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Abstract
A unifying mathematical formulation is needed to move from
one-off digital twins built through custom implementations
to robust digital twin implementations at scale. This work
proposes a probabilistic graphical model as a formal math-
ematical representation of a digital twin and its associated
physical asset. We create an abstraction of the asset-twin
system as a set of coupled dynamical systems, evolving over
time through their respective state-spaces and interacting
via observed data and control inputs. The formal definition
of this coupled system as a probabilistic graphical model
enables us to draw upon well-established theory and methods
from Bayesian statistics, dynamical systems, and control
theory. The declarative and general nature of the proposed
digital twin model make it rigorous yet flexible, enabling its
application at scale in a diverse range of application areas.
We demonstrate how the model is instantiated to enable a
structural digital twin of an unmanned aerial vehicle (UAV).
The digital twin is calibrated using experimental data from
a physical UAV asset. Its use in dynamic decision making
is then illustrated in a synthetic example where the UAV
undergoes an in-flight damage event and the digital twin
is dynamically updated using sensor data. The graphical
model foundation ensures that the digital twin calibration
and updating process is principled, unified, and able to scale
to an entire fleet of digital twins.

Keywords– Digital Twin, Uncertainty Quantification,
Probabilistic Graphical Model, Self-Aware Vehicle

Introduction
A digital twin is a computational model (or a set of coupled
computational models) that evolves over time to persistently
represent the structure, behavior, and context of a unique
physical asset such as a component, system, or process [1].
The digital twin paradigm has seen significant interest across
a range of application areas as a way to construct, manage,
and leverage state-of-the-art computational models and data-
driven learning. Digital twins underpin intelligent automa-
tion by supporting data-driven decision making and enabling
asset-specific analysis. Despite this surge in interest, state-
of-the-art digital twins are largely the result of custom im-
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plementations that require considerable deployment resources
and a high level of expertise. To move from the one-off digi-
tal twin to accessible robust digital twin implementations at
scale requires a unifying mathematical foundation. This pa-
per proposes such a foundation by drawing on the theoretical
foundations and computational techniques of dynamical sys-
tems theory and probabilistic graphical models. The result is
a mathematical model for what comprises a digital twin and
for how a digital twin evolves and interacts with its associated
physical asset. Specifically, we propose a probabilistic graph-
ical model of a digital twin and its associated physical asset,
providing a principled mathematical foundation for creating,
leveraging, and studying digital twins.

Digital twins have garnered attention in a wide range of ap-
plications [2]. Structural digital twins have shown promise in
virtual health monitoring, certification, and predictive main-
tenance [3, 4, 5, 6]. In healthcare, digital twins of human-
beings promise to advance medical assessment, diagnosis, per-
sonalized treatment, and in-silico drug testing [7, 8, 9]. Sim-
ilarly, digital twins of individual students offer a path to per-
sonalized education [10]. At a larger scale, smart cities en-
abled by digital twins and Internet of Things (IoT) devices
promise to revolutionize urban planning, resource allocation,
sustainability and traffic optimization [11]. Although each
of these applications has its own unique requirements, chal-
lenges, and desired outcomes, the mathematical foundation
we develop in this work focuses on a common thread that
runs throughout: dynamically updated asset-specific com-
putational models integrated within the data-driven analysis
and decision-making feedback loop.

We adopt a view of the physical asset and its digital twin as
two coupled dynamical systems, evolving over time through
their respective state spaces as shown in Figure 1. The digi-
tal twin acquires and assimilates observational data from the
asset (e.g., data from sensors or manual inspections) and uses
this information to continually update its internal models so
that they reflect the evolving physical system. This syner-
gistic multi-way coupling between the physical system, the
data collection, the computational models, and the decision-
making process draws on the dynamic data driven applica-
tions systems (DDDAS) paradigm [12, 13]. The digital twin
can then use these up-to-date internal models for analysis,
prediction, optimization, and control of the physical system.

