
Methodology for Dynamic Data-Driven Online
Flight Capability Estimation

Marc Lecerf,∗ Douglas Allaire,† and Karen Willcox‡

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

DOI: 10.2514/1.J053893

This paper presents a data-driven approach for the online updating of the flight envelope of an unmanned aerial

vehicle subjected to structural degradation. The main contribution of the work is a general methodology that

leverages both physics-basedmodeling and data to decompose tasks into two phases: expensive offline simulations to

build an efficient characterization of the problem and rapid data-driven classification to support online decision

making. In the approach, physics-based models at the wing and vehicle level run offline to generate libraries of

information covering a range of damage scenarios. These libraries are queried online to estimate vehicle capability

states. The state estimation and associated quantification of uncertainty are achieved by Bayesian classification using

sensed strain data. The methodology is demonstrated on a conceptual unmanned aerial vehicle executing a pullup

maneuver, in which the vehicle flight envelope is updated dynamically with onboard sensor information. During

vehicle operation, the maximum maneuvering load factor is estimated using structural strain sensor measurements

combined with physics-based information from precomputed damage scenarios that consider structural weakness.

Compared to a baseline case that uses a static as-designed flight envelope, the self-aware vehicle achieves both an

increase in probability of executing a successful maneuver and an increase in overall usage of the vehicle capability.

Nomenclature

A = upper bound of box constraint for regularized support
vector machine

a = random variable for quantity a
C = capability set
Ĉ = probablistic support vector machine output
c = capability classifier parameter vector
D = damage configuration space
Dj = event that damage case j occurs
DSR = damage library down-sampling ratio
d = damage parameterization vector
df = severity of damage on wing
dt = depth of damage on wing
E�·� = expectation
e = observable vector measurement noise
f = failure metric
K = kernel function
lc = chordwise location of damage on wing
ls = spanwise location of damage on wing
Nc = number of capability parameters
Nd = number of observable vector data samples
Ns = number of sensors
n = load factor
nmax = maximum load factor before failure
ntruthmax = truth reference maximum load factor
nop = operational load factor decided upon using dynamic

capability estimate

nstaticop = operational load factor decided upon using static
capability estimate from design

�nutil = average utilization of maximum vehicle capability
p�·� = probability
pop = threshold probability for decisions using dynamic

capability estimate
R = number of damage library records
S = support vector machine discriminant function (“score”)
S = observable vector space
s = observable vector
ŝ = observable vector measurement
V = airspeed
wc = chordwise extent of damage on wing
ws = spanwise extent of damage on wing
X = vehicle state space
x = vehicle state
αj = support vector machine weight for jth training sample
β1,
β2

= probabilistic support vector machine regression model
parameters

ϵk = kth strain gage rosette output
εk = plane strain at location of kth strain gage rosette

I. Introduction

A SELF-AWARE aerospace vehicle can dynamically adapt the
way it performs missions by gathering information about itself

and its surroundings and responding intelligently. This concept has
the potential to improve vehicle performance over the full lifecycle;
not only can the system plan and operate independently of human
operators, but it can also quantify the state of its available internal
resources and maintain knowledge of its current health beyond its
initial baseline performance [1]. In this way, the system mimics the
behavior of a biological organism; it can act aggressively when it is
healthy and in favorable conditions and can become more conser-
vative as it ages and degrades.
There are several challenges associated with enabling a self-aware

vehicle. Among them is the task of allowing dynamic updating of the
current vehicle structural capability in the case that it undergoes rapid
change due to damage or other in-flight events.Methods and tools for
dynamic capability estimation have emerged from an intersection
of work in both the vehicle damage detection and vehicle design
communities. Operational loads monitoring (OLM) aims to improve
the detection of damage and fatigue in vehicle structural members. In
OLM, onboard aircraft sensors gather structural loading information
to identify damage and fatigue (most often postflight) in order to
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reduce maintenance costs and increase reliability [2,3]. At the sys-
tems level, the integrated vehicle health management (IVHM) field
involves frameworks that incorporate multiple sources of operational
data, physics-based models, and prognosis techniques [4,5]. Modern
IVHM architectures have been developed at NASA [6] and the
Department of Defense [7]. Damage and fault tolerance are now
becoming important components of real-time software architectures
for monitoring aircraft component health, such as that proposed by
theOnboardActiveSafety System (ONBASS) project [8]. IVHMhas
also begun to enter the initial aerospace vehicle design in which unit
costs are high, and optimization techniques have been explored to
improve IVHM architectures [9].
In addition to systems-level health monitoring, there has been

active work at the vehicle component level, particularly in structural
composites. Structural health monitoring (SHM) using statistical
inference techniques has seen active progress. A broad survey of the
SHM field up to 2001 is presented in [10]. Recent work has
approached damage detection problems using pattern recognition
techniques [11]. Damage identification based on structural vibration
data has had particular success [12], in which changes in vibration
modal frequencies often denote acute material degradation. More
recently, high-fidelity modeling can enter into the damage identifica-
tion and health management control loop; candidate models of
system behavior can beweighted based on real-time data, and actions
can be performed to increase estimation confidence as well as to
“heal” the system, given current damage estimates [13].
However, work still remains to connect damage parameter identi-

fication to the online estimation of quantifiable vehicle capability.
There is a need for global metrics used during the design phase
(metrics that drive the performance requirements of the vehicle) to be
tracked and updated throughout the vehicle’s lifetime. Standard
design principles for aircraft operate on systems-level analyses such
as theV-n diagram [14], inwhich largemargins of safety (often based
on empirical evidence and experience) are substantial drivers for
design decisions. Current work in condition-aware aircraft maneu-
verability is developing approaches to replace safety margins with
physics-based reasoning [15,16]; however, open questions exist
regarding how to integrate local damage identification with updates
to global aircraft performance metrics. Forming this connection will
improve lifetime usage of assets and could enable designs that rely on
dynamic usage patterns in the presence of degradation, i.e., vehicles
of which the operational usage changes with their changing physical
condition. In this paper, we focus on the setting in which the vehicle
undergoes a sudden change in structural properties and there is a need
to rapidly update the flight envelope. A specific example is when a
unmanned aerial vehicle undergoes a sudden damage event during
flight (e.g., under combat circumstances) but needs to complete its
mission.Another example iswhen repair is not an option (e.g., during
a long endurance flight). Existing SHM techniques mostly focus on
replacing inspections that are associated with scheduled repair or
replacement of structural elements that are subject to slow damage
growth, and so computational efficiency is not an issue for these
methods.
Our goal is to develop a data-driven methodology that receives

input from vehicle sensors in flight and rapidly provides updated
estimates of vehicle capability with quantified uncertainty. Our
approach is based on an offline/online decomposition of tasks that
leverages the relative strengths of data and predictive physics-based
models. In the offline phase, we create a library of damage cases by
running simulations of different damage scenarios and their asso-
ciated impact on the vehicle flight envelope. In the online phase, we
acquire data, use Bayesian classification to estimate in which library
case the vehiclemight be, and then rapidly update the flight envelope.
Our goals and approach differ from classical SHM in two significant
ways. First, we do not use sensor information to directly infer
damage; rather, we use sensor information to perform a classification
by comparing to simulation data from precomputed scenarios.
Second, our ultimate prediction goal is not characterization of the
damage per se but rather an updated vehicle flight envelope. These
differences mean that the demands on sensing technology are
different from those in classical SHM; in particular, our results will

show that information from strain sensors is sufficiently rich to
perform the classification task.Although in this paperwe focus on the
specific case of sensed structural information leading to a dynam-
ically updated flight envelope, our contribution is a methodological
framework that applies in many situations in which dynamic data
might inform updated estimates that support improved decision
making (e.g., power management based on available fuel or battery
levels or engine management based on environmental conditions or
fuel composition). In the case considered in this paper, our approach
proceeds as follows: Offline, we evaluate loss of structural rigidity
due to structuralweakness, using physics-basedmodels to construct a
library of strain,maneuver, and damage cases. This behavioral library
can then be queried online using a Bayesian classification process to
determine probable damage and vehicle capability states and to
rapidly update the flight envelope.
To demonstrate our methodology, we consider potential structural

weakness of the wing of an UAVand quantify how a dynamic data-
driven capability estimate could improve vehicle survivability and
utilization. A dynamically updated structural capability estimate in
flight could improve the likelihood of mission success in contested
hostile environments, as the vehicle could immediately replan its
mission to account for changes in its structural capability. It could
also enable avoidance of maneuvers that would otherwise result in
decreased aircraft lifetime and increased maintenance costs. Thus,
the potential benefits of a dynamic data-driven capability estimate
include mitigation of both mission-related risk and fiscal risk.
The remainder of the paper is organized as follows. Section II

presents the general data-driven methodology for capability estima-
tion. Section III presents a representative aircraftmodel incorporating
wing structural weakness; in Sec. IV, we apply our methodology to
this model via a classification process. Section V demonstrates how
the capability estimate could be used in an online scenario, presenting
results with both qualitative and quantitative analyses. Finally,
Sec. VI provides concluding remarks.

