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This work develops a methodology for sensor placement and dynamic sensor scheduling deci-
sions for digital twins. The digital twin data assimilation is posed as a classification problem,
and predictive models are used to train optimal classification trees that represent the map
from observed data to estimated digital twin states. In addition to providing a rapid digital
twin updating capability, the resulting classification trees yield an interpretable mathematical
representation that can be queried to inform sensor placement and sensor scheduling deci-
sions. The proposed approach is demonstrated for a structural digital twin of a 12ft wingspan
unmanned aerial vehicle. Offline, training data are generated by simulating scenarios using
predictive reduced-order models of the vehicle in a range of structural states. These training
data can be further augmented using experimental or other historical data. In operation, the
trained classifier is applied to observational data from the physical vehicle, enabling rapid
adaptation of the digital twin in response to changes in structural health. Within this context,
we study the performance of the optimal tree classifiers and demonstrate how they enable
explainable structural assessments from sparse sensor measurements, and also inform optimal
sensor placement.

I. Introduction
Digital twins have emerged as a paradigm for characterizing, monitoring, analyzing, and optimizing complex

systems by combining state-of-the-art computational models with data-driven learning [1–3]. A digital twin is a
computational model (or a set of coupled computational models) that evolves over time to persistently represent the
structure, behavior, and context of a unique physical asset such as a component, system, or process [4]. Digital
twins have clear potential to underpin the intelligent automation of the future by enabling asset-specific data-driven
decision-making. For engineering systems, incorporating physics-based modeling within the digital twin is critical to
providing reliable predictive capability, which in turn drives decision-making. However, in order to achieve the level of
specificity promised by the digital twin paradigm, such models must be regularly adapted so as to ensure that the digital
twin represents the unique characteristics of a physical asset at a specific point in its lifecycle. Thus, the design of digital
twin sensing strategies plays a critical role. The contribution of this paper is the development of a methodology for
designing explainable digital twin sensing and model updating strategies by leveraging machine learning classification
methods coupled with physics-based models of the system.

The promise of digital twins has been recognized across a wide range of application areas. Engineering applications
include virtualized structural health monitoring, simulation-based certification, and predictive maintenance [5–8], as
well as optimized fleet management [6, 9, 10]. Beyond engineering, healthcare digital twins promise to advance medical
assessment, diagnosis, personalized treatment, and in-silico drug testing [11–14], educational digital twins offer a
path to personalized education [15], and smart cities enabled by digital twins promise to revolutionize urban planning,
resource allocation, sustainability, and traffic optimization [16].

The proliferation of sensors and increasing connectivity among physical assets means that engineering systems
now produce large amounts of readily accessible asset-specific data. For example, modern aircraft have been predicted
to produce approximately 1 petabyte of data each flight-hour by 2025 [5]. The ability to assimilate these data in
order to rapidly extract valuable insights and incorporate them into the digital twin is necessary to avoid the so-called
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curse of history, in which the amount of data requiring storage grows ad infinitum as time goes on. Performing this
assimilation in a rapid, yet principled, manner while accounting for uncertainty is crucial to maintaining the accuracy
and reliability of the digital twin. Prior works on data-driven digital twin updating have typically focused on fully
Bayesian methods [7, 17, 18] or optimization-based machine learning methods, targeting either surrogate model fitting
[19], model calibration [20], or learning a model correction term [21–23].

Ensuring that the digital twin is reliable demands that any data-driven methods influencing the digital twin be
both accurate and interpretable. Interpretability ensures that the digital twin can be validated and/or certified, and
offers insight into which data are most informative, and how exactly those data are being used in the digital twin.
While Bayesian methods and direct model calibration methods typically involve updating a set of interpretable model
parameters, these methods require a number of computational model evaluations which is typically large, and which
scales with the dimension of the model parameter space. This makes such methods computationally intractable in many
applications due to a combination of performance requirements (e.g., when data must be assimilated rapidly to enable
critical decision-making) and resource constraints (e.g., limited computing or electrical power when a digital twin exists
on an onboard computer or edge device). On the other hand, machine learning surrogate modeling approaches can be
computationally efficient, but are typically treated as black-boxes and can thus be difficult to understand, validate, and
certify.

In a previous work, we introduced the idea of using decision tree classifiers to update a digital twin based on
incoming sensor data [24]. This paper serves to further develop this idea into a complete methodology for the design
of digital twin sensing strategies. In particular, we here consider various additional aspects of the sensing task for
predictive digital twins, namely, how decision trees can be used for sensor placement, dynamic sensor selection, and
sensor sensitivity analysis. The proposed methodology combines physics-based modeling with machine learning.
The physics-based models that comprise the digital twin are used to simulate asset operation during an offline phase,
generating a training dataset comprising expected sensor measurements for various asset states. We then use this dataset
to train an interpretable classifier that takes as input online sensor data and outputs an estimate of the underlying asset
state by selecting the physics-based model configuration that best explains the observed sensor data. Deploying such a
classifier within the digital twin enables rapid data-driven updating of the computational models comprising the digital
twin.

The machine learning approach explored in this work is based on optimal decision trees [25, 26]. In particular we
show how optimal decision trees can be trained that leverage only a subset of the input observations. This capability
enables the methodology to reveal which observations are most useful for a given classification task. As training data
can be simulated prior to sensor installation and asset deployment, this enables us to leverage optimal trees for sparse
sensor placement and/or dynamic sensor scheduling in support of an accurate and efficient digital twin. Whereas
existing sensor placement approaches [27, 28] typically focus on a single output quantity of interest, our approach
can naturally produce classifiers that act on multi-modal measurement data. In addition to achieving state-of-the-art
classification accuracy, a key feature of optimal decision trees approach is interpretability. In particular, since the
approach does not require data compression or reduction of the observation space, it produces a classifier that maps
directly from the observation space to the digital twin state space, while also revealing an explicit partitioning of the
space of observational data. This makes sensor placement, as well as digital twin state updates, interpretable since is
clear which sensors are contributing to a given classification decision and precisely where applied decision boundaries
lie. This interpretability can facilitate verification and validation of a digital twin, as well as promoting confidence in
decisions or analysis provided by the digital twin.

