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a b s t r a c t

Among the many uses for sensitivity analysis is factor prioritization—that is, the determination of

which factor, once fixed to its true value, on average leads to the greatest reduction in the variance of an

output. A key assumption is that a given factor can, through further research, be fixed to some point on

its domain. In general, this is an optimistic assumption, which can lead to inappropriate resource

allocation. This research develops an original method that apportions output variance as a function of

the amount of variance reduction that can be achieved for a particular factor. This variance-based

sensitivity index function provides a main effect sensitivity index for a given factor as a function of the

amount of variance of that factor that can be reduced. An aggregate measure of which factors would on

average cause the greatest reduction in output variance given future research is also defined and

assumes the portion of a particular factors variance that can be reduced is a random variable. An

average main effect sensitivity index is then calculated by taking the mean of the variance-based

sensitivity index function. A key aspect of the method is that the analysis is performed directly on the

samples that were generated during a global sensitivity analysis using rejection sampling. The method

is demonstrated on the Ishigami function and an additive function, where the rankings for future

research are shown to be different than those of a traditional global sensitivity analysis.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Sensitivity analysis of model output has been defined as the
determination of how uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model
factors [1]. Sensitivity analysis defined in this manner is often
referred to as global sensitivity analysis, owing to the fact that entire
factor distributions are considered in the apportionment process.
Since what is meant by the term ‘‘uncertainty’’ is typically case
dependent, several indicators have been developed to apportion
different measures of uncertainty among model factors. These
indicators are often based on screening methods [2], variance-
based methods [3–6], entropy-based methods [6,7], non-para-
metric methods [6,8], and moment-independent approaches
[9–11]. This paper focuses on the development and demonstration
of an extension of traditional variance-based global sensitivity
analysis that considers the change in output variance caused by a
change in factor variance that may arise from researching a factor
further. In general, variance-based global sensitivity analysis is the
standard practice for determining how each factor contributes to
output uncertainty when output variance is considered sufficient
to describe output variability [4,5].
ll rights reserved.
Variance-based global sensitivity analysis is a rigorous method
for apportioning output variance [3,12]. The method has been
applied in a wide variety of applications including hydraulic
modeling [13], aviation environmental modeling [14], nuclear
waste disposal [4], robust mechanical design practices [15], and
many others. The two main metrics computed in variance-based
global sensitivity analysis are the main effect sensitivity indices
proposed by Sobol’ [16] and the total effect sensitivity indices
proposed by Homma and Saltelli [5]. One of the primary uses of
global sensitivity analysis is in the context of factor prioritiza-

tion [3]. In this setting, the objective is to determine which factor,
on average, once fixed to its true value, will lead to the greatest
reduction in output variance. It has been established by Saltelli
et al. [3] and Oakley and O’Hagan [17] that the main effect
sensitivity indices are appropriate measures for ranking factors
in this setting, however, as noted in Oakley and O’Hagan [17], it is
rarely possible to learn the true value of any uncertain factor, and
thus these sensitivity indices only suggest the potential for
reducing uncertainty in an output through new research on a
factor. Given that it is rarely possible to obtain the true value of
any uncertain factor, the assumption that a given factor will be
fixed to some point on its domain is a major limitation in the use
of main effect sensitivity indices for use in allocating resources
aimed at reducing output variance.

To account for the inherent limitations in using global sensi-
tivity analysis results for directing future research, a new method
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that apportions output variance as a function of the amount of
variance reduction that can be achieved for a particular factor has
been developed. This function is called the variance-based sensi-
tivity index function. By assuming the portion of a particular
factor’s variance that can be reduced is a random variable, the
mean of this function can be taken to provide average main effect
sensitivity indices for ranking purposes. A key aspect of the
method is that the analysis is performed directly on the factor
and output samples that were generated during a global sensi-
tivity analysis using a rejection sampling technique for Monte
Carlo simulation proposed in Beckman and McKay [18]. The
derivation of the method is given in Section 2, which is followed
by a demonstration of the method on the well-known Ishigami
function [19] and a purely additive function in Section 3. Conclu-
sions are presented in Section 4.
1 It is possible that further research could increase the variance of a factor,

however, this would suggest that the original characterization of uncertainty was

flawed.
2. Methodology

In the following subsections, the method is derived using main
effect sensitivity indices from global sensitivity analysis. The
notion of a reasonable distribution that could arise through future
research on a given factor is considered as well as the rejection
sampling technique and how it can be employed to reuse model
evaluations from a Monte Carlo simulation.