II. Methodology

Our approach to flight capability estimation relies on a decom-
position of computational effort between offline and online phases.
The offline phase occurs before operation of the system of interest,
when we are able to leverage powerful computational environments
that have relaxed execution time and storage constraints. The
online phase refers to the real-time (or simply time- and memory-
constrained) parts of system operation, when embedded computation
needs to be lightweight. We use physics-based models, experimental
data, and other sources of information about the system in the offline
phase to build approximations of the system behavior; the approxi-
mations can then run in the online phase to improve performance, by
providing a predictive lens through which to interpret and make use
of online sensor data. Sections II.A and II.B describe the offline and
online phases of our approach, respectively.

A. Offline Phase

Figure 1 presents a functional decomposition of the offline phase.
The process is broken into three stages: characterization of thevehicle
using models and/or experiments, classification of vehicle behavior
based on failure modes, and storage of these classifiers as records in a
behavioral library. The following subsections step through these
stages in further detail.

1. Step One: Characterize System

Figure 1a shows the first step. The user begins with vehicle system
models and/or experiments that represent the vehicle behavior. There
are two system inputs and two outputs, the definitions of which are as
follows:
1) The state vector x ∈ X contains quantities that specify the

configuration of the vehicle before considering changes to capability.
For a maneuvering aircraft, x could be the kinematic state vector; for
instance, in Sec. III, we consider an aircraft in steady flight with a
state quantified by an airspeed and awing load factor, whereX ⊂ R2.
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2) The loss-of-capability parameters d ∈ D specify how the
vehicle could become modified such that its capability set would
change. Examples are parameters describing structural damage and
parameters describing available system resources such as battery
levels or fuel stores.
3) The failure metric f: X ×D → R provides a measure for how

close the vehicle is to undesirable behavior. Examples are closeness
of structural loads to maximum thresholds and closeness of available
system resources to minimum safe levels.
4) The observable vector s: X ×D → S contains quantities that

are available online to provide information about the vehicle state.
For example, in Sec. III, we consider an aircraft with Ns continuous
strain measurements provided by embedded wing sensors,
where S ⊂ RNs .

2. Step Two: Classify Behavior

The models and experiments produced in step 1 enable a
formulation of the vehicle capability set as follows: If we represent a
constraint on the vehicle behavior as an upper bound on the value of
the failure metric f�x;d� for any input state x and loss-of-capability
parameters d, then for a fixed value of d, the capability is the set of
safe states x of which the f values lie below this limit.More precisely,
let Mf be the upper bound on f that represents a constraint on the
vehicle behavior. Then, the capability set C is a function of d as
follows:

C�d� � fx ∈ X∶f�x;d� < Mfg (1)

In general, evaluatingC as a set-valued quantity is intractable, since
it requires sampling the entire state space. An approach for making
the problem tractable is to use sampling-based classification to
approximate C; this technique is represented conceptually in Fig. 1b
for a two-dimensional (2-D), continuous state space X characterized
by the state coordinates �x1; x2�. For each fixed value of d, samples
are generated fromX and labeled as safe (gray) or unsafe (light gray)
based on whether they satisfy or do not satisfy, respectively, the
predicate for membership in C given by expression (1). The labeled
samples are then used to train a classifier that designates new query
state vectors as safe or unsafe. Because the classifier is trained using a
finite set of samples, it can only approximate the true underlying
capability set to some finite accuracy, but once the classifier is trained,
it could in theory classify every point in the state space; this would
produce the approximation to the true capability set as shown
(notionally) in Fig. 1b.
The possible discrepancy between the classifier and the true

capability set is a form of model error, and we introduce uncertainty
to account for it. In particular, we train a probabilistic classifier for
each value of d to evaluate the probability that a query state vector
belongs to C�d�. We denote the quantities needed to implement the
probabilistic classification for a given input x as the probabilistic
capability classifier quantities c�d�. In Sec. IV, we implement this
form of classification using a probabilistic support vector machine
(PSVM), where c�d� contains quantities such as support vectors,
weights, and distribution hyperparameters.

3. Step Three: Construct Library

Step 2 approximates the capability set for each value of the loss-of-
capability parameters via sampling-based classification. Now, by
combining the samples produced from these runs, we produce a
library of records containing the following features: 1) x, the value of
the system state vector; 2) d, values of the system loss-of-capability
parameters; 3) f, the value of the system failure metric; 4) s, the value
of the system observable vector; and 5) c, values of the probabilistic
capability classifier quantities.
We let R represent the number of records in this library, and we

assign subscripts to denote these features for a given record j �
1; : : : ; R as xj, dj, fj, sj, and cj.
Because the capability set for record j, characterized by cj,

depends only on dj, multiple records could have the same values for
cj. These records would represent cases in which the system is in the
same loss-of-capability case but has a varying system state vector;
thus, even though they have the same value of cj, the corresponding
observable vector value s will vary.
We store this library for later queries in the online phase, as

represented in Fig. 1c. As we will show in the next section, the only
features necessary for queries in the online phase are the observable
vector s and the probabilistic classifier parameters c; the vehicle state
and the loss-of-capability parameters are hidden data that are
necessary only for modeling the vehicle behavior. Our stored library
contains records that provide a direct link from vehicle observable
quantities to vehicle capability.

B. Online Phase

In the online phase, we directly infer the vehicle capability from a
sensed sample of the vehicle observable vector, by use of the stored
vehicle behavioral library. There are two classification steps involved:
1) The observable vector sample (i.e., sensor information) is used

to classify the current vehicle behavior into cases represented in the
library.We formulate this classification in a Bayesian sense, in which
the goal is to minimize the probability of misclassification.
2) Using the probabilistic classifiers that were precomputed and

stored for each record in the library, we retrieve the probability that a
query vehicle state lies within the current capability set.
The following sections describe the process mathematically. We

begin with a description of relevant notation and then formulate the
inference process.

1. Notation and Assumptions

Sincewewill beworkingwith probabilistic quantities, our conven-
tion is to denote random variables or vectors using serifed letters
(e.g., a, b, and s) and to denote values taken by random variables
by corresponding unserifed letters (e.g., a, b, and c). We represent
the expectation operator as E�·�. We represent probability mass and
probability density functions as p�·�, where the corresponding
discrete or continuous casewill be clear from context. In the few cases
that the random variable dependence is ambiguous, we revert to a
subscript notation; for example, pa�a� and p�a� both represent the
probability (or probability density, if a is continuous) that random
variable a takes the value a.

a) b) c)
Fig. 1 The three steps in the offline phase for building a library that can be queried in the online phase.