This paper is organized as follows. Section II establishes the mathematical abstraction of a digital twin, as well
as associated definitions and notation, that we adopt in this work. Section III formulates the proposed approach to
data-driven model adaptation via optimal classification trees. Section IV applies the proposed methodology to an
example application, namely the sensing strategies and associated model adaptation of a structural digital twin for an
Unmanned Aerial Vehicle (UAV). Finally, Section V summarizes the contributions of this work and highlights areas
requiring future study.

II. Mathematical abstraction of a digital twin
This section serves to place the sensor design methodology proposed in this work into the broader context of a

complete digital twin system. To do this, we adopt the mathematical abstraction for digital twins proposed in [29]. In
this abstraction, we define six quantities as shown in Table 1. These quantities describe the coupled system comprised
of the physical asset and its associated digital twin. In a typical digital twin application, each of these six quantities will
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be considered to vary with time, that is, the physical state s, digital twin state d, quantities of interest q, observational
data o, control inputs u, and rewards r are all modelled as time-dependent variables. For ease of exposition, and to
simplify later notation, we will not express this time dependence explicitly in the discussions below.

In this section, we further define each element of our mathematical representation of a digital twin, and explain how
each element factors into the design of digital twin sensing strategies.

Table 1 Summary of the six quantities comprising our abstraction of an asset-twin system.

Quantity Notation Description

Physical State s ∈ S Parametrized state of the physical asset
Digital Twin State d ∈ D Configuration of computational models comprising the digital twin

Quantities of Interest q ∈ Q Quantities describing the asset, estimated via model outputs
Observational Data o ∈ O Available information describing the state of the physical asset
Control Inputs u ∈ U Actions or decisions that influence the physical asset

Reward r ∈ R Quantifies overall performance of the asset-twin system

Physical state and digital twin state. The physical twin refers to the physical component, system, or process for
which we are creating a digital twin in support of monitoring and decision-making. In general, the physical state, s ∈ S,
will be only partially and indirectly observable through observational data. Here S denotes the state space of the physical
twin. We consider systems whose state evolves over time within this state space. The digital twin is a parametrized
model or set of coupled models that evolve over time to persistently represent the physical twin. The digital twin state,
d ∈ D, comprises the parameters of these models. Note that d includes typical state variables, such as position and
velocity of a vehicle, but also other parameters (e.g., geometry, structural health, fuel state) that define the current state
of the system, as represented in the digital twin models. HereD denotes the digital twin state space, i.e., the space of all
possible values for the digital twin state. When designing digital twin sensing strategies, we must ensure that the digital
twin state can be inferred with sufficient accuracy and robustness. There is thus a rich two-way interaction between the
selection of the digital twin state and the observational data: the digital twin state space must be defined with sensing
constraints in mind, while observability of the digital twin state will factor into sensor design and scheduling decisions.

Observational data. The digital twin state is informed by observational data received from the physical twin. The
observational data, o ∈ O, might include sensor data, physical inspection data, information from diagnostic or error
reporting systems, etc. Here O denotes the space of possible observations. Digital twin sensing strategies influence
observational data through sensor placement and design (i.e., which sensors are placed onboard the system and where)
and sensor selection (i.e., which sensor data are processed in any given situation, including dynamic sensor scheduling).
We note that in some cases, the sensing design problem will lead to a formulation where the space O itself changes in
time (e.g., in the case where we make the decision to add a sensor).

Control. The control input, u ∈ U, whereU denotes the space of possible control inputs, defines actions that can
influence the physical state in some way. This could involve an action or intervention that changes the instantaneous
physical state or changes the operating conditions of the asset, thereby influencing the state evolution dynamics. Similarly,
control inputs could also influence the observational data that is generated by an asset, either instantaneously (e.g.,
deciding to perform an inspection of the asset) or in the future (e.g., installing a new sensor or otherwise modifying the
sensor architecture). It is this latter class of control inputs (which we refer to as different digital twin sensing strategies)
that we focus on in this work.

Quantities of interest. If the digital twin state is thought of as an encapsulation of important inputs to the
computational models comprising the digital twin, then quantities of interest, q ∈ Q are an encapsulation of the outputs
of these models. The quantities of interest thus depend directly on the digital twin state, but can only be evaluated via
the computational models comprising the digital twin. Here Q denotes the space of possible values that the quantities of
interest may take. Quantities of interest help to characterize the physical asset by serving as computational estimates of
quantities that may not be directly observable, for example, the full stress or strain field within a structure. Quantities
of interest drive sensor placement and scheduling decisions by defining the key prediction targets that will ultimately
inform decision-making. Optimal sensing decisions must factor in these targets in a goal-oriented way.

Reward. The reward, r ∈ R, quantifies the value of different states of the complete asset-twin system. Here R
denotes the space of possible reward values. The reward model could encode various success or failure states for the
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system, various costs associated with acquiring observational data or applying control inputs, or a measure of accuracy
and reliability of the digital twin. Note that the reward might represent a real-world quantity such as cost, or it could be
a more abstract quantity defined and tuned to achieve the desired system performance. Similar to its use in agent-based
models such as partially observable Markov decision processes (POMDPs), the reward can serve as the quantity that we
seek to optimize when deciding on a control strategy using the digital twin. However, note that in some cases digital
twins may be used for asset monitoring only (by applying a fixed predefined control policy). Moreover, in the digital
twin context the choice of reward may vary over time, for example, the reward defined during design, manufacturing or
calibration may differ from the reward defined for an operational phase.

