100% and ρupdate < 100%, i.e., the

gappy POD basis is derived from incomplete sensor samples and the updates to the

reduced models are obtained from incomplete sensor samples as well. Figure 8 shows

the effect of the sensor rate ρbasis on the adaptation. Figures 8a and 8b demonstrate

that a sensor rate ρbasis = 10% is too low to recover the rebuilt reduced model with

the adapted reduced model in this example. Even setting the sensor rate for the

update to ρupdate = 90% (i.e., generating the gappy POD basis from incomplete

samples with ρbasis = 10% and updating the reduced model from approximate
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(a) sensor rate ρupdate = 1% (b) sensor rate ρupdate = 5%

Figure 6: The gappy POD basis is derived from complete sensor samples (i.e., ρbasis =
100%) but the sensor rate for the incomplete sensor samples received during the Mupdate

update steps is set to ρupdate = 1% (a) and ρupdate = 5% (b). The dimension of the gappy
POD basis is set to r = 30.

sensor samples with ρupdate = 90%) cannot compensate the inadequate sensor rate

ρbasis = 10%. Increasing the sensor rate for the gappy POD basis construction to

ρbasis = 30% leads to an adapted reduced model that recovers the rebuilt reduced

model. However, with ρbasis = 30% there still are outliers that lead to a reduced

model with a large error. Figure 9 shows that increasing the sensor rate to ρbasis =

70% reduces those outliers significantly. Again, increasing the dimension of the

gappy POD basis from r = 30 to r = 40 only slightly reduces the error of the

adapted reduced model, compare Figures 9a,c,e with Figures 9b,d,f.

Figure 10 reports the runtime of the dynamic data-driven adaptation for ρbasis =

30%, ρupdate = 50% and ρbasis = 30%, ρupdate = 90%. The latent parameter changes

from η0 to η9 in nine steps. For each of the nine latent parameters η1, . . . ,η9, the

gappy POD basis is derived and the reduced model is adapted in Mupdate steps to

the incomplete sensor samples. Thus, in total, nine gappy POD bases are derived

and 9×Mupdate adaptivity steps are performed for adapting from η0 to η9. Figure 10

reports the total runtime split into the runtime of the gappy POD basis construction

and the adaptation. The runtime of the dynamic data-driven adaptation is com-

pared to the runtime of rebuilding the reduced model from scratch in each of the

9×Mupdate adaptivity steps. The runtime of rebuilding the reduced model is split

into the runtime of inferring the latent parameter from the sensor samples and the

runtime of the offline phase where the reduced operators are constructed, see Sec-

tion 1. The dynamic data-driven approach achieves a speedup of about two orders

of magnitude compared to rebuilding the reduced model from scratch. Increasing

ρupdate from ρupdate = 50% to ρupdate = 90% only slightly changes the runtime of

the dynamic data-driven adaptation. The runtime measurements were performed

on an i5-3570 CPU.
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(a) sensor rate ρupdate = 0.6% (b) sensor rate ρupdate = 0.8%
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(c) sensor rate ρupdate = 1% (d) sensor rate ρupdate = 5%

Figure 7: Increasing the dimension of the reconstruction basis to r = 40 only slightly
decreases the error of the adapted reduced model, compared to a reconstruction basis
with r = 30 (see Figures 5 and 6). Note that ρupdate > 0.8% is required to obtain an
overdetermined regression problem in gappy POD in this example.

6 Summary and future work
We proposed an extension to the dynamic data-driven adaptation that handles

incomplete sensor samples, i.e., partial measurements of the large-scale state. In

our approach, a gappy POD basis is derived from incomplete sensor samples. The

missing values of the incomplete sensor samples are approximated with gappy POD

in the space spanned by the gappy POD basis. The reduced model is then adapted

using the gappy POD approximations of the complete sensor samples with the

dynamic data-driven adaptation. The numerical results confirm that about 30-40%

of the total number of components of the sensor samples are sufficient to recover

the reduced model that would be obtained via rebuilding from scratch.

Future sensing technologies (e.g., “sensor skins”) of next-generation engineering

systems will provide high-resolution measurements. Processing these large data sets

will be computationally challenging. In big data analytics, sublinear algorithms

are currently developed that look at only a subset of the given data set to meet
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runtime requirements [48]. Our approach follows a similar paradigm. We selectively

process sensor data that are most informative for deriving the update to the reduced

model and ignore large parts of the received data that are irrelevant in the current

situation. Our approach is applicable even if the selection of the high-resolution

sensor data is dynamically changing online, e.g., due to new damage events.