LECERF, ALLAIRE, ANDWILLCOX 3



We assume quasi-static vehicle behavior, in which for any instant
in time the vehicle state takes some value x ∈ X . By definition (1),
the vehicle capability is a set C ⊂ X . The models and/or experiments
from the offline phase allow us to build a library of information about
the vehicle behavior. Here, we refer to each library record as
representing a vehicle behavioral case; note this is distinct from the
vehicle state. The notation for features of each record in the library
follows that fromSec. II.A.3. In the online phase,we use only a subset
of the library data. In particular, we use sj, the vehicle observable
vector, and cj, a vector describing the probabilistic classifier, for the
jth record for j � 1; : : : ; R. Each cj allows us to compute the pro-
bability that a query state x 0 lies in the capability set corresponding to
the jth behavioral case. We write this probability as p�x 0 ∈ CjDj�,
whereDj is an indicator event designating whether the vehicle exists
currently in the behavioral case represented by the jth library record.
TheDj are mutually exclusive; i.e., the vehicle can be in at most one
behavioral case at any point in time (Dj � 1). However, this does
not mean the vehicle is guaranteed to be in any of the library
behavioral cases.
Sensors provide measurements of the values in the observable

vector s. We denote the random vector corresponding to these
measurements as ŝ. Given that the vehicle is in the jth behavioral
case, ŝ has the form

ŝ � sj � e (2)

where e is a random vector representing measurement noise that is
independent of the vehicle behavioral case. We assume the user has
knowledge of the statistics of e (often for physical systems, it is
characterized using a multivariate Gaussian with known mean and
covariance); that is, we can compute pe�e�, which leads to

p�ŝjDj� � pe�ŝ − sj� (3)

2. Capability Estimator Formulation

The goal of our inference process is to evaluate the vehicle
capability given a measurement of the observable vector ŝ. Because
the vehicle capability is a set, one means of performing this task is to
evaluate set membership (as introduced in Sec. II.A.2). That is, we
desire to evaluate a function q: X × S → R that closely approxi-
mates the probability of a query state x 0 ∈ X lyingwithin C, givenwe
observe ŝ � ŝ. Mathematically, this is written as

q�x 0; ŝ� ≈ p�x 0 ∈ Cjŝ� (4)

In the following, we employ an estimator that combines infor-
mation from each behavioral case, in which more likely cases have
more influence on the overall estimate than unlikely ones. Equa-
tion (4) can be expressed as a summation using the Law of Total
Probability:

p�x 0 ∈ Cjŝ� ≈
XR
j�1

p�Djjŝ�p�x 0 ∈ CjDj; ŝ� (5)

The expression (5) is an approximation because it relies on an
assumption that

P
R
j�1 p�Djjŝ� � 1, i.e., that our current vehicle

behavioral case is contained somewhere in the R records in our
library. This is an approximation that becomes increasingly accurate
as our library becomes larger and richer.
When conditioned on Dj, fx 0 ∈ Cg is independent of fŝ � ŝg

because the sensor noise is assumed to be independent of the vehicle
behavioral case [see Eq. (2)]. Thus, we can drop the conditioning on ŝ
in the second term inside the summation on the right-hand side of
Eq. (5). Then applying Bayes’s rule, we obtain a final expression for
our capability estimator q�x 0; ŝ�:

q�x 0; ŝ� �
P

R
j�1 p�ŝjDj�p�Dj�p�x 0 ∈ CjDj�P

R
j 0�1 p�ŝjDj 0 �p�Dj 0 �

(6)

In Eq. (6), the term p�x 0 ∈ CjDj� is the value of the probabilistic
classifier for behavioral case j for the query vehicle state x 0. The
product p�ŝjDj�p�Dj� can be interpreted as a weighting term, while
the denominator of the right-hand side provides a normalizing factor.
Thus, q can be interpreted as a weighted sum of the predictions that
would be made by each record individually in the library were we to
assume the vehicle was in each record’s behavioral case. Probability
distributions of this form are called mixture distributions, in which
they are derived as a weighted summation of the distributions of
distinct, underlying randomvariables. These underlying variables are
often called mixture components, and their weights are often called
the mixture weights.
The weighting term p�ŝjDj�p�Dj� in Eq. (6) requires knowledge

of p�Dj�, the prior probability that the vehicle is in the jth behavioral
case. In the example in Sec. V, we set p�Dj� as a maximum-entropy,
uniform prior over all j; however, the user could choose to use a
different distribution to encode domain-specific prior knowledge
about the vehicle behavior.

3. Scalability

The online phase needs to be cognizant of available computational
resources; we analyze the complexity of themethodology and discuss
the implication with respect to its practical usability. The com-
putational runtime complexity of the Bayesian classifier can vary
significantly depending on the application. Duda et al. [17] present
a detailed analysis for the case in which the noise model is a
multivariate Gaussian; we present an abbreviated form here. In our
case, the jth record of the lookup table represents a distinct class in
which the output noise model for said class is p�· jsj� ∼N �sj;Σ� for
some known covariance matrix Σ. The computational runtime
complexity follows from Eq. (6):
1) Computing p�ŝjDj�p�Dj�, for the multivariate Gaussian case,

the probability of seeing output ŝ from class Dj takes the following
form:

p�ŝjDj� �
1��������������������

�2π�Ns jΣj
p exp

�
−
1

2
�ŝ − sj�TΣ−1�ŝ − sj�

�
(7)

Given that each observable vector has Ns elements, computation of
ŝ − sj isO�Ns� and multiplication by Σ−1 isO�N2

s� (computation of
Σ−1 only needs to be performed once and does not grow with Ns).
Overall, the complexity of this step is O�N2

s�.
2) Computing p�x 0 ∈ CjDj�, we must evaluate the capability

boundary for each lookup table record that has a nonzero probability
given the sensor data. This will grow atmost linearly with the number
of records R because the computation for each record depends only
on the information within that record. If we denote the complexity of
evaluating the capability boundary for a single record asOc, then the
complexity of this step can be expressed as ROc.
In summary, the computational runtime complexity of the estima-

tor grows asO�RN2
sOc�, whereOc is the complexity of performing a

single capability boundary evaluation (which is problem dependent).
Adding sensor measurements (i.e., increasing Ns) has a greater
impact on the runtime than increasing the number of records in the
library; however, the methodology allows for an arbitrarily large
library, makingR an important component of the runtime complexity
growth. The storage requirements for the estimator grow linearlywith
the initial size of the library, i.e., asO�R�Ns � Nc��, whereNc is the
number of elements in the capability parameter vector c.

III. Aircraft Capability Model

Themethodology developed in the previous section can be applied
in a number of different settings. We now tailor it to the specific case
of aircraft capability estimation. Before presenting the details of the
methodological approach for this setting,we first present the physics-
basedmodels that are used in the offline phase. Section III.A presents
a conceptual UAV design that is used as a case study. Section III.B
describes a vehicle-level model for estimating loads, and Sec. III.C
presents a model for representing local wing structural weakness.
Section III.D describes the overall coupled vehiclemodel and defines
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the specific inputs and outputs, the state, damage, observable, and
failure parameters, for the aircraft capability estimation setting.

A. Aircraft Design

Figure 2 shows a conceptual UAV design established using a first-
principles sizing routine [18] and Federal Aviation Regulation (FAR)
23§ guidelines. As shown in the figure, the vehicle has a wing span of
55 ft. It is estimated to cruise at 140 kt (240 ft∕s) at an altitude of
25,000 ft. A payload of 500 lb is allowed for in the fuselage. The
range of the aircraft is estimated to be approximately 2500 n mile,
corresponding to a duration of 17.5 h and allowing for adequate
operational capability to explore maneuverability as a function of the
changing structural state of the vehicle.

B. Global Aircraft Kinematics

Loads on the UAVare estimated using an ASWING model of the
aircraft. ASWING is a nonlinear aerostructural solver for flexible-
body aircraft configurations of high to moderate aspect ratio [19].
We use it here to predict internal wing stresses and deflections
as a function of input aircraft kinematic states and estimates of
changes to the nominal aircraft structure. Figure 3 shows the
representation of our concept UAV in the ASWING framework. The
ASWING model is a set of interconnected slender beams, one each
for the wing, fuselage, horizontal stabilizer, and vertical stabilizer.
Lifting surfaces (the wing and stabilizers) have additional cross-
sectional lifting properties that are prespecified.We are able to obtain
internal aircraft structural loads for static and dynamic flight
conditions; however, we restrict ourselves here to analyzing quasi-
static pullup maneuvers.
We demonstrate our methodology by representing structural deg-

radation due to damage on the aircraft wing. Damage is consid-
ered in a limited sense here only as a structural weakness, represented
as a reduction in material stiffness properties. This is a simplified
approximation to a full damagemodel and captures the loss of ability
to carry structural loads in the damaged region. We are concerned
with the effect a damage situationwould have on the vehicle behavior
and capability and on the resulting redistribution of loading within
thewing; we do not capture the exact shape and nature of the damage
event itself. However, we note that our general approach could extend
to handling more complex damage models, at the cost of additional
computation.