This mathematical abstraction provides the framework on which to pose the task of designing digital twin sensing
strategies, namely, the tasks of digital twin sensor placement and sensor scheduling. Quantifying the reward associated
with sensing decisions must be done in an integrated way that factors in the role of observational data in updating
the digital twin state, as well as the cost associated with a given sensing decision. Our past work addressed this by
using a dynamic decision network to model the relationships between the six elements of our digital twin mathematical
abstraction [29]. Figure 1 shows an example of the structure of such a network where observational data generated by
the physical twin is used to infer the digital twin state, which in turn is used to estimate quantities of interest, drive
decisions and compute rewards.

Fig. 1 Example structure of a network used to model the relationships among the elements of the digital twin
abstraction. In this example, each quantity is modeled as a random variable (denoted with capital letters),
the subscript t denotes quantities at a time stage t, and the relationships are modeled via a dynamic decision
network.

The probabilistic graphical model of [29] is one approach to integrated modeling of the digital twin data, models,
and decisions. Using this formalism, the digital twin updating is cast as a Bayesian state estimation task [30]. Another
approach, which we employ here, is to consider the same information flow as in Figure 1, but instead cast the data
assimilation task as a classification problem. While the classification formulation does not represent uncertainty as
integrally as the probabilistic graphical modeling formulation, it has other advantages in being more interpretable,
traceable, and providing a rapid online evaluation capability. To this end, the next section develops a formulation
that uses optimal classification trees as the mathematical and computational foundation on which to address the data
assimilation, sensor placement, and sensor scheduling tasks.

III. Digital twin adaptation and sensing using optimal classification trees
This section presents a methodology for digital twin data assimilation, sensor placement and sensor scheduling

decisions. We first motivate the use of optimal classification trees (OCTs), then describe methodology for classification
via decision trees and a scalable approach for learning OCTs. We then present the formulation of digital twin sensing
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strategy design using OCTs.

A. Problem framing and motivation
In the context of the digital twin mathematical abstraction of Section II, our goal is to design sensing strategies that

optimally influence observational data o so that we can successfully infer the digital state d, achieve sufficiently accurate
estimates of the quantities of interest q, and maximize rewards r. Here, sensing strategies are defined by our control
actions, u, which encompass both sensor placement decisions, which would likely take place in an upstream design task
but could also reflect an in-service modification, and sensor scheduling decisions, which take place dynamically during
operation. Figure 2 depicts each of these tasks in the digital twin context.
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Fig. 2 Graphical depiction of different sensing tasks, each of which constitute an aspect of designing a digital
twin sensing strategy. The depicted application is revisited in Section IV.

In this work, we employ OCTs as the mathematical and computational foundation for our methodology. We make
this choice for several reasons. First, formulating the digital twin updating as a classification problem leads to an
offline/online decomposition of tasks that enables rapid online evaluation at timescales useful for practical deployment
in operation. Second, the offline training of the OCT can be achieved for high-dimensional digital twin state spaces
using a recently developed mixed-integer optimization formulation that leads to a scalable training algorithm [25, 26].
Third, the OCT formulation leads to a methodology that is traceable, in the sense that one can easily diagnose which
sensors have contributed to informing the digital twin, and what decision boundaries were applied to their readings,
allowing a human to interpret the classification result in the context of the physical system. As a result, this method
lends itself well to decision processes that ultimately involve a mixture of human-driven and automated decisions.

B. Classification via decision trees
Decision tree methods are widely used in machine learning and statistics [31, 32] as a way to learn from a set

of training data a recursive, hierarchical partitioning of the feature space (the space of observational data O in our
setting) into a set of disjoint subspaces. We here consider classification trees, in which each region is assigned a single
deterministic label assignment (typically the most common label among training data assigned to the region). To
illustrate this idea, we use a classical demonstrative dataset for classification problems: Fisher’s iris dataset [33] which
is available from the UCI machine learning repository [34]. In this example, the training data consists of Nt = 150
observation-state pairs. For this dataset there are three possible digital states,D := {d1, d2, d3}, with s = 50 observations
for each state, okj , j = 1, ..., 3, k = 1, ..., 50. Here each observation is a four-dimensional vector of real numbers, i.e.,
O := RN

s with Ns = 4 observed quantities. We refer to the observed quantities as Features A, B, C, and D. Recall that in
our context, each of these features would be a component of the observational data, for example a measurement from a
single sensor or a particular result from an inspection.
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In Figure 3, we plot the dataset according to the value of features A and B. We then show examples of using either
axis-aligned or hyperplane splits to partition the feature space. We also show the classification trees that correspond to
each partitioning.
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Fig. 3 Two possible ways to recursively partition an illustrative dataset, one using axis-aligned splits only, and
another allowing for more general hyperplane splits. The corresponding classification tree is shown for each
partitioning. A test point is shown to illustrate how a new datapoint is assigned a label using the classification
tree.

Once a classification tree, T , has been generated, it can be used to predict outcomes for new, previously unseen
observations. When a test observation, o, is obtained, evaluation begins at the root node of the tree. At each branching
node in the tree, a decision is made depending on the observed feature values, until the test observation reaches a leaf
node, at which point a predicted output is assigned. For example, given the test observation o = [2, 1, 1, 2], depicted as an
asterisk in Figure 3, T(o) = d1 using the classification tree with axis-aligned splits, while T(o) = d2 if we instead use the
classification tree with hyperplane splits. Recall that in our context these labels would be interpreted as a specific digital
state that, when used as input to the physics-based models comprising the digital twin, best explains the observation o.

Hyperplane splits involve a linear combination of multiple features, and thus can be less interpretable than axis-
aligned splits. However, since they are more expressive than axis-aligned splits, trees with hyperplane splits can be
shallower for a given level of accuracy. Therefore, incorporating hyperplane splits might in fact improve interpretability
of classification tree for a given accuracy; a shallow tree with hyperplane splits may be more interpretable than a deep
tree with axis-aligned splits, especially if the features used in the hyperplanes are somehow related.