2.1. Derivation

Consider a generic model, Y ¼ f ðxÞ, where x¼ ½X1, . . . ,Xk�
T , and

X1, . . . ,Xk are random variables on the measurable space ðR,BÞ,
and f : Rk-R is ðBk,BÞ-measurable. Then Y is a random variable,
and by definition, the variance of Y can be decomposed according
to

varðYÞ ¼ E½varðY9XiÞ�þvarðE½Y9Xi�Þ, ð1Þ

for any Xi, where iAf1, . . . ,kg. According to Saltelli et al. [3], the
goal of factor prioritization is the identification of which factor,
once fixed at its true value, would reduce the variance of Y the
most. Since it is not known a priori a given factor’s true value,
factor prioritization is carried out by identifying the factors
which, on average, once fixed, would cause the greatest reduction
in the variance of Y. The average amount of variance remaining
once a given factor is fixed is just E½varðY9XiÞ� for any factor Xi.
Thus, according to Eq. (1), the average amount of the variance of Y

that could be reduced through fixing factor Xi somewhere on its
domain is varðE½Y9Xi�Þ. Global sensitivity analysis uses this fact for
factor prioritization by considering main effect sensitivity indices,
which take the form

Si ¼
varðE½Y9Xi�Þ

varðYÞ
, ð2Þ

where Si is the main effect sensitivity index of factor Xi. The main
effect sensitivity index can then be used as a measure of the
proportion of the variance of Y that is expected to be reduced once
factor Xi is fixed to its true value.

The calculation of main effect sensitivity indices in a global
sensitivity analysis is most commonly done using either the
Fourier Amplitude Sensitivity Test (FAST) method or the Sobol’
method [5,12,20,21]. The FAST method is based on Fourier trans-
forms, while the Sobol’ method utilizes Monte Carlo simulation.
The Sobol’ method is employed in this work.

The Sobol’ method is well-developed and in wide use in the
sensitivity analysis field. Following Homma and Saltelli [5], the
main effect sensitivity indices may be estimated via the Sobol’
method for a given factor Xi by first estimating the mean f0 of the
function Y ¼ f ðxÞ as

f̂ 0 ¼
1

N

XN

m ¼ 1

f ðxmÞ, ð3Þ

where xm represents the mth realization of the random vector
½X1, . . . ,Xk�

T and N denotes the total number of realizations of the
random vector. Then estimating the variance of the function as

V̂ ¼
1

N

XN

m ¼ 1

f ðxmÞ
2
�f̂

2

0 , ð4Þ

and the single-factor partial variances as

V̂ i ¼
1

N

XN

m ¼ 1

f ð½xm
1 , . . . ,xm

i , . . . ,xm
k �

T Þf ð½ ~xm
1 , . . . ,xm

i , . . . , ~xm
k �

T Þ�f̂
2

0, ð5Þ

where xj
m and ~xm

j denote different samples of factor Xj and the
partial variances can be computed for iAf1, . . . ,kg. The main effect
sensitivity index for factor Xi can then be computed according to

Ŝi ¼
V̂ i

V̂
: ð6Þ

Here it should be noted that improvements in estimating main
effect indices using sampling-based methods have been devel-
oped by Saltelli et al. [22] and using regression or emulator-based
methods by Lewandowski et al. [23], Oakley and O’Hagan [17],
Tarantola et al. [24], Ratto et al. [25], Storlie and Helton [26]. Our
focus in this work is on sampling-based approaches, which are
commonly used in situations where both main effect and total
effect indices are desired [22]. The methodology developed in this
paper can readily be applied to the sampling-based techniques of
Saltelli et al. [22], however, the development is more accessible in
the context of the traditional Sobol’ method. Adapting the work of
this paper to regression and emulator-based methods is a topic
for future work.