C. Local Wing Structural Weakness Representation

To resolve stiffness loss due to local structural weakness on the
aircraft wing, we need another technique to interface with the global
ASWING aircraft model. In lieu of forming a computationally
expensive, full three-dimensional (3-D) finite-element representation
of the wing, we use variational asymptotic beam cross-sectional
analysis (VABS) [20], a powerful dimension reduction technique
used in industry practice. A visual representation of the VABS
technique is shown in Fig. 4. The beam of interest is modeled via an
array of two-dimensional cross-sectional finite-element models
(FEMs). The cross-sections can capture the details of a multiply
composite wing skin and local structural weakness effects. VABS
computes lumped stiffness and inertial properties at a reference point
in each cross-section, forming a global line representation of the
beam.A standard beamproblem solver is used to find the global force
and moment distribution along this reference line given input forces
and moments. Finally, using the reference line solution, the internal
strain field is recovered in the beam cross-sections using relations
initially computed by VABS.
In this work, we use the specific UM/VABS implementation

developed in FORTRAN by R. Palacios and C. Cesnik at the
University ofMichigan [21]. Our beam of interest is the aircraft wing
box, and ASWING manages the one-dimensional beam solution,
computing loads in the wing box for specific flight conditions.
We assume a constant cross-section for our wing of interest and

view damage events on the wing surface as quasi-rectangular,
constant-depth regions. At the location of the damage, additional
cross-sections are added to the beam description to capture the
modified wing box properties. An example two-dimensional wing
box cross-section model input to VABS is shown in Fig. 5. The wing
box follows the shape of a DA-01 airfoil with a chord of 50 in. The
ribs are located at 20% and 70% of the chord length (with respect to
the leading edge of the airfoil). The wing box has a stack of five plies
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Fig. 2 A realistic concept unmanned aerial vehicle established in order to estimate the effect of structural change on capability.

Fig. 3 The ASWING representation of our concept UAV [19]. The
structure is specified as a set of interconnected slender beams, where
lifting surfaces have additional aerodynamic properties specified along
their span.

§United States Code of Federal Regulations, Title 14, Part 25, Sect. 25.105–
25.119.
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made of AS4/MTM45-1 material, with orientations �0∕� 45∕90�
45∕0�T deg (where the subscript T denotes total laminate).
To model the behavior of structural sensors, we extract a subset of

the three-dimensional wing box strain solution for given maneuver
and damage conditions. For our application, we consider strain gage
rosettes, which are capable of reading in-plane surface strains at point
locations on thewing box.Wewill elaborate on the strain gagemodel

further in Sec. V; for now, it suffices to say that the model outputs
plane strain values at select locations on the wing box surface as
shown in Fig. 6. The figure shows that we make the assumption that
the strain sensors are located in close proximity to the region inwhich
structural weakness is introduced (orange shaded region). This
permits us to validate the capability estimation process in the case that
sensor measurements show noticeable changes due to the introduced
structural weakness. This is important since disturbances in the strain
field will be local to the damaged area. Again, we emphasize that our
methodology relies on recognition of changed vehicle structural
capability, not on detection of the damage itself; thus, local strain
sensors can provide useful information to inform the classification
process even if they cannot detect the type and specific location of the
damage itself. Nonetheless, the optimal choice of sensor technology
and placement is an important question for future work, as is the
question of how to identify and process sensor measurements that
may themselves be affected by damage.
We identify unsafe structural behavior as when part of the aircraft

wing experiences strains that exceed maximum strains for known
failure modes; in our case, these are extensional and shear strain
limits with respect to composite material axes. We quantify this with
the failure index, defined here as the ratio of the current strain in a
structural element to the strain allowable for the element material. A
single element will havemultiple failure indices, each corresponding
to a specific component of the element’s strain tensor and its
maximum allowable value. We consider only elements that do not lie
specifically in our damage region (i.e., we do not consider those
elements of which the stiffness properties have been modified)
because we are not modeling the behavior of the damage itself, and
the strains computed by our model inside this region may not be of
physical significance. To derive a representative failure metric that
encompasses the behavior of the entire wing, we 1) extract the failure
index corresponding to each failure mode for each element of the
wing, not considering those elements ofwhich the stiffness properties
were artificially modified, and 2) find the maximum failure index
over all modes and all elements.
We denote the final scalar result as f. It is an upper bound on all

other failure indices in thewing. The case inwhichf ≥ 1 corresponds
to an unsafe situation inwhich the allowable strain has been exceeded
somewhere in the wing, and the case in which f < 1 corresponds to a
safe situation in which all elements of the wing are experiencing
strain that is below their allowable thresholds.

D. Coupled Vehicle Model

To construct the offline library, we input maneuver and damage
conditions into a vehicle model consisting of the coupled ASWING
and VABSmodels as shown in Fig. 7. Each of the inputs and outputs
is described as follows:
1) The state vector x � �V; n� input to the vehicle model specifies

a quasi-static pullupmaneuver at an airspeedV and load factor n (i.e.,
the ratio of lift to weight).
2) The damage parameters input into the vehicle model represent a

quasi-rectangular region on the aircraft with some fixed depth in

Specify 2D FEMs 
of cross-sections
(MSC.NASTRAN-
compliant)

UM/VABS calculates
a) Stiffness properties along reference line
b)

line solution to cross-sectional warping
Internal stress 
and strain 

recovered

Stiffness 
properties

Reference line 
forces and 
moments

Specify 
reference line 
geometry

force + moment solution along 

one-

Beam
Solver

reference line based on boundary 
conditions

dimensional

Fig. 4 VABS allows for dimensional reduction of an expensive three-

dimensional beam solution into 2-D finite-element models coupled with
an external beam solver [20].
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Fig. 5 Example 2-D finite element model of a spanwise wing box cross-
section. Detail A shows the ply stack. VABS computes lumped stiffness
and inertial properties at the reference point OREF.

Fig. 6 The locations of the strain gages on the wing box top surface in the aircraft model. The inset on the right shows the “rectangular” variant of strain
gage rosette.
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which material stiffnesses are decreased uniformly. Specifically,
damage is introduced as structural weakness and is characterized by
the vector d � �ls; ws; lc; wc; dt; df�⊤, illustrated in Fig. 8. The
elements ls andws are, respectively, the spanwise location and width
with respect to body axes; lc and wc are, respectively, the chordwise
location and width on the aircraft wing with respect to the leading
edge at ls; anddt is the depth of the region of structural weaknesswith
respect to the local normal of the top surface of thewing. The element
df ∈ �0; 1� is a fraction representing the severity of the structural
weakness, for which the material stiffness values are reduced
relatively by df in the damaged area.
3) The observable vector s�x;d� output from the model is a

concatenation of plane strain values from select sensor locations on
the wing box top surface.
4) The failure metric f�x;d� output from the model is a maximum

failure index in the wing structure as described previously in
Sec. III.C.
As shown in Fig. 7, the damage parameters are used to interface

with VABS to compute wing cross-sectional structural properties for
use in the ASWING model. The state vector, which describes the
global aircraft maneuver, is input to the ASWING model to analyze
themaneuver scenario for themodified vehiclemodel. TheASWING
estimated loads are then combined with influence relations pre-
computed by VABS to obtain the three-dimensional internal wing
strain field. From this strain field, we compute the failure indices over
undamaged elements (i.e., over elements outside of the region shown
in Fig. 8) and the values of the observable vector quantities.

IV. Characterizing Capability via Classification

This section tailors the general methodology proposed in Sec. II
to the case of characterizing vehicle capability for the UAV model
presented in Sec. III. Section IV.A describes our classification

approach based on probabilistic support vector machines, and
Sec. IV.B presents an adaptive state-space sampling approach.

A. Approximation Using Probabilistic Support Vector Machines

Given a damage case applied to our aircraft model, we sample in
the maneuver state space, labeling each sample as safe or unsafe
according to the value of its output maximum failure index. As we
perform this task, we save the observable vector corresponding to
each sample for use later in the online phase. We first describe the
construction of a support vector machine (SVM) model and then
describe the extension to a probabilistic SVM model that quantifies
uncertainty in the classification estimates.