Recall that in this work we limit our focus to classification trees in which each leaf is assigned a single predicted
output. This results in a piecewise constant function T and is thus amenable to discrete output spaces (in this case discrete
digital state spaces). However, we note that our approach can be generalized to predict continuous outputs by instead
using regression trees. In regression trees, each leaf is fitted with a continuous prediction model, e.g., a linear regression
model or polynomial regression model.[35] When a test observation reaches a leaf node, the appropriate regression
model is applied to the observation to determine the final prediction. While typically being more computationally
expensive to train, regression tree models can thus result in more expressive decision models, e.g., T can be piecewise
polynomial over the feature space O.
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C. Optimal classification trees
The question remains of how to generate a classification tree for a given task. In this work we adopt a scalable

method for learning an optimal classification tree from data, using the mixed-integer optimization formulation of the
problem developed by Bertsimas and Dunn [25, 26]. The optimization decision variables include all the quantities
necessary to define the decision tree, which we denote by T . This includes the coefficients defining the hyperplane splits
for each decision node, as well as variables that determine the arrangement of nodes in the tree. The objective of the
optimization problem is to construct a tree that minimizes the misclassification error on the training set, while also
minimizing the complexity of the tree in order to improve interpretability and avoid overfitting, thereby promoting good
out-of-sample performance. This objective function can be stated as:

min
T

R(T) + κ |T | (1)

where T is the classification tree, R(T) is the misclassification error of the tree on the training data, and |T | is the
complexity of the tree, as measured by the number of splits. The complexity parameter κ governs the tradeoff between
accuracy and complexity of the tree. The full problem, including the definition of variables comprising the tree, T ,
and the constraints required to enforce the tree structure can be found in Ref. 25. This optimization problem can be
solved directly using commercial solvers such as Gurobi [36]. However, the direct solution approach generally scales
inefficiently, as the number of integer decision variables increases exponentially as the depth of the tree increases, and
linearly as the number of training data points increases. To overcome this, an efficient local-search method has been
developed which is able to efficiently solve the problem to near global optimality for practical problem sizes, in times
comparable to previous methods [26]. In particular, under a set of realistic assumptions, the cost of approximately
solving (1) with parallel splits using the local-search method is O(|D| Ns Nt log Nt )[37], which is only a factor of
log Nt greater than the classical method known as Classification and Regression Trees (CART) [38], which generates
classification trees using a sub-optimal greedy approach.

In addition to computational efficiency, OCTs to achieve state-of-the-art accuracy comparable to ensemble tree
methods such as Random Forests [39] or gradient boosted trees [40] while maintaining the interpretability that comes
from using only a single decision tree. In addition to being near globally optimal in-sample, it is shown in Ref. 37 that
OCT-H outperforms CART and Random Forests in terms of out-of-sample accuracy, across a range of 60 practical
classification problems from the University of California, Irvine (UCI) machine learning repository [34] and at all
practical values for the tree depth. As a final comparison to other state-of-the-art methods, we note that Ref. 26 compares
optimal trees with various neural network architectures. In particular, they show that various types of feedforward,
convolutional, and recurrent neural networks can be reformulated exactly as classification trees with hyperplane splits.
This result suggests that the modeling power of an OCT with hyperplane splits is at least as strong as these types of
neural network, while being easily interpretable.

D. Design of digital twin sensing strategies via predictive modeling and optimal classification trees
Figure 4 presents an overview of the proposed methodology which combines the physics-based models comprising

a digital twin with optimal classification trees to discover computationally efficient digital twin sensing strategies.
Recall that in the digital twin setting, the OCT represents a mapping from the space of observational data to the

digital state space, i.e.,
T : O → D . (2)

The OCT, T , is learned from data by leveraging the digital twin models during an offline phase as described below.
Then, during the online phase, this mapping is used to perform data assimilation by applying it to newly acquired
observational data, such that we make the estimate

d = T(o) ∈ D . (3)

Digital twins rely on predictive models as the basis for their predictive capability. For engineering systems, such
predictive models are typically physics-based. As discussed in Section I, the use of predictive physics-based models for
the solution of inverse problems in this way is commonplace, however using these models directly typically requires many
model evaluations which is computationally intractable in an online setting. Instead, we leverage these physics-based
predictive models offline in order to generate a training dataset of digital twin state and observation pairs, to which
we can apply the OCT methodology described in the previous subsection. Note that this training dataset represents
the physical relationship between digital twin states and their corresponding sensor observations, as encoded in the
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Fig. 4 An overview of the proposed approach for designing digital twin sensing strategies by combining the
strengths of physics-based models and machine learning classification techniques.

physics-based predictive model. By training an OCT to minimize misclassification of this data, we are seeking to ensure
that our digital twin is updated according to these same physical relationships.

The result of this approach is an OCT which defines a digital twin sensing strategy. In particular, the OCT is a
computationally efficient interpretable classifier, T , that enables data data-driven adaptation of the digital twin state
according to Eqn. 3. The classifier is interpretable in the sense that the result of the classification can be interpreted
physically (i.e., which physical sensors and what local levels of physical strain contribute to a given classification).
Moreover, the OCT can also specify (via sensor placement or sensor selection) the space of observational data, O. In the
case of a sensor placement task, the subset of sensors that appear in splits of the OCT are precisely the sensors that must
be installed in order to evaluate the OCT classifier; thus, the structure of the learned OCT reveals goal-oriented sensor
placement choices. Note also that the number of sensors appearing in the OCT can be controlled via the regularization
term in the objective function (1), or can be explicitly constrained in the optimization problem in order to discover
sparse sensing strategies. OCTs can also be used as the basis for sensor scheduling by noting that the splits in an OCT
can be traversed sequentially and in prioritized order, allowing for only a subset of sensors to be queried at each timestep
until a classification decision is reached. In addition, we explore in the following section how different OCTs (potentially
utilizing different sensors) can be used to estimate different components of the digital state. This can be used as the
basis for goal-oriented dynamic sensor scheduling.