We considered here real-time structural assessment and decision-making but sen-

sor data are available in many other applications. For example, in control, the goal

is to design a controller that stabilizes a dynamical system. However, if the dynam-

ical system passes through multiple regimes with different system characteristics,

a single controller might be insufficient to stabilize the system. If sensor data, e.g.,

sparse measurements of the state of the dynamical system, are available, the con-

troller can be adapted to the sensor data to take into account the changes in the

underlying dynamical system. We also mention system identification as a potential

application of our adaptation approach. Instead of starting with reduced operators

derived in an offline phase, one could start with initial operators that have all com-

ponents set to zero, and then adapt these operators to the available data. Such a

system identification approach would derive a reduced model directly from data. In

general, our approach is applicable to DDDAS for which massive amounts of sensor

data are available.
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28. D. González, F. Masson, F. Poulhaon, A. Leygue, E. Cueto, and F. Chinesta. Proper generalized decomposition

based dynamic data driven inverse identification. Mathematics and Computers in Simulation, 82(9):1677 –

1695, 2012.

29. S. Gugercin and A. Antoulas. A survey of model reduction by balanced truncation and some new results.

International Journal of Control, 77(8):748–766, 2004.

30. S. Kaulmann and B. Haasdonk. Online greedy reduced basis construction using dictionaries. In I. Troch and

F. Breitenecker, editors, Proceedings of 7th Vienna International Conference on Mathematical Modelling, pages

112–117, 2012.

31. M. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

32. O. Lass. Reduced order modeling and parameter identification for coupled nonlinear PDE systems. PhD thesis,

University of Konstanz, 2014.

33. Laura Mainini and Karen E. Willcox. A surrogate modeling approach to support real-time structural assessment

and decision-making. In 10th AIAA Multidisciplinary Design Optimization Conference, AIAA SciTech. American

Institute of Aeronautics and Astronautics, Jan. 2014.

34. M. Lecerf, D. Allaire, and K. Willcox. Methodology for dynamic data-driven online flight capability estimation.

AIAA Journal, 53(10):3073–3087, June 2015.

35. Y. Maday and B. Stamm. Locally adaptive greedy approximations for anisotropic parameter reduced basis

spaces. SIAM Journal on Scientific Computing, 35(6):A2417–A2441, 2013.

36. L. Mainini and K. Willcox. Sensitivity analysis of surrogate-based methodology for real time structural

assessment. In AIAA Modeling and Simulation Technologies Conference, AIAA SciTech 2015, AIAA Paper

2015-1362. AIAA, 2015.

37. L. Mainini and K. Willcox. Surrogate Modeling Approach to Support Real-Time Structural Assessment and

Decision Making. AIAA Journal, 53(6):1612–1626, Apr. 2015.

38. M. Ohlberger and F. Schindler. Error control for the localized reduced basis multi-scale method with adaptive

on-line enrichment. SIAM J. Sci. Comput., 2015. accepted.

39. H. Panzer, J. Mohring, R. Eid, and B. Lohmann. Parametric model order reduction by matrix interpolation. at

– Automatisierungstechnik, 58(8):475–484, 2010.

40. B. Peherstorfer, D. Butnaru, K. Willcox, and H.-J. Bungartz. Localized discrete empirical interpolation method.

SIAM Journal on Scientific Computing, 36(1):A168–A192, 2014.

41. B. Peherstorfer and K. Willcox. Detecting and adapting to parameter changes for reduced models of dynamic

data-driven application systems. Procedia Computer Science, 51:2553 – 2562, 2015.

42. B. Peherstorfer and K. Willcox. Dynamic data-driven reduced-order models. Computer Methods in Applied

Mechanics and Engineering, 291:21 – 41, 2015.

43. B. Peherstorfer and K. Willcox. Online adaptive model reduction for nonlinear systems via low-rank updates.



REFERENCES 21

SIAM Journal on Scientific Computing, 37(4):A2123–A2150, 2015.

44. B. Peherstorfer, K. Willcox, and M. Gunzburger. Optimal model management for multifidelity Monte Carlo

estimation. Technical Report 15-2, Aerospace Computational Design Laboratory, MIT, 2015.