Motivated by this conceptual model, we develop a proba-
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state variable 1

physical asset state
digital twin state
observational data
control inputs

4) Control inputs informed by the 
updated digital twin steer the 
physical asset to a favorable state

2) The digital twin assimilates 
observational data and updates its 
state to mimic the physical twin

1) The state of the physical asset 
evolves over time

3) The updated digital twin enables 
in-depth analysis of the asset and 
prediction of future state evolution

Figure 1: Conceptual model of a physical asset and its digital twin, evolving over time through their respective state spaces.
These two dynamical systems are tightly coupled: The digital twin uses observational data to estimate the state of the
physical twin, so that it can, in turn, provide optimal control inputs that steer the physical asset to favorable states, while
balancing other factors like maintaining observability over the asset state and minimizing control costs.

bilistic graphical model [14] that defines the elements com-
prising this coupled dynamical system, and mathematically
describes the interactions that need to be modeled in the dig-
ital twin. Our model draws inspiration from classical agent-
based models such as the partially observable Markov decision
process [15], but includes important features that are unique
to the digital twin context. The graphical model formalism
provides a firm foundation from which to draw ideas and tech-
niques from uncertainty quantification, control theory, deci-
sion theory, artificial intelligence, and data-driven modeling
in order to carry out complex tasks such as data assimila-
tion, state estimation, prediction, planning, and learning, all
of which are required to realize the full potential of a digital
twin.

Throughout this paper we demonstrate our proposed
graphical model using a motivating application: the devel-
opment of a structural digital twin of an unmanned aerial
vehicle (UAV). In particular, we demonstrate the application
of the probabilistic graphical model to two phases in the asset
lifecycle. First, we show how experimental calibration can be
used to transform a baseline structural model into a unique
digital twin tailored to the characteristics of a particular as-
set. Here the proposed graphical model serves as a rigorous
framework for deciding which calibration experiments to per-
form, leveraging the resulting experimental data for principled
model calibration, and evaluating the performance of the cali-
brated digital twin. Next, we demonstrate how the calibrated
structural digital twin enters operation alongside the physical
asset where it assimilates sensed structural data to update
its internal models of the vehicle structure. The dynamically
updated models are used for analysis and evaluation of the
vehicle’s structural health and for decision-making. Formula-
tion of this process via the proposed graphical model enables
end-to-end uncertainty quantification and principled analysis,
prediction, and decision-making.

This motivating example has specific application in a num-
ber of settings. One is urban air mobility and autonomous
package delivery, where UAVs operate in urban environments
and are subject to damage. In order to ensure a safe, ro-
bust, reliable and scalable system, these vehicles must be
equipped with advanced sensing, inference, and decision ca-
pabilities that continually monitor and react to the vehicle’s
changing structural state. The vehicle uses this capability
to decide whether to perform more aggressive maneuvers or
fall back to more conservative maneuvers in order to mini-
mize further damage or degradation. Another application is
hypersonic vehicles, which operate in extreme environments
and thus undergo continual degradation of their structural
condition. More generally, the structural digital twin illus-
trative example is highly relevant to other applications where
the condition of the system changes over time due to environ-
mental influences and/or operating wear and tear. Examples
include wind turbines, nuclear reactors, gas turbine engines,
and civil infrastructure such as buildings and bridges.

Results
We present three key results: the abstraction of a digital twin
into a state-space formulation that is a basis for mathematical
modeling, the realization of a digital twin mathematical model
in the form of a dynamic decision network, and an application
of the proposed model for the evolution of a UAV structural
digital twin.

A Mathematical Abstraction of the Asset-
Twin System

The first main result of this work is the abstraction of a digi-
tal twin and its associated physical asset into a representation
comprised of six key quantities, defined in Figure 2. We pro-
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Physical

Digital

Observational data,    :
Available information describing 
the state of the physical asset

Measured strain or accelerometer data, 
inspection data, flight logs

Control inputs,    :
Actions or decisions that 
influence the physical asset

In-flight maneuvers, maintenance or 
inspection decisions, sensor installation

Physical State,   :
Parametrized state of the 
physical asset

Skin thickness, crack length, 
delamination extent

Digital State,    :
Parameters (model inputs) that 
define the computational models 
comprising the digital twin

Geometry, structural parameters, 
boundary conditions

Reward,    :
Quantifies overall
performance of the
asset-twin system

Mission success, fuel burn, 
maintenance or inspection costs

Quantities of Interest,    :
Quantities describing the asset, 
estimated via model outputs

Stress, strain, displacement fields, 
failure stress, remaining useful life

Figure 2: Our abstraction of a digital twin and its associated physical asset. Specific examples from the self-aware aerial
vehicle application are provided but the quantities themselves are abstract and can be used to model asset-twin systems in
any application area.

vide specific examples from the self-aware UAV application
but emphasize that this abstraction can be applied to digital
twins from any discipline and application, thus providing a
unifying framework for describing and defining digital twins.
Hence, the abstraction forms the basis for defining a general
mathematical model for an asset-twin system, such as the
probabilistic graphical model proposed in the following sub-
section.