The data for training our OCTs will be generated using predictive models. We refer to T as an inverse model since
the observational data is dependent on the asset state. The corresponding forward model is defined as

F : D → O. (4)

This forward model maps from a given digital state to a corresponding piece of observational data. In our setting, the
predictive physics-based models comprising a digital twin serve as the forward model. However, it is often the case in
practice that even if the physical asset is perfectly modeled by the digital twin models with some digital state, d, the
observational, o, are prone to corruption, e.g., due to sensor noise or inspection errors. We model this corruption as

8



a random additive noise term drawn from a known noise model. An example of this is additive Gaussian noise for
a sensor with known bias and covariance. It is critical to account for these noise characteristics when generating an
OCT so that it can leverage this information, e.g., to learn that a given observation is typically too noisy to be reliably
informative. We thus define the noisy forward mapping

F̃ : D ×V → O, (5)

whereV is the space of possible noise values.
We generate a training dataset by sampling from this noisy forward mapping, F̃. To do so, we first sample from the

noise-free forward mapping (4) by evaluating the predictive digital twin models to generate pairs (oj, dj) ∈ O × D, j =
1, ..., |D|, and then sample a noise vector vk ∈ V to generate a noisy prediction of the observed quantities, namely
okj = oj + vk . Here the superscript k denotes the index of the noise sample. We denote by Ns the number of noisy
samples we draw for each unique digital state dj . The value of Ns depends on the allowable size of the training dataset,
which in turn depends on the computational resources available for training the machine learning model.

The resulting dataset takes the form {(okj , dj)}, j = 1, ..., |D|, k = 1, ..., s. As a final step, we vertically stack
all of the training datapoints into a matrix representation (O,D), where O ∈ RNt×No and D ∈ RNt×Nd . Here No is
the dimension of the observational data, and Nt = Ns |D| is the total number of datapoints in the training set. As a
supervised machine learning approach, the performance of a trained OCT during the online phase will depend on how
well this training dataset (generated during the offline phase) represents the real-world asset operation. Specifically, we
rely on the digital twin state space, D, being a good representation of the states encountered during operation. Note
that here, for simplicity, we have assumed that the D is discrete and finite—in practice we may have to discretize a
continuous state-space and/or generate a representative sample of digital states for training. Moreover, we rely on the
digital twin predictive models providing an accurate evaluation of the noisy forward mapping (5), which requires both
accurate physics-based simulation capability, and an accurate model of sensor noise characteristics. Ensuring that
these requirements are met through verification and validation of predictive models is a critical aspect of creating a
digital twin that remains a major challenge. Our previous work specifically considered calibration and uncertainty
quantification of predictive models in the digital twin context[29]. In the current work we build upon that framework by
operationalizing the calibrated models for sensor design and utilization for digital twin updating. Additionally, we note
that experimental or operational data in the form of measured asset data with known state, if available, could be added
to augment the training dataset, while still leveraging predictive modeling for regions of the state space where models
are accurate and/or data are unavailable.

IV. Application to UAV structural digital twin
This section presents a case study that serves to demonstrate the proposed approach. Section IV.A presents a

fixed-wing UAV that serves as the subject of this case study. Section IV.B describes the library of physics-based models
for the UAV structure which serves as the basis for its digital twin, while Section IV.C describes observational data that
the digital twin has access to. In Section IV.D we describe the procedures used to generate training data comprised of
predicted sensor measurements for different structural states, and also to generate OCTs based on this training data
and evaluate their performance. Finally, Section IV.E explores the performance of the proposed methodology for this
application.

A. Physical asset: Fixed-wing unmanned aerial vehicle
Our physical asset for this research is a 12-foot wingspan, fixed-wing UAV. The fuselage is from an off-the-shelf

Telemaster airplane, while the wings are custom-built with plywood ribs and a carbon fiber skin. The electric motor
and avionics are also a custom installation. The wings of the aircraft are designed to be interchangeable so that the
aircraft can be flown with pristine wings or wings inflicted with varying degrees of damage. This allows us to collect
in-flight structural sensor data for multiple structural states, and test whether a digital twin of the aircraft is capable of
dynamically detecting changes in the state using structural sensor data. We define the physical state, S, of the UAV asset
to be its structural state. Although in this work we have only manufactured a single UAV asset, we target applications in
which a fleet of similar UAV assets would be constructed. The physical state-space thus encompasses any conceivable
structural variation between UAV assets, such as differences in geometry and material or structural properties. While
many UAVs in the fleet would share a common design, variation in material properties and manufacturing processes
makes no two physical assets truly identical. Furthermore, once the asset enters operation, the structural state begins to
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evolve over time, for example due to maintenance events, damage, or gradual degradation. It is this variability between
assets, and across the asset lifecycle, that we seek to capture by creating, calibrating, and dynamically evolving a
structural digital twin for each unique UAV asset.

In this case study, we consider an illustrative scenario in which the right wing of the UAV has been subjected to
structural damage or degradation in flight. This change in structural state could undermine the structural integrity of
the wing and reduce the maximum allowable load, thereby shrinking the flight envelope of the aircraft. A self-aware
UAV should be capable of detecting and estimating the extent of this structural change, so that it can update the flight
envelope and replan its mission accordingly. In this case study we enable this self-awareness through a data-driven
physics-based digital twin.

B. Physics-based predictive models
The physics-based model library that serves as the foundation of the UAV digital twin in this case-study is presented

in prior work[30]. We provide a high-level overview of the model library herein, and refer the reader to these works
for further details. The model library is derived from a component-based reduced-order model for solving the linear
elasticity equations on the full 3D UAV airframe. Figure 5 shows the internal structure of the actual UAV wing being
modelled, and details the structure of the wing as represented in the computational model. Note that this model is
experimentally calibrated in order to accurately match the behavior of the UAV hardware testbed described in Section
IV.A, see [29] for details on the calibration process.