As noted previously, these main effect sensitivity indices may
be used for factor prioritization by ranking inputs according to
their main effect indices, which give the percentage of how much
output variability can be expected to be eliminated by fixing a
particular input somewhere on its domain. However, this use of
global sensitivity analysis for factor prioritization relies on the
assumption that a given factor, through future research, can be
fixed to some point on its domain. The key contribution of this
work is to relax that assumption by considering the amount of
variance that can be reduced for a given factor as a random
variable rather than assuming the variance to be completely
reducible. More precisely, we assume that for a given amount of
variance reduction for a factor Xi, there is a corresponding family
of allowable distributions, and we calculate an average change in
the variance of the model output over this family.

Let Xi
o be the random variable defined by the original distribu-

tion for some factor Xi, and X0i be the random variable defined by a
new distribution for factor Xi after some further research has been
done. Xi

o and X0i have corresponding main effect sensitivity indices
Si

o and S0i respectively. Then we can define the ratio of the variance
of factor Xi that is not reduced and the total variance of the
original distribution of factor Xi as li ¼ varðX0iÞ=varðXo

i Þ. Assuming
further research reduces the variance of factor Xi,

1 it is clear that
liA ½0,1�. Since it cannot be known in advance how much variance
reduction for a given factor is possible through further research, li

is cast as a uniform random variable Li on [0,1], which corre-
sponds to a maximum entropy distribution given that all we
know is the interval in which li will take a value [27].
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Given that the variance of factor Xi that may be reduced is a
random percentage, 100ð1�LiÞ%, of the total original variance of
factor Xi, the variance-based sensitivity index function can be
defined as

ziðliÞ ¼
varðYoÞSo

i�E½varðY 0ÞS0i9Li ¼ li�

varðYoÞ
, ð7Þ

where Si
o is the original main effect sensitivity index of factor Xi,

varðYoÞ is the original output variance, and E½varðY 0ÞS0i9Li ¼ li� is
the expected value of the product of the variance of the output
and the main effect global sensitivity index of factor Xi taken over
all reasonable distributions of factor Xi with 100li% of the
variance of the original distribution for factor Xi. The reasonable
distributions are a pre-specified, parameterized family of distri-
butions. These distributions are discussed further in the following
subsection.

The variance-based sensitivity index function given by Eq. (7)
provides the main effect sensitivity index for factor Xi if it is
known that exactly 100ð1�liÞ% of the factor’s variance can be
reduced. This can be seen by noting that varðYoÞSo

i is the expected
value of the variance of Yo that is due to factor Xi, and varðY 0ÞS0i is
the expected value of the variance of Y 0 that is due to factor Xi

after 100ð1�liÞ% of factor Xi’s variance has been reduced. Since
there are many ways to reduce the variance of factor Xi by
100ð1�liÞ%, the expected value of varðY 0ÞS0i is taken over all the
reasonable distributions for which 100ð1�liÞ% has been reduced.
Thus, varðYoÞSo

i�E½varðY 0ÞS0i9Li ¼ li� is the amount of variance in Yo

that cannot be reduced further if factor Xi’s variance can only be
reduced by 100ð1�liÞ%.

If it is assumed that all of the variance of a particular factor can
be reduced, then li ¼ 0, and for a given factor Xi, this means that
E½varðY 0ÞS0i9Li ¼ 0� ¼ 0, since once all of the variance of factor Xi has
been reduced, factor Xi will simply become a constant, and thus,
S0i ¼ 0. Therefore, when li ¼ 0, zið0Þ ¼ So

i , and the index reduces to
the specific case of global sensitivity analysis. However, as noted
previously, since it is not likely known what value li will take prior
to further research on a given factor, li is considered to be a
uniform random variable, Li, on the interval ½0,1�.

The expected value of ziðLiÞ can thus be taken to give an
average main effect sensitivity index (Z), as shown in Eq. (8) for
some factor Xi,

Zi ¼ ELi
½ziðLiÞ�: ð8Þ

The average main effect sensitivity index for each factor in a
model is then an index that can be used to quantitatively rank
factors based on the average amount of output variance that can
be reduced when further research is done on a particular factor.