Note the key differences between the physical and digi-
tal states. The physical state space encapsulates variation
in the state of the asset and could thus be a complex high-
dimensional space. The physical state is typically not fully ob-
servable. Together, these attributes make the physical state
generally intractable to model directly. The digital state is
defined as a set of parameters that characterize the models
comprising the digital twin. The digital state is updated as
the asset evolves over time or as new information about the as-
set becomes available. In defining the digital state, one must
consider what information is sufficient to support the use case
at hand. A well-designed digital twin should be comprised of
models that provide a sufficiently complex digital state space,
capturing variation in the physical asset that is relevant for
diagnosis, prediction, and decision-making in the application
of interest. On the other hand, the digital state space should
be simple enough to enable tractable estimation of the digital
state, even when only partially observable. For this reason,
the digital state space will generally be only a subset of the
physical state space.

A Probabilistic Graphical Model for Digital
Twins

The proposed abstraction of the digital twin leads to the sec-
ond main result of this work, a probabilistic graphical model
of a digital twin and its associated physical asset. This graph-
ical model represents the structure in an asset-twin system by
encoding the interaction and evolution of quantities defined
in Figure 2. In particular, the model encodes the end-to-end
digital twin data-to-decisions flow, from sensing through in-
ference and assimilation to action.

Formally, the model presented here is a dynamic decision
network: a dynamic Bayesian network with the addition of
decision nodes. Figure 3 shows the graph unrolled from the
initial timestep, t = 0, to the current timestep, t = tc, and
into the future to the prediction horizon, t = tp. Nodes
in the graph are random variables representing each quan-
tity at discrete points in time. Throughout this section we
use upper-case letters to denote random variables, with the
corresponding lower-case letter denoting a value of the ran-
dom variable. For example, the digital state at timestep t is
estimated probabilistically by defining the random variables
Dt ∼ p(dt). Edges in the graph represent dependencies be-
tween variables, encoded via either a conditional probability
density or a deterministic function.

This graphical model serves as a mathematical counterpart
to the conceptual model illustrated in Figure 1. The upper
left-to-right path in Figure 3 represents the time evolution of
the physical asset state, represented by the random variables
St ∼ p(st), while the lower path represents the time evolu-
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Digital Space

Physical Space

Figure 3: Our approach results in a dynamic decision network that mathematically represents a physical asset and its digital
twin. Nodes in the graph shown with bold outlines are observed quantities (i.e., they are assigned a deterministic value),
while other quantities are estimated (typically represented by a probability distribution). Directed edges represent conditional
dependence. Here the control nodes are decision nodes.

tion of the digital state, represented by the random variables
Dt. The graphical model encodes the tight two-way coupling
between an asset and its digital twin. Information flows from
the physical asset to the digital twin in the form of obser-
vational data, ot, which are assimilated in order to update
the digital state. Using the updated digital state, the models
comprising the digital twin are used to predict quantities of
interest, modeled at time t as Qt ∼ p(qt). Information flows
from the digital twin back to the physical twin in the form of
control inputs, ut, which are informed by the digital state and
computed quantities of interest. These quantities all influence
the reward for the timestep, Rt ∼ p(rt).

Note that the graphical model depicted in Figure 3 has both
observations and control inputs occurring once per timestep,
with observations occurring prior to control inputs. The
structure of the graph (and the resulting algorithms we dis-
cuss throughout this work) can easily be adapted to situations
in which this is not the case via a topological reorganization
of the graph. For example, in the application presented in the
following section, control inputs are issued first, with obser-
vational data acquired as a result.