Fig. 5 The internal structure of the aircraft wing (actual physical wing and computational model). We use a
combination ofmaterial properties and element types in order to capture the level of detail required to accurately
model structural health in our digital twin.

We model an altered structural health state (e.g., caused by damage, degradation, or some other structural event)
through an effective reduction in stiffness. The UAV model contains 28 so-called “defect regions” distributed across
the airframe. For each defect region we introduce a scalar parameter governing the percentage reduction in material
stiffness within the region. To illustrate the proposed methodology we will restrict our focus to consider only two of the
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defect regions on the aircraft, but note that the methodology would naturally scale to accommodate more defect regions.
The two defect regions we focus on are located on the upper surface of the right-wing. For this application we define

the digital state to be two structural health parameters

d = [z1, z2] ∈ D = {0, 20, 40, 60, 80} × {0, 20, 40, 60, 80} (6)

where z1 and z2 define the percentage reduction in material stiffness applied to defect regions 1 and 2 respectively. Here
the digital state space, D, corresponds to the 25 possible combinations of z1 and z2, i.e., the space of possible structural
health states that the digital twin is capable of representing. This is illustrated in Figure 6.

increasing effective damage
(reduction in stiffness)

0%

80%

20%

40%

60%

damage region 1

damage region 2

Fig. 6 An illustration of the model library used in this case study. We sample five values of the stiffness
parameter in each of the defect regions (highlighted red). The model library is constructed by taking all
combinations of stiffness parameters for the two components.

In addition to the structural model, we also employ an ASWING [41, 42] model of the aircraft to compute
aerodynamic loads on the aircraft for steady turning maneuvers of a given load factor, L. The computed aerodynamic
load is applied to the structural model in order to compute the airframe deformation corresponding to a load factor.

C. Observational data: wing-mounted strain sensors
The data-driven digital twin is enabled by using in-flight sensor data to classify the current structural state of the

UAV into one of the |D| = 25 states capable of being represented by the digital twin. The sensors we consider are
uniaxial strain gauges mounted on the top surface of the right wing. Since the data from each strain gauge takes the
form of a positive real number, our space of possible observational data is defined as O = RNs , where Ns is the number
of sensors under consideration.

We consider as a baseline the sensor suite installed on the physical UAV asset, as shown in Figure ??. In particular,
we consider 24 uniaxial strain gauges distributed in two span-wise rows on either side of the main spar between 25%
and 75% span. Figure 7 shows a schematic of the right wing with sensor locations. For this case-study, we exclude
sensors 17, 18, 23 and 24 (shown as gray circles in Fig. 7) since these sensors are located in the defect regions. Thus,
for this case study Ns = 20 unless stated otherwise.

D. Training and evaluation procedure
We here describe the procedure we adopt for generating and evaluating optimal trees for this case study. In this

scenario our observations are noisy strain measurements at strain gauge locations. These measurements take the form

ε (d, u) + vk, (7)
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Fig. 7 Schematic of the UAV wing. The two defect regions we consider in this case-study are highlighted in red.
Uniaxial strain gauges are shown as circles and are referred to by their integer label. Sensors 17, 18, 23 and 24
are excluded from this case-study.

where ε is a vector where each element is the true strain at one of the No strain gauge locations. The strain depends on
the load factor, u = L, (ratio of lift force to aircraft weight), and the UAV structural state, as represented by the digital
twin computational models with digital state dj . In this illustration we model the sensor noise as zero-mean white noise,
vk , so that

vk ∼ N(0, 1000I), (8)

x where N denotes a Gaussian distribution and I ∈ RNo×No is an identity matrix.
Our structural model of the UAV is based on linear elasticity, so the strain predicted by the model is linear with

respect to the applied load factor. Since the load factor is typically known based on the aircraft kinematics, we normalize
measurements by the load factor and define the observed data to be a vector of load-normalized strains of form

okj =
ε (dj, L) + vk

L
. (9)

We generate training data of this form for every model in the component-based reduced-order model library, zj, j =
1, ..., |D| = 25, by drawing samples from the noisy forward mapping, F̃ (5). The procedure for drawing samples is
as follows: We first compute the true strain ε (d, u) using the predictive computational models described in Sec. IV.B,
for each digital state, dj . We then draw a random noise sample vk , according to (8), and add this to the computed
strain. Finally, we normalize the noisy strain by the load factor to give a feature vector okj , consisting of No noisy,
load-normalized strain measurements. The final step is repeated for Ns = 100 noise samples k = 1, ..., s. Note that
generating the training data in this way is a many-query task, requiring |D| evaluations of the UAV structural model.
This is a one-time, offline procedure, and in our case is accelerated by the use of reduced-order models in the model
library.

This process results in a dataset containing a total of Nt = 2500 datapoints. Each datapoint is of the form
(okj , [z1, z2]j). The feature vector, okj is a prediction of the No noisy load-normalized strain measurements corresponding
to the structural state represented by the two parameters, z1 and z2, which can take one of 5 discrete values corresponding
to 0%, 20%, ..., 80% reduction in stiffness respectively.

Recall that our goal is to use load-normalized strain data in order to classify the UAV structural health into a
structural state represented by one of the |D| = 25 states represented in the model library. Directly classifying the UAV
structural health into one of the library models requires a tree of at least depth five, so that it has at least 25 possible
labels (one for each leaf in the tree). Since each model has two parameters, z1, and z2, we choose to train a separate
optimal tree classifier for each parameter. This is so that each tree requires only 5 possible labels (a depth of at least
three). This is simply to make the resulting trees more interpretable since the total state dj can be easily inferred from
the two parameters. In particular, note that we can recover a single tree for directly classifying dj by simply appending
the tree for classifying z2 to every leaf of the tree for classifying z1. The resulting tree predicts both z1 and z2 for a given
input, which corresponds uniquely to state dj . To this end we define the classifier output to be either z1 or z2.