2.2. Defining reasonable distributions

In the discussion of the development of the variance-based
sensitivity index function it was noted that reasonable new factor
distributions, which represent the result of further research on a
factor, be used in the estimation of the function. This is because
given some initial distribution for a factor and some li, there will
generally not be a unique new distribution with 100li% of the
variance of the original factor distribution. For example, if a factor
has an original distribution that is uniform on the interval [0,1],
and li ¼ 0:5, there are an infinite number of new distributions,
such as U½0,

ffiffiffi
2
p

=2�, U½1�
ffiffiffi
2
p

=2,1�, U½
ffiffiffi
2
p

=4,1�
ffiffiffi
2
p

=4�, etc., that all
have variances equal to li times the original variance. The new
distributions could also be from a different family of distributions,
such as triangular. Therefore, a set of reasonable distributions
with 100li% of the variance of any given original distribution
must be defined. Here we present a procedure for identifying
reasonable distributions for factors that are originally uniformly
distributed or normally distributed. These distributions tend to be
used in the absence of full distributional information and thus are
often candidates for future research. In both cases, it is assumed
that future research will only impact the parameters of a given
distribution, thus the impact of future research that could lead to
a change in the underlying distribution family (e.g. from a
uniform distribution to a triangular distribution) is not considered
here. However, if the distribution family of a given factor were
expected to change through further research, then reasonable
distributions from the new family, given that the original dis-
tribution was from another family, could be defined.

2.2.1. Uniform distributions that may arise through future research

Consider an arbitrary uniform distribution, U½a,b�. The variance
of this distribution is given as varðXÞ ¼ ðb�aÞ2=12. Thus, li for this
family of distributions can be written as li ¼ ðb

0�a0Þ=ðbo�aoÞ
� �2

,
where a0 and b0 are the endpoints of a new distribution and ao and
bo are the endpoints of the original distribution. In this case, a
given li implies all new uniform distributions are intervals of the
same width, which is l1=2

i ðb
o�aoÞ. A reasonable method for

sampling from the set of intervals on ½ao,bo� with width
l1=2

i ðb
o�aoÞ is given in Algorithm 1.

Algorithm 1. Sampling uniform distributions.
1:
 Sample li from a uniform distribution on the interval [0,1].

2:
 Sample b0 from a uniform distribution on the interval

½aoþl1=2
i ðb

o�aoÞ,bo�.
3:
 Let a0 ¼ b0�l1=2
i ðb

o�aoÞ.
This method of sampling ensures the new parameters, a0 and
b0, for a given li, will be such that a0 �U½ao,bo�l1=2

i ðb
o�aoÞ�, and

b0 �U½aoþl1=2
i ðb

o�aoÞ,bo�. Thus the set of possible uniform dis-
tributions with ð1�liÞ the variance of the original distribution is
sampled uniformly.

2.2.2. Normal distributions that may arise through future research

Consider an arbitrary normal distribution, N ðmo,s2
oÞ, where mo

is the mean and s2
o is the variance of the distribution. For the

normal family of distributions, li is written as li ¼ s02=s2
o , where

s02 is the variance of a new distribution and s2
o is the original

variance. Here a procedure is presented where the mean value of
the original distribution is also the mean value of any new
distributions after further research has been undertaken. How-
ever, if the mean value is expected to change, other procedures
can be developed to take that into account. Given that here the
mean does not change, a specific li uniquely defines a new
distribution N ðmo,lis2

o Þ, where mo is the mean of the original
distribution. Thus, the proposed procedure for sampling normal
distributions is simply selecting a li and using that li to calculate
the variance of the new distribution. This procedure is given in
Algorithm 2.

Algorithm 2. Sampling normal distributions.
1:
 Set m0 ¼ mo.
2:
 Sample li from a uniform distribution on the interval [0,1].

3:
 Set s02 ¼ lis2

o .
2.3. Rejection sampling

The evaluation of Eq. (7) and subsequently of Eq. (8) requires
consideration of a large number of different distributions for each
factor. If a global sensitivity analysis is carried out for each new
distribution for each factor, the computational expense would be
massive and estimating values of the variance-based sensitivity
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index function would likely be too costly to ever carry out.
However, if a global sensitivity analysis with the original dis-
tributions for each factor is completed, rejection sampling can be
used to estimate the values of the variance-based sensitivity
index function without any further model evaluations.