The proposed graphical model (Figure 3) is sparsely con-
nected in order to encode a set of known or assumed con-
ditional independencies. In particular, the model encodes a
Markov assumption for both physical and digital states, and
the assumption that the physical state is only observable in-
directly via data. Note that nodes in the graph can in general
represent multivariate random variables, for example the dig-
ital state vector may consist of many parameters. In this case
the graphical model does not specify independence structure
between digital state parameters. The conditional indepen-
dence structure defined by the graph allows us to factorize
joint distributions over variables in the model. For example,
we can factorize our belief about the digital state, Dt, quan-

tities of interest, Qt, and rewards, Rt, conditioned on the
observed variables, namely the data, Ot = ot, and enacted
control inputs, Ut = ut, for all timesteps up until the current
time, t = 0, ..., tc, according to the structure of the proposed
graphical model (Figure 3) as

p(D0, ...Dtc , Q0, ..., Qtc , R0, ..., Rtc | o0, ..., otc , u0, ..., utc)

=

tc∏
t=0

[
φupdatet φQoI

t φevaluationt

]
, (1)

where

φupdatet = p(Dt | Dt−1, Ut−1 = ut−1, Ot = ot), (2)

φQoI
t = p(Qt | Dt), (3)

φevaluationt = p(Rt | Dt, Qt, Ut = ut, Ot = ot). (4)

Prediction is achieved by extending this belief state to include
digital state, quantity of interest, and reward variables up un-
til the chosen prediction horizon, tp (see the Methods section
for details).

The factored representation (1) serves two purposes.
Firstly, the factors denoted φ and defined in (2)–(4) are condi-
tional probability distributions that reveal particular interac-
tions that must be characterized by the computational models
comprising the digital twin. Secondly, as we demonstrate in
the following section, the factorization serves as a foundation
for deriving efficient sequential Bayesian inference algorithms
that leverage the modeled interactions in order to enable key
digital twin capabilities such as asset monitoring, prediction,
and optimization.

Note that the proposed probabilistic graphical model does
not restrict the nature of the models comprising the digital
twin. Each of these models could be physics-based (e.g., mod-
els based on discretized partial differential equations), data-
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driven (e.g., neural networks trained on historical or experi-
mental data), or rule-based (e.g., state-transitions in a finite-
state automaton). Note also that these models need not be
specific to a single physical asset. Indeed, the models may be
shared across a large fleet of similar assets, each with a digi-
tal state governing the asset-specific parameters used in these
models. This enables efficient, centralized data and model
management, and also enables each asset in the fleet to con-
tribute to the continual improvement and enrichment of mod-
els by providing performance data relevant to a particular part
of the state space.

Demonstration: Data-driven calibration and
evolution of a UAV structural digital twin

We instantiate the proposed approach for the structural dig-
ital twin of a UAV, with the target use case of managing
and optimizing a large fleet of UAV assets (e.g., a fleet of
autonomous package delivery vehicles). In particular, we
demonstrate how the probabilistic graphical model can be
used for the calibration, tailoring, and dynamic updating of
computational models within the digital twin, so that they ac-
curately reflect the current characteristics of a unique physical
asset.

We focus on two key stages in the lifecycle of any digital
twin. First, we consider the initial calibration of the dig-
ital twin to an as-manufactured asset. While this type of
experimental model calibration is commonplace throughout
engineering, we here demonstrate how formulating the cal-
ibration process using our proposed probabilistic graphical
model (Figure 3) ensures that the process is principled, scal-
able, and repeatable across the entire fleet of UAVs. Next,
we show how the same probabilistic graphical model natu-
rally extends in time beyond calibration and into the service
life of each UAV. In our example, the calibrated UAV digital
twin enables predictive structural simulation of the airframe.
Dynamically evolving the digital twin based on incoming sen-

sor data enables in-flight structural health monitoring, a ca-
pability which in turn enables dynamic health-aware mission
planning, as well as simulation-based evaluation, certification,
predictive maintenance, and optimized operations of the fleet.

In this example application we define the physical state,
S, of the UAV asset to be its structural state. The physical
state-space thus encompasses any conceivable structural vari-
ation between UAV assets, such as differences in geometry
and material or structural properties. While many UAVs in
the fleet share a common design, variation in material proper-
ties and manufacturing processes makes no two physical assets
truly identical. Furthermore, once the asset enters operation,
the physical state begins to evolve over time, for example
due to maintenance events, damage, or gradual degradation.
We seek to capture this variation by creating, calibrating,
and dynamically evolving a structural digital twin for each
unique UAV asset. We here present a summary of our formu-
lation and results. Details on the physical asset, experimental
setup, finite element structural models comprising the digital
twin, and a full mathematical formulation are described in
the Methods section.