1. Support Vector Machine

We use the samples to build a classifier that can approximate
the true safe/unsafe label of any point in the maneuver space.
This classifier then becomes our representation of the capability of
the aircraft given the damage case. In this work, we have chosen to
use an SVM-based classification approach, a technique from the
machine learning community, because we are motivated by rapid
decision making of the yes/no (i.e., safe/unsafe) form. Other choices
for the classification are possible, including methods that
characterize closeness to a boundary; note that our overall
methodological framework is general and not tied to the specific
choice of SVMs as the classifier. For example, if we wanted to
estimate closeness to the boundary, one choice would be the use of
signed distance functions for binary classification [22]. This would
provide more information but would be more expensive to employ
online. An abbreviated explanation of the SVM technique is
presented here; for further detail, we refer the reader to related
material by Duda et al. [17] or the original article by Cortes and
Vapnik [23].
The SVM performs binary classification of unlabeled test samples

(i.e., classification into one of two classes) based on trends seen in a
labeled set of training samples. More formally, let our collection ofN
labeled training samples take the form Z � f�xj; yj�∶xj ∈ X ; yj ∈
f−1; 1g; j � 1; : : : ; Ng, where each xj is a state vector consisting of
an airspeed V and load factor n. In general, each xj consists of
attributes that describe the sample. Each yj is the corresponding
binary label for the sample, which in our case is the indicator
representing whether the failure metric f�xj;d� (given the fixed
damage parameters d) exceeds a nominal safe threshold value. We
assign a value of yj � 1 if sample j is labeled as safe and a value of
yj � −1 if sample j is labeled as unsafe.
The SVM constructs and evaluates a discriminant, S: Rn → R,

such that the input sample x is labeled −1 if S�x� ≤ 0 and 1 if
S�x� > 0. The value of this discriminant for a sample x is often called
its score. A simple SVM discriminant is the linear case S�x� �

Fig. 7 Flow of information through aircraft model. VABS handles the local damage to the wing structure, while ASWING computes the global aircraft
structural solution as a function of input maneuver conditions.

Fig. 8 Illustration of the parameters characterizing structuralweakness
in our aircraft model. We bound damage events using a quasi-
rectangular region on the aircraft surface with some fixed depth.
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wTx� b, a hyperplanewith normal vectorw and offset b.We use the
nonlinear extension, which can be shown to have the form

S�x� �
XN
j�1

αjyjK�xj; x� � b (8)

where K is a suitable kernel function (this is often called the kernel
trick, popularized initially in the machine learning community by
Aizerman et al. [24]; inmany practical applications, it is a key enabler
of the construction of nonlinear SVMs), b is the bias as in the linear
case, and the αj are weights that are nonzero for only a subset of the
training samples that lie closest to the decision boundary, called the
support vectors. The weights αj and bias b can be obtained from the
dual of the SVM optimization problem:

max
α

�
−
1

2

XN
j�1

XN
k�1

αjαkyjykK�xj; xk� �
XN
j�1

αj

�

subjectto 0 ≤ αj ≤ A ∀ j

XN
j�1

αjyj � 0 (9)

Here,A is an upper bound onwhat is often called the box constraint
that confines the allowable values of the weights αj. A is a parameter
tuned by the user to allow slack in the SVM training process, so some
training samples might be misclassified, but the SVM model will be
less prone to overfitting.

2. Probabilistic Support Vector Machine

There is inherent uncertainty in the classification process given a
large but finite set of offline samples. Therefore, we include a means
of extending the SVM technique to represent uncertainty in its output,
called the probabilistic support vector machine. Here, the trained
SVM is postprocessed and fitted with a suitable probability distribu-
tion. We follow the original technique as proposed by Platt [25],
including modifications proposed by Lin et al. [26] to handle numer-
ical instabilities in Platt’s original paper. Several other implementa-
tions exist of the PSVM training process, including a modification
proposed by Basudhar [27].
Given the data setZ as described previously, and a support vector

discriminant S�x� characterizing the decision boundary between the
two classes, we consider a probabilistic classifier Ĉ: Rn → R that
evaluates p�y � 1jS�x��, the probability that the sample x lies in
class y � 1 given the output of our SVM discriminant.
Platt [25] fits Ĉ with a sigmoid

Ĉ�x� � p�y � 1jS�x�� � 1

1� eβ1S�x��β2
(10)

where β1 < 0 and β2 are suitable distribution parameters. Given the
restriction on β1, Ĉ is monotonic in S, ranging from 0when S → −∞
to 1 when S → ∞. This reflects the fact that Ĉ ought to become
confident (i.e., a certain 0 or 1) far from the SVM decision boundary
at S�x� � 0. We find the values of β1 and β2 that maximize the log-
likelihood,

XN
j�1

tj log�pj� � �1 − tj� log�1 − pj� (11)

where pj � 1

1�eβ1S�xj��β2
is the probability that sample j belongs to

class y � 1 given a particular parameterization �β1; β2�, and we
assume that each training sample is independent and identically
distributed. The tj are defined as

tj �
(

N��1

N��2
if yj � 1

1
N−�2

if yj � −1
(12)

where N� and N− are the number of samples in class y � 1 and the
number of samples in class y � −1, respectively. As described by
Platt, the tj correspond to a maximum a posteriori estimate of the
target probability for each class assuming a uniform, uninformative
prior over the probability of all our training samples having the
correct label [25].

B. Adaptive State-Space Sampling Technique

Ourmethod requires intelligent sampling of the vehicle state space
so that we can provide our PSVM training process with a rich set of
training samples while minimizing uninformative calls to our aircraft
capability model. We have two competing qualitative goals during
the sampling process:
1) Wewant to sample along the boundary of the vehicle capability

set to provide an accurate description of its limits.
2) We want to sample within the vehicle capability set in order to

capture the vehicle behavior we expect to see during operation (so
that our online classification process sees library records that are
similar to the observed vehicle behavior).
Techniques exist to provide a space-filling set of samples for goal

2, such as Latin hypercube sampling [28] or a centroidal Voronoi
tessellation (CVT) [29]. Refinement of the boundary itself for goal 1
can be implemented using adaptive sampling; we use a technique
developed in Ref. [27]. The algorithm begins with a well-spaced set
of samples (here, we start with a CVT produced using Lloyd’s
algorithm [30]) and then chooses samples at each iteration that lie
along the boundary of an SVM approximation of the true capability
set. A summary of the algorithm steps is as follows:
1) Begin with an initial set of training samples that has at least one

member from each of the two classes.
2) Train a SVM on the initial set of samples.
3) Generate a sample on the SVM boundary that lies as far as

possible from all current training samples.
4) Generate a second sample nearby the SVMboundary to prevent

SVM locking (see [31] for further explanation).
5) Retrain the SVM using the two new samples.
6) Repeat from step 3 until converged.
As a choice for a convergence criterion, Basudhar and Missoum

[32] suggest using a polynomial kernel to construct the SVM for each
iteration and looking for a stabilization of the change in polynomial
coefficient values between iterations.We use a different criterion that
makes use of the computation of the sample from step 3, in which we
are maximizing the minimum distance from the new sample to any
other training sample, while constraining the new sample to lie along
the SVM boundary. This distance itself can be used as a convergence
metric, and we terminate the algorithm when it decreases below a
nominal value (scaled with respect to the bounds of thewhole sample
space). The intuition behind this metric is that, as the sampling
converges onto a SVM boundary in the sample space, new samples
will begin to crowd along the SVM boundary line until the distance
metric settles to a small value. This convergence criterion works
successfully for this problem and is simple to implement; however,
the reader is cautioned that it may in general encounter problems if
the SVM changes shape rapidly between iterations so that newly
added samples take some time to begin settling to nearby locations. A
different solution to address this issue for the Gaussian radial basis
function kernel proposed by Basudhar and Missoum uses fixed test
points that are set during an initial sampling of the design space, in
which the fraction of these points that switch SVM classification
label between iterations provides ameasure of the SVMconvergence.
Using this sampling technique, we determine a SVM represen-

tation of the vehicle capability boundary to within a desired level
of sampling accuracy and then fit a PSVM model to capture the
uncertainty in the boundary location due to the finite sampling accu-
racy. Figure 9 shows the evolutionof the computed PSVMfor a single
vehicle damage case and increasing numbers of state-space samples.
The first plot includes only samples from the initial CVT,whereas the
next two plots include samples generated using the adaptive sampling
technique. Figure 10 shows the convergence plot for the adaptive
sampling technique when applied to the case shown in Fig. 9. The
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solid line is the value of the convergencemetric, and the dashed line is
the fixed tolerance value used for the stopping criterion. The resulting
samples then yield the data needed to populate the library of records,
as described in Sec. II.