Rejection sampling is a method for generating samples from a
desired distribution by sampling from a different distribution. The
method has been developed for both random samples [28] and
quasi-random samples such as low discrepancy sequences [29].
For random samples, following DeGroot and Schervish [28], let
fZ(z) be a probability density function of a desired distribution for
some random variable, Z. Let fX(x) be some other probability
density function for a random variable, X, with the property that
there exists a constant, k, such that kf XðxÞZ fZðxÞ for all x, where x

is a realization of X. The rejection method can then be used to
generate J samples from fZ(z) as shown in Algorithm 3. For low
discrepancy sequences, following Wang [29], a similar procedure
for sampling from Z can be developed as shown in Algorithm 4.
Both of these algorithms are rigorous techniques for performing
rejection sampling on nested uniform distributions. However, in
practice, we may use the bounds of the desired new interval to do
rejection sampling directly by rejecting all points outside the
bounds.

Algorithm 3. Rejection sampling for 1D random samples.
Fig. 1
samp
1:
 Draw a sample, x, from X.

2:
 Draw a sample, u, from a uniform random variable on ½0,1�.

3:
 If fZðxÞ=fXðxÞZku
let zj ¼ x,
j¼ jþ1,

If j¼ J,
STOP.

Else return to 1.
4:
 Else, discard x and u and return to 1.
Algorithm 4. Rejection sampling for 1D low discrepancy
sequences.
1:
 Generate a low discrepancy sequence of points

ðxi,niÞA ½0,1�2, i¼ 1,2, . . . ,M.

2:
 Map xi to xi for all i (e.g., using inverse CDF method).

3:
 Let ui ¼ ni.

4:
 For i¼1 to M
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x 2 x 2

. (a) Original set of 1024 quasi-random Sobol’ points for X1 and X2, which are us

ling has been performed on X1. Originally X1 �U½0,1� and is now X1 �U½1=5,3=5�. T
0

0.2

0.4

0.6

0.8

1

ed t

he o
If fZðxiÞ=fXðxiÞZkui,

let zj¼xi,
j¼ jþ1,

Else reject xi.
As an example of how rejection sampling is used in this work,
consider a function Y ¼ f ðX1,X2Þ, where X1, X2, and Y are random
variables and X1,X2 �U½0,1�. Suppose we care about some quan-
tity QðYÞ (e.g. an integral, a mean, a sensitivity index, etc.). To
evaluate QðYÞ, we first sample from the random variables X1 and
X2 using a Sobol’ quasi-random sequence [30]. The points for a
sequence of size 1024 are shown in Fig. 1a.

Following Beckman and McKay [18], if we would now like to
evaluate QðYÞ with a different distribution on say X1, we can do so
by reusing previous samples of X1 and X2, and hence samples of Y,
by performing the appropriate rejection sampling on X1. The use of
rejection sampling for this task only requires that the support of
the new distribution of X1 be contained within the support of the
original distribution of X1 and the existence of a uniform bound k

as in Algorithms 3 and 4. For example, if we would like to evaluate
QðYÞ, where Y ¼ f ðX1,X2Þ and X1 �U½1=5,3=5� and X2 �U½0,1�, we
could do so without reevaluating Y by using the evaluations of Y

associated with the samples of X1 that have been accepted in
rejection sampling as samples of the new distribution of X1. These
samples are shown Fig. 1b, which presents the original samples of
X1 and X2 and the accepted samples after rejection sampling is
applied to X1. It should be noted here that this use of rejection
sampling for the case of normal distributions in which the mean
may change poses computational difficulties due to the potential
small number of previous function evaluations near the new mean
of the distribution. This difficulty may also arise if we wish to use
rejection sampling on a small subset of the original interval in the
case of both uniform and normal distributions.
2.4. Application of rejection sampling to global sensitivity analysis