For this application the digital state is defined to be:

d :=


g
e
m
α
β
z


} vector of geometric parameters
}Young’s modulus scale factor
} vector of added point masses}

Rayleigh damping coefficients

} vector of structural health parameters

(5)

This digital state comprises parameters of the UAV structural
models that account for differences between UAV assets due
to variability in materials, manufacturing, or operational his-
tory (geometry, g, Young’s modulus scale factor, e, and other
structural health parameters, z), parameters that represent
unmodeled details of the UAV (the point masses m account
for physical UAV components that are not represented in the
finite element model), and parameters that represent unmod-

Dynamic
data-driven
digital twin

Baseline
model

Calibrated 
digital twin

dynamic estimation of
 structural health,   

calibrate mass
and damping,             

calibrate
material properties,    

calibrate
geometry,    

Figure 4: Evolution of a UAV structural digital twin using the probabilistic graphical model formulation.
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eled physics (the Rayleigh damping coefficients are widely
used in engineering to approximately model internal struc-
tural damping). By focusing on this set of parameters (while
fixing all other model parameters at a nominal value) we ob-
tain a digital twin that is tractable to calibrate and dynami-
cally evolve, while sufficiently capturing the key differences in
structural response between UAV assets. Figure 4 presents a
summary of the probabilistic graphical model formulation for
this application.

Results: Calibration Phase We first consider the cali-
bration phase in which the digital state parameters, and thus
the computational models within the digital twin, are tailored
so that they accurately reflect the unique characteristics of an
as-manufactured physical asset. Each digital twin begins the
calibration process with the same prior belief about the dig-
ital state parameters, p(D0). This distribution over model
parameters defines a baseline UAV structural model based on
design specifications, with uncertainty based on the degree
of variability or confidence in each parameter. In the cali-
bration phase, the timesteps, t, correspond to steps in the
calibration process. At each step, t = 1, 2, 3, we select an
action Ut = ut, which corresponds to conducting a specific
experiment on the physical UAV asset. This experiment gen-
erates data, ot, which inform an updated belief about the
digital state, p(Dt | Ot = ot). Specifically, each experiment
calibrates a subset of parameters in the digital state, and is
designed to be conditioned only on previously calibrated pa-
rameters, with no dependence on parameters to be calibrated
in a future step. Using this updated distribution of param-
eters in the computational model (described in the Methods
section), the digital twin is used to compute quantities of
interest, p(Qt | Dt, Ot = ot), which describe the structural
response of the UAV. We evaluate the success of the cali-
bration procedure by estimating the reward, p(Rt), at each
stage. Here, values that are experimentally measured or de-
rived from experimental data are denoted as hat variables,
while the corresponding variable without a hat represents a
computational estimate produced by digital twin models. We
use braces ({·}) to denote that there is an ensemble of data
generated by repeated trials of an experiment.

At step t = 1 we calibrate the geometric parameters,

g = [l, croot, ctip], where l is the wing semi-span, croot is
the chord length at the root, and ctip is the chord length
at the tip. The control input, u1, for this step is to physi-
cally measure each geometric parameter, producing measure-
ments ĝ. Since these measurements are able to be taken ac-
curately, the posterior uncertainty in the geometric param-
eters is negligibly small. Thus, the posterior distribution,
p(D1 | O1 = o1, U1 = u1), deterministically sets the geomet-
ric parameters to their measured values. The reward function
for this calibration step measures the difference between prior
and posterior estimates of each geometric parameter. The
chosen norm could weight each parameter by its manufactur-
ing tolerance, thus providing an overall measure of how well
this particular UAV has been manufactured.

At step t = 2 we calibrate the static load-displacement be-
havior of the structural model. In the digital state we update
e, which is a scale factor applied to the Young’s modulus (both
longitudinal and transverse) of the carbon fiber material used
in the wing skin. This scale factor allows us to adjust the
computational model to account for material or manufactur-
ing variation in the wing skin. The control input, u2, is a deci-
sion to perform a static load-displacement test on the physical
UAV asset. The observed data are a set of applied tip-load
and measured tip-displacement pairs, o2 = {f̂ , x̂}, as shown in