To generate optimal trees we use a Julia implementation of the local-search algorithm described in Section III.C,
provided in the Interpretable AI software package.[43] This implementation allows one to specify a number of parameters
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and constraints to be used in the optimization problem (1). We set the complexity trade-off parameter, κ, to zero and the
minimum number of training points in each leaf of the tree to one. To control the complexity of the resulting tree we
explicitly constrain the maximum depth and the maximum number of features appearing in each split, which we refer to
as the split complexity. This approach allows us to explore the tradeoff between classification accuracy and complexity
in a controlled way, by generating the tree with optimal classification accuracy for a given constrained complexity. Note
that in practice these parameters do not need to be set explicitly and can instead by found using standard cross-validation
techniques.

To evaluate the performance of an optimal tree classifier, we follow standard machine learning practice and hold
out 30% of the data (750 datapoints) as a testing set. We feed each test datapoint into the classifiers to determine its
estimated structural state, given by the parameter z1 or z2, and compare this with the structural state that was used
to generate that test point. Recall that here we are using classification as a computationally efficient alternative to a
continuous regression. In this context, error metrics that focus on some form of misclassification rate would be sensitive
to the choice of discretization used for z1 and z2. For this reason, we instead adopt a more regression oriented error
metric and quantify the performance of trained optimal tree classifiers by computing the Mean Absolute Error (MAE) in
z1 or z2, i.e., the error between the true percentage reduction in stiffness, and the reduction in stiffness estimated by the
optimal tree classifier.

E. Results
In this section we apply the proposed methodology to the UAV structural digital twin application, and explore

various aspects of its performance. First, we demonstrate how OCTs can be interpreted as defining different sensing
strategies for the UAV digital twin, given a fixed set of sensors. Next, we explore the trade-off between interpretability
and classification performance of OCTs for this application. Finally, we demonstrate how the methodology can be used
for optimal sensor placement, and how this offers performance benefits over an ad-hoc sensor placement approach.

1. Sensor selection and data assimilation for a baseline sensor architecture
We begin by demonstrating how the OCTs correspond to a partitioning of the feature space, in this case, the space of

all possible structural sensor measurements from the UAV, and how the structure of the tree corresponds to a sparse
selection of sensors that are required to classify the structural state. To this end, we start by considering the baseline
strain gauge locations as shown in Figure 7, but seek sparse sensing strategies by constraining the optimal trees to have
a maximum depth of three and to utilize, at most, two sensors. This is so that the resulting trees are highly efficient
and more interpretable, and so that the corresponding partitioning of the feature space can be easily visualized on a
two-dimensional subspace of O (each dimension corresponding to one of the two chosen sensors).

We first focus on classifying the first digital state parameter, z1 using axis-aligned splits. A resulting OCT trained
for this task utilizes sensors 1 and 2, and is shown in Figure 8. Also shown is the corresponding partitioning of the
feature space and the confusion matrix.

The MAE for this classifier is 0.65 on the training set, which corresponds to 57 out of the 1750 training datapoints
being misclassified (a misclassification rate of 3.3%). The MAE is higher for the test set at 0.88. This shows that
sensors 1 and 2 are sufficient for accurately classifying the reduction in stiffness in defect region 1. This choice of
sensors agrees with intuition as they are both close to the defect region. Note however, that no explicit information
about proximity is present in the training data. Instead, the optimization problem for generating the optimal tree finds
that sensors 1 and 2 are the most informative for this classification task, and thus develops a data assimilation strategy
based on these two sensors.

Figure 8 shows that strain increases with z1 equally for both sensor 1 and 2, suggesting that axis-aligned splits might
not be suited to this problem. Figure 9 shows the results obtained using a hyperplane splits involving sensors 1 and 2. In
this case the MAE improves to 0.22 on the training set, which corresponds to 20 out of the 1750 training datapoints
being misclassified (a misclassification rate of 1.1%). The MAE on the test set also improves to 0.4. This highlights
how increasing the number of sensors appearing in each split can improve the classification performance of the tree,
at the cost of making the classifier more complex, and thus less interpretable. This trade-off is further explored in
Subsection IV.E.2. Note that in this case, the classifiers found using both parallel and hyperplane splits are not unique:
This training data exhibits a relatively high signal-to-noise ratio, resulting in good separation between data clusters
corresponding to each digital twin state. This allows the optimization to move or rotate certain splits slightly without
affecting the misclassification rate of the resulting classifier.

Classifying the second structural health parameter, z2, is more challenging since the second defect region is smaller
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Fig. 8 An OCT for computing the digital state parameter z1 using axis-aligned splits. Top: Partitioning of the
space of strain measurements. Bottom left: Corresponding OCT for classifying the value of z1. Bottom right:
Corresponding confusion matrix.

than the first, and nearer to the wing tip, thus having a lesser effect of wing deflection and the resulting strain field. The
OCT trained to estimate z2 is shown in Figure 10.

In this case, the MAE is 19.44 on the training set and 20.7 on the test set. This corresponds to a high misclassification
rate: 60.1% and 64.4% respectively. This high misclassification rate can also be seen in the confusion matrix in
Figure 10. This high error is due to the fact that the datapoints corresponding to different parameter values are not easily
separable using just two sensors (as seen in Figure 10). Improving this error requires either a more complex tree or
improving our sensing capability. We explore the latter option further in the Subsection IV.E.3.

2. Performance vs. complexity tradeoff
In this section we explore the tradeoff between classification performance and complexity of the optimal trees used

in the UAV digital twin. Figure 11 shows the MAE on the training and test sets for optimal trees trained to classify
either z1 and z1 with varying tree depth and split complexities. When it comes to classifying z1 (Figure 11, top row), we
see that with a tree depth of at least four and a split complexity of at least two the optimal tree classifier is able to fit the
training data exactly. Performance on the test set is marginally lower in all cases, but is still strong.