Rejection sampling can be employed to reuse the results from
a global sensitivity analysis to calculate values of the variance-
based sensitivity index functions and average main effect sensi-
tivity indices as follows. Consider again a generic model, Y ¼ f ðxÞ,
where x¼ ½X1, . . . ,Xk�

T , and X1, . . . ,Xk and Y are random variables.
Suppose we have conducted a global sensitivity analysis to
calculate the main effect sensitivity index of factor Xi using the
x1

0 0.2 0.4 0.6 0.8 1

Original
Accepted

o calculate samples of Y. (b) Accepted samples of X1 and X2 after rejection

riginal samples are presented for comparison.
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Sobol’ method [5] and quasi-random Sobol’ points. Thus, we have

the model evaluations corresponding to f ð½xm
1 , . . . ,xm

i , . . . ,xm
k �

T Þ and

f ð½ ~xm
1 , . . . ,xm

i , . . . , ~xm
k �

T Þ, as in Eq. (5), where m¼ 1, . . . ,N, where N is

the number of samples of each factor. Consider some new

distribution, fX0
i
ðx0Þ for factor Xi, with original distribution fXo

i
ðxiÞ,

for which we would like to determine the value of the variance-
based sensitivity index function for a particular amount of
variance reduction in Xi. To do this, we must estimate the main
effect sensitivity index, S0i, and the new variance of the output,

varðY 0Þ, for use in the estimation of a variance-based sensitivity
index function value for factor Xi given by Eq. (7). The estimation
of these quantities using the function evaluations from global
sensitivity analysis can be achieved as shown in Algorithm 5.

Algorithm 5. Rejection sampling for the Sobol’ method for
factor Xi.
1:
 Use Algorithm 3 or 4 to choose a subsample of the original
points.
2:
 Calculate the new variance of the output varðY 0Þ using
Eq. (4) and the output samples associated with the
subsample from Step 1.
3:
 Calculate the single-factor partial variance for Xi using the
samples from Step 1 and Eq. (5).
4:
 Calculate the new Sobol’ main effect sensitivity index S0i
using Eq. (6) with the variance from Step 2 and the partial
variance from Step 3.
The values of the variance-based sensitivity index function for
factor Xi may then be calculated as shown in Algorithm 6.

Algorithm 6. Evaluating ziðliÞ for factor Xi.
1:
 Estimate the original output variance varðYoÞ.

2:
 Perform a global sensitivity analysis for factor Xi to

estimate the original main effect sensitivity index Si
o.
3:
 Use Algorithm 5 to estimate varðY 0Þ and S0i. Repeat over all

reasonable distributions for factor Xi with 100li% of the
variance of the original distribution for factor Xi.
4:
 Calculate ziðliÞ using Eq. (7) with the quantities from Steps
2 and 3.
Given the variance-based sensitivity index function for factor
Xi, we may estimate the average main effect sensitivity index for
factor Xi as shown in Algorithm 7.

Algorithm 7. Evaluating Zi for factor Xi.
1:
 Discretize the interval [0,1] and estimate ziðliÞ at the
discretization points (e.g., 0, 0.1, 0.2, y,1.0) using
Algorithm 6.
2:
 Estimate the average main effect sensitivity index Zi using

Eq. (8) with the values of zi from Step 1.
3. Test function analysis

To demonstrate the methodology developed in Section 2, the
approach is applied here to the Ishigami function and an additive
function. The Ishigami function was first introduced by Ishigami
and Homma [19]. It is commonly used to test sensitivity and
uncertainty analysis techniques. For example, it was used by
Ratto et al. [31] to demonstrate the use of state-dependent
parameter modeling in the estimation of conditional moments
for sensitivity analysis, by Homma and Saltelli [5] to demonstrate
the performance of importance measures for sensitivity analysis,
by Saltelli et al. [32] to demonstrate the calculation of high
dimensional model representation [16] for use in variance-based
sensitivity analysis, by Eldred and Swiler [33] to explore refine-
ment approaches for nonintrusive polynomial chaos expansion
and stochastic collocation for uncertainty quantification techni-
ques, and by Storlie et al. [34] to investigate the use of metamo-
dels and bootstrap confidence intervals for sensitivity analysis of
computationally demanding models. The second example, an
additive function, was created for this work to fully demonstrate
the benefits of a variance-based sensitivity index function and to
provide an example that does not contain strong interactions as
the Ishigami function does.