Figure 5 (left). Uncertainty in the applied load, f̂ , and mea-
sured tip-displacement measurement, x̂, are both modeled by
Gaussian distributions, with 95% credible interval of widths
of 20g and 1mm respectively. Using this observed data, we
perform a Bayesian update on our prior estimate in order to
produce the posterior estimate p(D2 | D1, O2 = o2, U2 = u2),
as shown in Figure 5 (center). We see that the posterior
mean value for this scale factor is 1.0073, indicating that the
Young’s modulus of carbon fiber in the digital twin model
should be increased by 0.73% to better match this particu-
lar physical UAV asset. The uncertainty in this parameter is
also greatly reduced post-calibration. The quantity of interest
for this step is a computational estimate of the coefficient of
proportionality between tip load and tip displacement, as es-
timated by the digital twin models. The prior and posterior
distributions of this quantity of interest are shown in Fig-
ure 5 (right). We evaluate the success of this calibration step
by defining a reward that measures the reduction (achieved

predicted tip displacement,    [mm]

0 4 8 12 16
0

5

10

posterior

prior

0

20

40

Young’s modulus scale factor,    [ - ]
0.8 1 1.2

posterior
prior

likelihood

(shown for each
 measurement)

observed tip displacement,  
   

[mm]
0 4 8 12 16

0

5

10

tip force, 
[N]

tip force, 
[N]

Figure 5: Numerical results for the second calibration step (t = 2). Left: Observational data, o2. Center: Prior and posterior
estimates of the component of the digital state, D2, updated at this step. Right: Prior and posterior distributions of the
quantity of interest, Q2, for this step.
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Posterior
estimate

Prior
information

[mm] [mm] [mm] [ - ] [g] [s-1] [s]

Table 1: Prior and posterior estimates for calibrated entries in the digital state. The first row shows prior information
defining the initial estimate for each entry in the digital state. The second row shows posterior distributions for each entry
in the digital state, which are the result of assimilating experimental data acquired via calibration experiments.

through calibration) in the variance of the random variable
representing our knowledge of the scale factor e. As we will
later see, this is of interest since variance in the Young’s mod-
ulus scale factor e represents model uncertainty that limits the
ability of the digital twin to perform data assimilation during
the operational phase.

In the final step t = 3, we calibrate the dynamic response of
the structural model. This depends on the mass distribution
and damping properties of the wing, which are characterized
by the digital state parameters, m,α, and β. In this example
m = [mservo,mpitot] defines points masses added to the model
to represent the two identical servo motors and a single pitot
tube fixed to the wing. The control input, u3, for this step is a
decision to perform an initial condition response experiment.
This is done by applying an initial tip displacement and re-
leasing the wing, recording data, o3, in the form of strain, ε̂, as
a function of time using a dynamic strain sensor. The strain
data are post-processed to extract natural frequencies, ω̂i and
damping ratios, ζ̂i for the first two bending modes i = 1, 2. As
described in the Methods section, we formulate and solve an
optimization problem to fit point masses, m, to the wing such
that the natural frequencies of the first two bending modes
predicted by the model, ω1, and ω2, match the experimental
data, ω̂2 and ω̂2, as closely as possible while also matching
the total wing mass. Using the calibrated natural frequen-
cies we then compute the coefficients, α, β, in the Rayleigh
damping model. Together with the computed masses, this
gives an estimate of the final calibrated posterior distribution
p(D3 | D2, O3 = o3, U3 = u3). The quantities of interest for
this step are the posterior computational estimates for modal
parameters (frequencies and damping ratios). The reward for
this step measures posterior predictive error, i.e., the differ-
ence between posterior estimates for the modal parameters
and values that were obtained experimentally.

Prior and marginal posterior estimates for each component
in the digital state are summarized in Table 1. We useN (µ, σ)
to denote a Normal distribution with mean µ and standard
deviation σ. For sample distributions we report the sample
mean followed by the sample standard deviation in parenthe-
ses.

Results: Operational Phase Next we extend the prob-
abilistic graphical model to an operational phase in which
the calibrated digital twin is deployed alongside the UAV. To
demonstrate this application of the graphical model we sim-
ulate a demonstrative UAV mission consisting of successive
level turns. This is an adaptation of the mission considered
in a prior work [16]. It illustrates how the proposed graph-
ical model formulation permits us to naturally account for
uncertainty from the calibration phase, as well as extend the
digital twin capability to include planning, prediction, and
evaluation.