On the other hand, for optimal trees trained for the more difficult task of classifying z2 (Figure 11, bottom row) we
see that the ability of the optimal tree to fit the training data increases with both depth and sparsity. Note the difference in
axis scaling when compared with Figure 11. Here the optimal trees achieve an MAE of 7.76 with a tree of depth six and
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Fig. 9 An OCT for computing the digital state parameter z1 using hyperplane splits. Top: Partitioning of the
space of strain measurements. Bottom left: Corresponding OCT for classifying the value of z1. Bottom right:
Corresponding confusion matrix.

unlimited split complexity, a reduction in error of roughly 54% compared with the depth three tree using axis-aligned
splits. The out-of-sample performance on the testing set improves uniformly with split complexity, but does not improve
uniformly with depth. We see that the out-of-sample performance is best at depth four, suggesting that the depth five
and six trees are over-fitting the training data.

3. Improved sensor design via optimal sensor placement
In the previous analysis, we utilized the baseline sensor suite currently installed on the hardware testbed. The strain

gauges installed on the aircraft are not positioned optimally for the classification task we consider in this case study.
Instead, the sensor placement was determined through an ad hoc analysis whereby the pristine wing finite element
model was solved, and regions of high strain were identified. Note that the optimal sensor placements would be areas
where the strain field is most sensitive to changes in the structural state, which are not necessarily the regions where the
strain magnitude is highest.

A more principled approach to positioning the sensors involves leveraging optimal trees to directly determine which
sensor locations are most informative for updating the digital twin. We do this by first determining a large set of feasible
sensor locations and then training optimal classification trees using these candidate sensors as input features. Recall
that the local search method we adopt for training classification trees scales linearly with the number of input features,
allowing us to efficiently explore a number of candidate sensors that is significantly larger than the final number of
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Fig. 10 An OCT for computing the model parameter z2. Top: Partitioning of the feature space (the space of
strain measurements) using axis-aligned splits. Bottom left: The corresponding OCT for classifying the value
of z2. Bottom right: The corresponding confusion matrix.

sensors to be installed. To illustrate this, we consider a set of 58 candidate sensors in addition to the 24 sensors already
installed. The candidate sensors are arranged in four spanwise rows along the wing, as shown in Figure 12. As with the
baseline sensor suite, we exclude sensor locations that occur within a defect region, giving a total of Ns = 67 possible
sensor locations, and thus Ns = 67 features to inform classification in the optimal tree. We adapt the methodology
described in Section IV.D to generate a dataset that includes all 67 features corresponding to the complete set of
candidate sensors. Figure 13 shows the MAE for OCTs of varying depth trained using the candidate sensor locations
compared with using the already installed sensors. To focus the comparison on the positioning of sensors rather than the
quantity of available sensors, we limit the total number of sensors appearing in each tree by setting the hyperplane
complexity to four.

We see that the optimal trees determine that adding a subset of the candidate sensors would lead to improved
classification performance. For example, in the depth three case, the optimal tree trained using the candidate set utilizes
seven sensors that are already installed on the aircraft, and an additional six of the candidate sensors. This set of sensors
results in an MAE of 9.89 as opposed to 11.64 for the fixed sensor set. We observe similar trends for tree depths four
and five.

These results show how the optimal trees methodology can scale to a large number of sensors, and how utilizing the
optimal trees methodology earlier in the development of a digital twin can serve as a principled approach to sensor
placement that can lead to improved accuracy of the digital twin and fewer required sensors.
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Fig. 11 Plots of classification performance (MAE) versus tree depth and split complexity. Left: performance
evaluated on the training set. Right: performance evaluated on the test set. Top row: Classifiers for parameter
z1. Bottom row: Classifiers for parameter z2.

V. Conclusion
This work has presented an approach for designing digital twin sensing strategies via a combination of predictive

modeling and machine learning. Physics-based predictive models facilitate the generation of a rich dataset containing
predictions of observational data for a wide range of digital states. This dataset is used to train an OCT that provides
data-driven estimates of the digital state, i.e., the configuration of physics-based models within the digital twin that
best matches the data. Using this classifier online enables computationally efficient digital twin data assimilation. In
addition, the OCT structure can be used to inform sensor placement and sensor scheduling decisions. This approach has
been demonstrated using a case study in which a fixed-wing UAV uses structural sensors to detect degradation on its
wings. The case study employs a Gaussian noise model for illustration, but in practice, characterization of the sensors
on the system at hand is an essential step that must be incorporated into the OCT training process. Deployment of the
approach with data from the actual physical system is an important next step.

A limitation of the approach is that it assumes that the digital state space is known and fixed a priori. In practice, it
is infeasible to define a digital state space that encompasses all possible current and future physical asset states. How to
define the digital state space in a principled way, and how to construct the predictive physics-based models associated
with each digital state efficiently, remains an open area of research. Alternatively, an adaptive digital state space could
enable the digital twin to expand or refine its modeling capabilities on-the-fly. In this case, the proposed methodology
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Fig. 12 Sensor placement results for the UAV application. Top: The baseline sensor suite selected using an ad
hoc approach. Bottom: Sensor locations chosen via the proposed OCT approach.
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Fig. 13 Plot of classification performance (MAE) versus tree depth for optimal trees trained to classify z2 using
either the existing fixed set of sensors, or the larger set of candidate sensor locations.

would need to be adapted to incorporate retraining or adaptation of the OCTs as new states are added to the space. A
further limitation is that as the dimension of the digital state space becomes large, the amount of training data required
to train the classifier may become prohibitive. This again points to the need for adaptive training strategies.

Future research into the proposed methodology could explore variations in the optimization problem used to generate
the optimal classification trees, for example, by incorporating a strict sensor budget either globally or at each time step.
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Another area for future study is the robustness of optimal trees to sensor anomalies and failures, and the investigation of
whether exploiting the interpretable nature of these classifiers could enable one to detect and mitigate such failures.
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