C. Using PSVM Library for Online Capability Estimation

As mentioned previously, for each damage case, we form a
corresponding PSVM approximation to its capability set. As seen in
Eq. (10), each PSVM is parameterized by its values for β1, β2, and the
SVM support vectors, weights, and bias that define the discriminant
S�x�. In the context of the generalmethodology fromSec. II, these are
the elements that characterize the probabilistic capability classifier
parameters cj for damage case j.
To place the usage of the PSVM within the context of the online

estimation process from Sec. II, we revisit the steps to compute the
capability estimator q�x 0; ŝ� via Eq. (6):
1) Given input sensor data ŝ, the probability of the vehicle being in

each case in the library is computed as
p�ŝjDj�p�Dj�P

R

j 0�1
p�ŝjDj 0 �p�Dj 0 �

for each

record j, an application of Bayes’s rule.
2) Given a nonzero probability that the vehicle is in the case

represented by record j, the probability that the queried state x 0 is safe
[p�x 0 ∈ CjDj�] is computed. This is given by the output of the PSVM
for the jth record in the library, computed via Eq. (10) evaluated at x 0.
3) The predictions from step 2 are weighted by the probabilities

computed in step 1 and summed to produce the final output q�x 0; ŝ�,
as in Eq. (6).
The results in the next section demonstrate the entire flow of this

process from sensor data to capability estimates in the simple case of
strain measurement data indicating structural weakness. We note,

however, that our approach also has utility in the case of known
location and type of damage (e.g., in the case that the vehicle has a
more sophisticated damage detection system onboard). In this case,
even if the damage state is known precisely, the challenge remains to
translate this knowledge into a rapid estimate of the current vehicle
capability (i.e., to estimate the updated flight envelope). Dynamically
analyzing the known damage state with the structural and vehicle
simulation models described in Sec. III is impractical, since even this
single analysis would be too expensive to achieve in near real time.
Instead, our approach uses the precomputed cases considered in the
offline phase. Following the three steps outlined previously, the
known damage state is matched probabilistically to those damage
states considered in the offline training phase. The corresponding
PSVMs then provide the rapid mapping to update the vehicle capa-
bilities, albeit with limitations on the accuracy due to the closeness of
the offline damage cases to the actual damage case and due to the
error in the PSVM approximation of the capability set.

V. Demonstration and Results

This section applies our approach to an example scenario in which
the aircraft must perform an evasive pullup maneuver at constant
airspeed. Our approach yields data-driven estimates of maximum
achievable load factor given structural failure index constraints in the
presence of structural weakness. Section V.A describes the problem
setup and damage test cases considered. Section V.B discusses
behavior of the aircraft capability estimator, while Sec. V.C compares
maneuver decision outcomes using our dynamic data-driven estima-
tor to those using a typical static capability estimate. Section V.D
analyzes the tradeoffs and uncertainties associated with the dynamic
capability estimation.

A. Application Problem Setup

1. Flight Scenario

One potential application of our method is for missions in
contested environments, in which threats to the vehicle due to hostile
agents require a fast, defensive reaction to avoid dangerous regions of
the flight zone. In addition, the vehicle may sustain damage on the
wing surface that impedes its ability to operate at its initial design
capability. Figure 11 presents a schematic of this scenario, in which
the vehicle initiates the evasive action at an airspeed of 210 ft∕s and
an initial load factor of 1.3 (representative of a nominal maneuvering
speed and an upper bound on the nominal maneuvering load factor
during normal operation while navigating a sequence of waypoints).

2. Damage Test Cases

During the offline phase, we construct a library of damage cases
and build PSVMs to represent the modified vehicle capability. We
generate 150 damage cases (in addition to the nominal case) by
performing two full-factorial explorations of the damage parameters
at the levels shown in Table 1. We evaluate each combination of
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Fig. 9 PSVM vehicle capability estimate for one damage case. White samples classified as “safe,” grey samples are “unsafe,” black outlines denote
support vectors, black line denotes the SVM boundary.
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damage parameters for the scenario maneuver (airspeed V �
210 ft∕s and load factor n � 1.3). Note that, since the system is
analyzed at a constant vehicle state x, the library records have distinct
values of d, and hence they each have distinct values for c. The
general methodology presented here can incorporate varying the
value of x. Note also that grid-based sampling is used for selecting the
damage cases included in the library, while for each damage case,
adaptive sampling is used in the maneuver space to form the
corresponding PSVM.
For assessing our methodology, we focus on five representative

damage cases, three from the library and two that are not sampled in
the offline phase. The cases are labeledC0,C1,C2,C3, andC4 and are
described in Table 2. C0 is the undamaged configuration, while the
other four cases represent varying degrees of structural weakness
severity. For each of these damage cases, we compute the true
maximum allowable load factor ntruthmax at the constant maneuver
airspeed 210 ft∕s using a simple bisection routine over the load factor
n, discovering where the structural failure index f transitions from
safe to unsafe. This serves as a baseline to assess the performance of
our capability estimate in each damage case.¶

3. Structural Strain Sensor Model

To demonstrate and evaluate our methodology, we generate
synthetic data by producing model-based estimates of the observable
vector for a damage case of interest and corrupting them with noise.
In this subsection, we describe a structural strain sensor model,
constructed so that this process generates data that are representative
of what might be measured in flight.
We model the behavior of strain gage rosettes mounted on the

surface of the aircraft wing box to obtain plane-strain measurements,
with four measurement locations as shown in Fig. 6. Many varieties
of strain gage rosettes exist [33]; here, we consider a rectangular
configuration in which two gages placed on the principal composite
material axes obtain extensional strains directly and a third placed off
axis at 45 deg is used to compute indirectly the in-plane shear strain.
We model the measurement noise for each gage using an

independent Gaussian distribution with zero mean and a standard
deviation of σ � 10μ strain. This estimate of the standard deviation is
obtained from published data that high-accuracy strain gages often
have a 2–5% accuracy range when properly calibrated [34]. More
sophisticatedmodels ofmeasurement noise, if available for a particular
sensor implementation, can be incorporated in our approach.
Let the strain gage rosette readings at the kth sensor location be

represented as the vector ϵk � � ϵk1 ϵk2 ϵk3 �T, where ϵk1 is the gage
strain along axis 1, ϵk2 is the gage strain along axis 2, and ϵ

k
3 is the gage

strain along the 45 deg axis. Assuming our material coordinate 1 and
2 axes align perfectly with the rosette 1 and 2 axes, respectively
(i.e., ignoring possible angular misalignment of the gages), ϵk is
related to the three-element plane strain vector at location k,
εk � � εk11 2εk12 εk22 �T , by

εk � Hϵk (13)

where

H �
2
4 1 0 0

−1 −1 2

0 1 0

3
5 (14)

Thus, our measurement at the kth sensor location is defined as

ŝk � εk � ek (15)

where ek ∼N �0; σ2HHT� is noise in the measured plane strain
values at the kth sensor location due to strain gagemeasurement error.
The full synthetic measurement (for all four sensor locations) is
obtained as ŝ � �ŝ1; : : : ; ŝ4�. Because each sensor is assumed to
have independent noise, we can assemble the full measurement noise
model p�ŝjDj� for damage case Dj as the product

p�ŝjDj� �
Y4
k�1

p�ŝkjDj� (16)

Equation (16) is the measurement noise model for a single sensor
sample. A practical application would yield multiple sensor
measurements (for example, measurements accumulated over time).
We consider the general case in whichNd data samples are available,
ŝ1; ŝ2; : : : ; ŝNd

. They are assumed to be independent and identically
distributed. In this case, the modified measurement noise model is

p�ŝ1; ŝ2; : : : ; ŝNd
jDj� �

YNd

l�1

p�ŝl jDj� (17)

Note that the accumulation of multiple samples will in general
decrease the effects of sensor noise. In a practical situation, we could
accumulate samples over a period of time, for instance, ifNd � 10, a
sampling rate of 10 Hz would permit a capability estimate every 1 s.
We note that a parameter such as the sensor sampling rate is highly
system dependent, and so our exploration in the following results
will compare in a relative sense the impact of the sample
accumulation Nd.