3.1. Ishigami function

The Ishigami function is given as follows:

Y ¼ sin X1þa sin2X2þbX4
3 sin X1, ð9Þ

where the Xi are independent and uniformly distributed on
½�p,p�. The constants are set as a¼5 and b¼0.1 as in Ratto
et al. [31]. A global sensitivity analysis was carried out using the
Sobol’ method and a Sobol’ quasi-random sequence of size 4096.
The computed main effect sensitivity indices for each factor are
S1¼0.40, S2 ¼ 0:28 and S3¼0.00. For factor prioritization purposes
then, the conclusion that is drawn from the analysis is to focus
future research efforts on factor X1, since on average once fixed,
factor X1 is expected to reduce the variance of Y by the largest
amount.

If the analysis for factor prioritization were to be concluded at
this point, a great deal of information regarding the impact of
future research on factors X1 and X2 is missed and an inappropri-
ate decision regarding how to allocate future resources for
reducing the variance of Y may be made. It should be noted here
that factor X3 is not considered further because it does not have a
main effect and thus only affects the variance of Y through
interactions with the other factors. Thus, to demonstrate the
benefits of the variance-based sensitivity index function, an
analysis for factors X1 and X2 was carried out following the
methodology presented in Section 2.

The results of the analysis are presented in Fig. 2a. Indices of
each factor for values of li, that is the variance that cannot be
reduced, for li ¼ 0:0,0:05,0:10, . . . ,1:0 are provided. Without
aggregating the results, the figure shows that the effects of future
research on a given factor on the variance of Y is highly nonlinear.
Thus, depending on the expected returns of future research on a
factor, the main effect global sensitivity indices, which are the
rightmost points on the figure, could be misleading if used for
determining how to best allocate resources aimed at reducing the
variance of Y. As an extreme example of how misleading the
information from the main effect indices computed via global
sensitivity analysis could be, consider directing future research at
factor X1 (which is supported by factor prioritization analysis) and
achieving a 25% reduction in the variance of the factor (thus
1�l1¼0.25). As can be seen in Fig. 2a, on average, a 25% reduction
in the variance of X1 will actually lead to an increase in the
variance of Y, and thus not have been an appropriate use of
resources. In fact, according to the results of the distributional
sensitivity analysis, unless it is believed that future research will
lead to a reduction in the variance of X1 of more than 50%, it does
not make sense to direct research at factor X1 at all if the goal is to
reduce the variance of Y. This behavior can be explained by
considering the Ishigami function output plotted against input
X1 and X2 as shown in Fig. 3a and b respectively. In Fig. 3a, the
dark points are accepted samples for a 1�l1¼0.25 case for X1 and
the light points are the rejected points from the full model. It is
clear from the figure that the variance of the dark points is greater
than the variance of the combination of the dark and light points,
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which leads to the behavior of the distributional sensitivity index
for factor X1 shown in Fig. 2. In Fig. 3b, the dark points are
accepted samples for a 1�l2¼0.25 case for X2 and the light points
are again the rejected points from the full model. In this case, it is
clear from the figure that variance of the dark points should be
very similar to the variance of the dark and light points combined,
which leads to the nearly constant behavior of the distributional
sensitivity index of factor X2 shown in Fig. 2.

By aggregating the variance-based sensitivity index function
values shown in Fig. 2b as discussed in Section 2 to obtain the
average main effect sensitivity indices, we are provided with an
alternative ranking measure for deciding how to allocate future
resources. An important aggregation case to consider is that of
having a complete lack of knowledge relating the possible
variance reduction for a given factor after future research. As
discussed in Section 2, this leads to a uniform distribution on [0,1]
for the amount of variance of a given factor that can be reduced.
Given this form of aggregation, the average main effect sensitivity
indices are Z1 ¼ 0:07 and Z2 ¼ 0:04 as shown in Fig. 2b. Here the
average main effect sensitivity indices rank factor X1 above factor
X2 as was the case for global sensitivity analysis. However, the
analysis also revealed that neither factor is expected to reduce the
variability of Y substantially, and the conclusion of the analysis
could be that allotting resources to research further the distribu-
tions of X1 and X2 may not be worthwhile. This was not the
conclusion of the global sensitivity analysis, where it is assumed
that all factor uncertainty can be eliminated, leading to a 40% or
28% reduction in the variance Y through researching factor X1 or
factor X2 respectively. Further, different aggregation procedures
can be developed to provide more informative average main
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effect sensitivity indices if we have knowledge of the amount of
variance that is expected to be reduced given anticipated future
research efforts on a given factor.