45. G. Rozza, D. Huynh, and A. Patera. Reduced basis approximation and a posteriori error estimation for affinely

parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering,

15(3):1–47, 2007.

46. S. Sargsyan, S. L. Brunton, and J. N. Kutz. Nonlinear model reduction for dynamical systems using sparse

sensor locations from learned libraries. Phys. Rev. E, 92:033304, 2015.

47. E. Ventsel and T. Krauthammer. Thin Plates and Shells. CRC Press, 2001.

48. D. Wang and Z. Han. Sublinear Algorithms for Big Data Applications. Springer, 2015.

49. K. Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers

& Fluids, 35(2):208 – 226, 2006.

50. M. Zahr and C. Farhat. Progressive construction of a parametric reduced-order model for pde-constrained

optimization. International Journal for Numerical Methods in Engineering, 102(5):1111–1135, 2015.

51. R. Zimmermann. A locally parametrized reduced-order model for the linear frequency domain approach to

time-accurate computational fluid dynamics. SIAM Journal on Scientific Computing, 36(3):B508–B537, 2014.



22 REFERENCES

500 1000 1500
#sensor samples for updating

10 -4

10 -2

10 0

re
l
L

2
er

ro
r
ov

er
te

st
se

t

static
rebuilt

;
update  = 40%

;
update  = 50%

500 1000 1500
#sensor samples for updating

10 -4

10 -2

10 0

re
l
L

2
er

ro
r
ov

er
te

st
se

t

static
rebuilt

;
update  = 80%

;
update  = 90%

(a) sensor rate ρbasis = 10% (b) sensor rate ρbasis = 10%

500 1000 1500
#sensor samples for updating

10 -4

10 -2

10 0

re
l
L

2
er

ro
r
ov

er
te

st
se

t

static
rebuilt

;
update  = 40%

;
update  = 50%

500 1000 1500
#sensor samples for updating

10 -4

10 -2

10 0

re
l
L

2
er

ro
r
ov

er
te

st
se

t

static
rebuilt

;
update  = 80%

;
update  = 90%

(c) sensor rate ρbasis = 20% (d) sensor rate ρbasis = 20%

500 1000 1500
#sensor samples for updating

10 -4

10 -2

10 0

re
l
L

2
er

ro
r
ov

er
te

st
se

t

static
rebuilt

;
update  = 40%

;
update  = 50%

500 1000 1500
#sensor samples for updating

10 -4

10 -2

10 0

re
l
L

2
er

ro
r
ov

er
te

st
se

t

static
rebuilt

;
update  = 80%

;
update  = 90%
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Figure 8: The plots in (a)-(d) show that a sensor rate ρbasis < 30% for the construction of
the gappy POD basis is insufficient and that the rebuilt reduced model cannot be recovered
with the adaptation from incomplete sensor samples in this example. Even increasing the
sensor rate ρupdate to ρupdate = 90% cannot compensate the poor approximation quality
of the obtained gappy POD basis. Increasing the sensor rate to ρbasis = 30% leads to a
gappy POD basis that approximates the complete sensor samples sufficiently well so that
the dynamic data-driven adaptation recovers the rebuilt reduced model, see (e) and (f).
The dimension of the gappy POD basis is set to r = 30.
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(a) sensor rate ρbasis = 60%, dim r = 30 (b) sensor rate ρbasis = 60%, dim r = 40
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(c) sensor rate ρbasis = 70%, dim r = 30 (d) sensor rate ρbasis = 70%, dim r = 40
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(e) sensor rate ρbasis = 80%, dim r = 30 (f) sensor rate ρbasis = 80%, dim r = 40

Figure 9: This figure shows that a sensor rate of ρbasis = 70% is sufficient to derive a gappy
POD basis that avoids large errors in the first few adaptivity steps after a change in the
latent parameter, cf. Figure 8 for ρbasis = 30%. The figure also confirms that increasing
the dimension of the gappy POD basis from r = 30(a, c, e) to r = 40(b, d, f) has an
insignificant effect on the adaptation.
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(a) ρbasis = 30%, ρupdate = 50% (b) ρbasis = 30%, ρupdate = 90%

Figure 10: This figure compares the runtime of the dynamic data-driven adaptation to re-
building the reduced model from scratch. Adapting the reduced model using our approach
is about two orders of magnitude faster than rebuilding the reduced model from scratch.