B. Capability Estimator Performance

This subsection analyzes how the capability estimator behaves
over the damage cases of interest. In particular, we assess whether the
estimator can accurately reproduce the true capability as given by the
value of ntruthmax for each damage case.

Fig. 11 Schematic of the flight scenario towhichwe apply our capability
estimation framework.

Table 1 Levels for each damage parameter used to
construct 150 damage cases (two full-factorial explorations

were performed)

Damage parameter Trial 1 levels Trial 2 levels

ls 0.15 0.15
ws 0.15 0.15
lc 0.35 0.3, 0.45, 0.6
wc 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5
dt 0.5, 0.6, 0.7, 0.8, 0.9 0.5, 0.6, 0.7, 0.8, 0.9
df 0.95, 0.96, 0.97 0.98

Table 2 Representative damage cases used for analyzing the
online capability estimator behavior

Label
ls ws lc wc dt df ntruthmax

Included in
online library?

C0 0 0 0 0 0 0 2.94 Yes
C1 0.15 0.05 0.6 0.1 0.7 0.98 2.59 Yes
C2 0.15 0.05 0.35 0.5 0.7 0.97 2.02 Yes
C3 0.15 0.05 0.35 0.1 0.5 0.95 2.53 No
C4 0.15 0.05 0.35 0.2 0.9 0.95 1.80 No

¶The bisection process is significantly less efficient than the adaptive
boundary construction from Sec. IV.B when considering a range of airspeeds,
and is only reasonable here given that our test case is at one fixed airspeed.
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We test the estimator performance in the online phase for the cases
in which the vehicle is in one of the five representative damage cases,
D ∈ fC0;C1;C2;C3;C4g. Synthetic data for each damage case are
generated using the process described in Sec. V.A.3. We then use our
approach to compute and plot the capability estimate q�x; ŝ� for
x ∈ f�V; n�∶V � 210 ft∕s; n ∈ �1; 3.5�g The analysis is carried out
for ten realizations of synthetic data for each damage case.
Figure 12 shows the capability estimator output for one sample

run, which considers one realization of the C2 damage case. The
dotted line shows the damage case’s true maximum load factor ntruthmax .
The solid line is the q�x; ŝ� estimator output evaluated at an airspeed
ofV � 210 ft∕s, reporting the probability that the label for the query
state �V; n� is�1 (i.e., that the label for x is safe). Intuitively, a well-
performing qwill be close to 1 for low values of n and drop to zero as
n crosses the maximum load factor for the damage case. In the
following results, we will present similar plots for other damage
cases. We refer to this curve as the PSVM output or the estimator
output.
The number of records in the damage library can affect the quality

of the capability estimate. We explore this behavior by down-
sampling the number of library records and storing a sparser set for
use in the online phase, andwe hypothesize that more downsampling
would degrade the capability estimate.We recall here that the original
set of library records was generated using two full-factorial explo-
rations of the damage parameters, and we are downsampling from
this original set. Thus, the original sampling of the damage cases and
the downsampled sets are not related to the adaptive sampling
approach used to form the PSVM for each damage case. Figure 13
shows an example of the downsampling process. We define the
downsampling ratio DSR to be the ratio of the number of original
library records to the number of downsampled library records. For a
given value of DSR, we conduct the following steps:
1) Order the full set of offline library records from least severe to

most severe according to their prediction of the maximum safe load
factor nmax at the fixed flight speed V � 210 ft∕s for a PSVM
probability value of 0.95.
2) Retain one record from each subset of size DSR records for

storage in the online library.
3) If necessary, add the three example damage casesC0,C1, andC2

to the downsampled set.
We analyze the effect of varying the downsampling ratioDSR over

the values {1, 10, 20, 40} (where DSR � 1 is the original, fully
populated library). For each of the five damage test cases in Table 2,
we accumulate Nd� 103 synthetic strain gage samples; the samples
are then used with the downsampled library to produce a capability
estimate (i.e., a PSVM output). We repeat the accumulation of

samples and the ensuing analysis ten times. Figure 14 shows the
resulting estimator outputs.
Based on these results, we note that the estimator had the most

difficulty obtaining an accurate capability estimate in theC0 test case
at the highest downsampling ratio. This is most likely because C0 is
the undamaged test case, which has the highest maximum load factor
and thus is on what could be considered the boundary of the damage
case library; the estimator tends to classify into states that are either
the undamaged state or worse, and thus it shows bias in the direction
of load factors that are less than the undamaged one. This bias is
particularly large when the damage library is sparse (high DSR).
In addition, the C4 damage case shows bimodal behavior, as the

estimator tends to vary between two maximum load factors. These
correspond to two damage cases in the library that are likely given the
sensor readings but are not the true damage case; the true damage case
C4 is not contained in the library, and the estimator does its best to
interpolate using the available records.
Lastly, the estimator shows the best performance (both in terms of

accurate prediction of the true maximum load factor as well as a
consistent prediction)when the downsampling ratio is 1; that is,when
the entire damage case library is used to classify the sensor readings.

C. Comparison to Static Capability Estimate

This subsection compares the performance of our dynamic data-
driven capability estimator to a baseline case that uses a traditional
static estimate of capability. The results in this subsection again
consider the case in which the vehicle is operating at V � 210 ft∕s.
Our goal is to determine the maximum load factor at which an agent
can operate the vehicle in a safe manner.
We benchmark against a case in which the agent uses a static

capability estimate based off the known maximum load factor from
design n0. Note that n0 is equal to n

truth
max evaluated for caseC0 (i.e., the

undamaged case). The agent then chooses to operate the vehicle at a
maximum load factor nstaticop ∈ �1; n0�. A value of nstaticop near 1 indi-
cates conservative behavior, while a value of nstaticop near n0 indicates
aggressive behavior that operates the vehicle close to its undamaged
limit. In our problem setup, choosing nstaticop ≥ n0 leads to exceeding
the flight envelope.
In comparison, an agent using our dynamic capability estimate

operates the vehicle at a maximum load factor that changes depend-
ing on the current sensor data. In this case, we denote the maximum
load factor atwhich the agent chooses to operate thevehicle asnop. To
choose a value for nop, the agent picks the largest load factor that has
an acceptable probability of belonging to the vehicle capability set;
we denote this acceptable probability as pop. A value of pop near 1
indicates conservative behavior (i.e., high confidence that the
selected load factor will result in safe operation), whereas a value of
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Fig. 12 The estimator q�x;ŝ� evaluated at V � 210 ft∕s for one
realization of synthetic data for damage case C2. The estimator reports
the probability that the query state is labeled as safe.
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Fig. 13 The down-sampling ratio DSR controls the rate at which
damage cases are retained from the complete library. The damage cases
C0, C1, and C2 are always retained.
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pop near zero indicates aggressive behavior (i.e., low confidence that
the selected load factor will result in safe operation).
Figure 15 presents an example of how an agent would use the

capability estimator output q�x; ŝ� to choose a value of nop. In the
case shown, setting pop � 0.9 causes the agent to operate the vehicle
at a maximum load factor of nop ≈ 1.75. For this case, the true
maximum load factor ntruthmax � 2.0; thus, this choice does in fact result
in safe operation.We compare the behavior of the static estimatewith
the dynamic estimate by varying pop and nstaticop . We perform the
follow-
ing procedure:
1) Choose values for nstaticop and pop.
2) Set the vehicle library downsampling ratioDSR and the sample

accumulation Nd to nominal values of 10 and 100, respectively (see
Sec. V.B). Downsample the full vehicle library according toDSR and
store it for continuing use.
3) For each example damage case Dj, j � 1; 2; : : : ; R from the

original full set of damage cases (before downsampling), accumulate
Nd observable vector samples to form the synthetic sensor measure-
ment ŝ. Use the estimator output q�x; ŝ� and pop to compute nop (as
shown in Fig. 15).
4) Repeat steps 2–3 for ten trials, and record the resulting values of

nstaticop and nop, as well as the true maximum load factor for the current
damage case ntruthmax �Dj�.
5) Plot ntruthmax vs nstaticop and nop, overlaying all R damage case

samples on the same plot.
This procedure is repeated over the values nstaticop ∈

f1; 1.5; 2; 2.5; 3g for the static estimation case and over the values
pop ∈ f0.01; 0.26; 0.50; 0.74; 0.99g for the dynamic case.
Figure 16 plots the resulting maximum load factor chosen by the

agent vs the truemaximum load factor. Each subplot corresponds to a
different choice by the agent; the dynamic cases are labeled by the
choice of pop, whereas the static cases correspond to the agent’s
choice of nstaticop . Within each subplot, a sample point corresponds to
an operation of the vehicle given a vehicle damage case and a

realization of the observable vector sample. The black lines with
slope 1 indicate the boundary between successful and unsuccessful
operations; the samples below the line are successful because
nop < ntruthmax , and the samples above the line are unsuccessful be-
cause nop ≥ ntruthmax .
In the static case, the agent chooses one value of nstaticop and is

uninformed of any potential aircraft capability changes due to struc-
tural weakness. Hence, many trials fail, especially when the agent is
more aggressive and/or significant levels of structural weakness are
present. The dynamic cases use our capability estimation strategy;
depending on the value of pop, the agent is either less or more