3.2. Additive function

The additive model is given as follows:

Y ¼ 100X1þ4 expðX2Þþ350 sin X3, ð10Þ

where the Xi are independent �N ð0,4Þ. A global sensitivity
analysis was carried out using the Sobol’ method and a Sobol’
quasi-random sequence of size 65 536. The computed main effect
sensitivity indices for each factor are S1¼0.27, S2 ¼ 0:31 and
S3¼0.42. For factor prioritization purposes then, according to
global sensitivity analysis, the conclusion that is drawn is to focus
future research efforts on factor X3.

The variance-based sensitivity index functions and the average
main effect sensitivity indices for the additive model are shown in
Fig. 4a and b respectively. As can be seen from the figure, the
results are considerably different than those of the global sensi-
tivity analysis. The variance-based sensitivity index functions plot
clearly shows that the factors that should be considered for future
research depend on the amount of variance that is assumed
reducible for each factor. If we have no knowledge of the impact
of future research on any of the factors then it is reasonable to
assume that the amount of variance of any given factor that can
be reduced through future research is a uniform distribution
between 0 and 100% of the variance of the factor. Given this, we
can aggregate the variance-based sensitivity index function
values as discussed in Section 2.1 to obtain the average main
effect sensitivity indices for each factor, which are shown in
Fig. 4b. The global sensitivity analysis results suggest the ranking
for factor prioritization be factor 3, followed by factor 2, and then
factor 1, though all of the indices are close to one another. The
average main effect sensitivity index results however, suggest
that the ranking be factor 2, followed by factor 1, and then
factor 3. Thus, in the case of this additive function, assuming the
variance of a given factor can be reduced to zero through future
research leads to a completely different conclusion regarding
which factors should be researched further than the methodology
developed here.
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4. Conclusions

The sensitivity analysis technique developed in this work
provides a method of ranking factors in terms of expected output
variance reduction that would occur if future research is done on
a given factor. The assumption that a given factor can be fixed
somewhere on its domain, a key assumption of using global
sensitivity analysis for factor prioritization, has been relaxed by
viewing sensitivity indices as functions of the amount of variance
of a particular factor can be reduced through research. Using
rejection sampling techniques, these variance-based sensitivity
index functions are estimated by reusing the information
obtained from a traditional global sensitivity analysis. In many
cases, this approach does not require additional evaluations of the
model being analyzed, though the need for significantly more
model evaluations can arise when considering small subsets of
original factor intervals and normal distributions in which the
mean may change. The variance-based sensitivity index functions
reveal a great deal of information regarding expected reduction in
output variance given reduction in factor variance, and can be
used to determine how to allocate resources for future research
among different factors. For any possible forecast a practitioner
may make regarding the possible decrease in variance in each of
the factors caused by future research, a different possible ranking
of the factors may be realized through the variance-based
sensitivity index function. For overall ranking purposes, the
percentage of a given factor’s variance that can be reduced
through future research can be considered as a uniform random
variable and average main effect sensitivity indices can be
computed by taking the mean of the variance-based sensitivity
index functions. For the two test functions considered, this
approach led to a great deal of useful additional information for
consideration in the factor prioritization setting, as well as
different conclusions for factor prioritization for the additive test
function. Though the results in this work assumed there is no
knowledge of anticipated returns in terms of variance reduction
for a given factor given some planned future research, if such
knowledge does exist, the information can be incorporated into
the aggregation of the average main effect sensitivity indices to
provide weighted average main effect sensitivity indices for
ranking purposes.
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