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

1 2 3
0

0.5

1

Fig. 14 Output from the capability estimator q over the load factor rangen ∈ �1;3.5� and fixed airspeedV � 210 ft∕s, forDSR ∈ f1;10;20;40g and five
representative damage cases C0, C1, C2, C3, and C4. Each experiment is repeated for ten independent trials.
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Fig. 15 The agent specifies pop according to their degree of

conservativeness when using the capability estimator output. pop then
determines the maximum operating load factor given the dynamic data-
driven estimator output.
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conservative. The valuepop � 0.01 is highly unlikely as a choice in a
practical situation. The results are shown for illustrative purposes; it
can be seen that this aggressive behavior leads to almost all operations
failing. As the value of pop increases, the percentage of successful
operations increases. With a sufficiently conservative value of pop

(e.g., pop � 0.99), our dynamic capability estimate leads to most
operations being executed successfully, at the cost of operating at a
lower average value of nop.

D. Reliability of Dynamic Capability Estimation

In this subsection, we analyze how the decision strategy, informed
by the capability estimate, trades off between survivability and full
utilization of the vehicle capability. We quantify survivability by
evaluating probability ofmaneuver success for each value ofpop over
all possible damage cases. We quantify utilization using the average
ratio between the vehicle’s operational load factor and the vehicle’s
true maximum load factor.
The probability of maneuver success is defined as the probability

that the agent chooses a value of nop that is less than the maximum
vehicle load factorntruthmax . Note that here our estimate of the probability
of maneuver success is based on whether we exceed the flight
envelope; in practice, the flight envelope is generated with a substan-
tial safety factor, and thus any onboard decisionmaking (e.g.,mission
replanning) might also take that into account. We denote the event
that the agent succeeds in the maneuver as MS, where

MS � fnop�D; ŝ� < ntruthmax �D�g (18)

The probability of maneuver success p�MS� is computed as

p�MS� �
XR
j�1

p�MSjDj�p�Dj� (19)

The quantityp�MSjDj� is the probability the agent succeeds given
the vehicle is in the damage state D � Dj; it is approximated by the
fraction of ten trials for damage case Dj that are successful. For this
analysis, we assume a uniform prior over all the damage cases so
p�Dj� � 1∕R for all Dj.
The utilization is defined as the average ratio between the vehicle’s

operational load factor and the vehicle’s true maximum load factor.
This is the expected value of nop�D; ŝ�∕ntruthmax �D� conditioned on the
event MS. The conditioning is because the vehicle capability is only
used when it does not exceed the flight envelope; only the cases in
which the agent chooses a safe maximum load factor contribute
positively to the utilization of the vehicle capability. We denote this
metric as �nutil and compute it as

�nutil �E

�
nop�D; ŝ�
ntruthmax �D�

jMS

�
�

XR
j�1

E

�
nop�Dj; ŝ�
ntruthmax �Dj�

jMS;Dj

�
p�Dj�

�
XR
j�1

E�nop�Dj; ŝ�jMS;Dj�
ntruthmax �Dj�

p�Dj� (20)

The quantity E�nop�Dj; ŝ�jMS; Dj� is the mean of the agent’s
chosennop given that the vehicle is in the damage caseDj and thatnop
is less thanntruthmax .We approximate this value using the samplemean of
all successful trials out of the ten total that were conducted for
D � Dj [i.e., the same set of samples from the previous p�MS�
computation].
Figure 17 plots the probability of maneuver success p�MS� vs the

utilization �nutil for the two decision strategies. A third curve is plotted
that shows the performance of a hypothetical estimator that knows the
damage casewith absolute certainty; that is, its only error is due to the
approximation of the corresponding capability set using the PSVMs.
The data shown in this figure were generated using 500 equally

spaced values ofpop from 0.01 to 0.99 and 500 equally spaced values
of nstaticop from 1 to 3. The ideal decision strategy would have both
perfect usage of available capability (i.e., �nutil � 1) and certain
maneuver success [i.e., p�MS� � 1]; this is marked as the Utopia
point in the upper right corner of Fig. 17. A sample on the plot is
considered to be nondominated if no other sample has both a higher
p�MS� and higher �nutil value (or higher value of one and equal value
of the other); the nondominated combinations of �nutil; p�MS�� for
each estimator are connected by a dashed line of the corre-
sponding color.
Figure 17 shows that the static capability case has p�MS� � 1 at

values of �nutil < 0.75. This is because if the agent sets a sufficiently
low static load factor the realized load is less than ntruthmax �Dj� for all
j � 1; : : : ; R. Thus, within the scope of our analysis, the vehicle
never exceeds the flight envelope, although the loads are limited to
conservative values and utilization is low. The figure also shows that
the static capability case has a long trail of samples near p�MS� � 0
at high values of �nutil. This is because at values of n

static
op close to 2.9

the vehicle almost certainly exceeds the flight envelope unless it is in
the pristine case, which has a small probability (<0.01) of occurring.
We see that the dynamic estimator results in an even spread of points
across the nondominated front, with a sharp “knee” at �nutil ≈ 0.95
where the probability of maneuver success drops rapidly.
We can use the nondominated fronts, Fig. 17, as a measure of

performance of each capability estimate when used for decision
making in the flight scenario. For instance, if the agent wants to use
95% of the maximum vehicle load factor on average, there would be
an 80% chance of maneuver success using the dynamic estimate of
the load factor as opposed to a 40%chance of successwhen operating
at a static load factor. On the other hand, if the agent can accept
operating at less than 80% of the maximum capability on average,
then both estimators show similar performance. We note this is most
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Fig. 16 Maximum load factor using static and dynamic estimation strategies for ten sensor realizations in each of the library damage cases. For samples
above the line the decision led to failure.
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likely because the damage cases in the library cause a limited
reduction in the vehicle capability, and simulating more severe
damage cases would continue to emphasize the performance gain
from using the dynamic capability estimate. Lastly, Fig. 17 shows
that if the damage were known perfectly, the error introduced by the
PSVM approximations would be relatively small for this example.
The difference between the dynamic capability curve and the known
damage curve is an indication of the value (in terms of vehicle
capability utilization and maneuver success probability) of increased
quality and quantity of sensors. Comparisons of this kind could be
used to support design decisions regarding the cost vs value tradeoffs
of including more onboard sensors.

VI. Conclusions

This paper explored the concept of dynamic capability estimation
from a data-driven perspective, inwhichmodels and experimentation
can both be sources of information and where the vehicle behavior is
analyzed cognizant of model uncertainty. A key to the approach is an
offline/online decomposition of tasks so that the predictive power of
high-fidelity physics-basedmodels can be leveraged while achieving
rapid estimations in the face of dynamic data. Results demonstrated
the benefit of incorporating vehicle sensor information into a dy-
namically updated estimate of the structural capability. This dynami-
cally updated estimate is computed here using the observable vector
sample to classify current vehicle behavior followed by the proba-
bilistic classification of vehicle capability. Future research could
explore the possibility of constructing high-dimensional support
vector machines on the state and observable vector space to create a
direct map between sensor readings and capability sets. Doing so
would remove the need to associate sensor readings to library
records. This might lead to less insight with respect to the physical
model but might result in computational gains. This kind of direct
mapping has been explored using proper orthogonal decomposition
representations and self-organizing maps in Ref. [16]. Lastly, note
that, although the aircraft application presented relies on computa-
tional models to generate training data, the methodology is general
and also permits the incorporation of experimental data.
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