In this phase, the timesteps t = 4, 5, . . . correspond to
points in time during the UAV’s mission. We fix the first
five calibrated entries of the digital state (5) and dynamically
estimate the remaining structural health parameters, z, as the
health of the UAV evolves over time. In particular, variation
in the structural health of the UAV is modeled by introduc-
ing two defect regions into the digital twin structural models.
These defect regions are on the upper surface of the right
wing, as shown in Figure 4. We then define two structural
health parameters within the digital state,

z = [z1, z2] ∈ {0, 20, 40, 60, 80} × {0, 20, 40, 60, 80}, (6)

where z1 and z2 define the percentage reduction in material
stiffness applied to defect regions 1 and 2 respectively.

The digital twin is equipped with an internal model of
how the structural health is expected to evolve, depending
on which maneuvers are executed. This enables the digital
twin to respond adaptively to its evolving structural health
by determining optimal maneuvers for the UAV. In particu-
lar, at each timestep the digital twin issues a control input,
ut ∈ {2g, 3g}, which instructs the UAV to take the next turn
at a bank angle corresponding to an aerodynamic load factor
(the ratio of lift to weight) of either 2g or 3g. Taking a turn
at a steeper bank angle makes the path shorter, but also sub-
jects the UAV to an increased aerodynamic load, which has a
greater chance of worsening the UAV structural health.

The digital twin dynamically estimates the structural
health of the UAV by using its calibrated internal models
to assimilate observational data and adjust its predictions ac-
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cordingly. For this demonstration the observational data at
each timestep are noisy strain measurements,

ot = {ε̂jt}24j=1, (7)

from each of 24 uniaxial strain gauges, j = 1, . . . , 24, on the
upper surface of the wing (positioned near the defect regions
as shown in Figure 2).

During flight, the digital twin uses its estimate of the cur-
rent structural health parameters in its internal structural
models to provide a deeper analysis of the UAV structural
integrity and consequent flight capability. In this example,
the quantities of interest are defined to be computational es-
timates of the strain at strain gauge locations

qt = {εjt}24j=1. (8)

This quantity is used to perform a posterior predictive check:
the digital twin compares its posterior estimate of the strain
with the observed strain in order to evaluate how well its
models match reality. In practice this type of check can help
validate other predictions made by the digital twin, such as
modal quantities or the full stress and strain fields. Here, we
quantify the posterior predictive error via the reward function

rerrort (ot, qt) = − 1

24

24∑
j=1

|ε̂jt − ε
j
t |

σsensor
, (9)

which measures the difference between observed strain mea-
surements and strains predicted by the digital twin, normal-
ized by an estimate of the sensor standard deviation, σsensor.
Note that the negative sign ensures that any error is penal-
ized via a negative reward. We define two additional reward
functions targeted at different aspects of the mission. We
define

rhealtht (qt) =
εmax −maxj(ε

j
t )

εmax
, (10)

as a measure of how far the UAV is from structural failure, as
defined by a maximum allowable strain level, εmax. This term
rewards the UAV for remaining in good structural health, as
indicated by low predicted strain. Finally, we define

rcontrolt (ut) =

{
0.1 if ut = 3g
−0.1 if ut = 2g

(11)

as a reward assigned to each applied control input. In this
case the faster 3g turn is assigned a higher reward.

Prior to the mission, we solve a planning problem induced
by the graphical model structure, as described in the Methods
section. This involves using the digital twin models to pre-
dict how the structural health will evolve over the mission and
computing a health-dependent control policy that optimizes
a weighted sum of the expected rewards over the mission. For
this demonstrative mission the computed control policy rec-
ommends that the UAV fly the more aggressive 3g maneuver
until z1 ≥ 60, at which point it should fall back to the more
conservative 2g maneuver. Note that in this case the control
policy does not depend on z2, since the digital twin’s analysis
reveals that this parameter has little influence on structural
integrity, as measured by Rhealth.

During the mission, the digital twin leverages its calibrated
structural models to assimilate incoming sensor data, esti-
mate how the structural health parameters and quantities of
interest have evolved throughout the mission, and respond
accordingly by suggesting control inputs, all with quantified
uncertainty. Figure 6 presents a snapshot of numerical results
for the simulated mission at timestep tc = 40. The prediction
horizon is set to tp = tc + 10, so that the digital twin pro-
vides predictions up to 10 timesteps into the future. In this
demonstration we prescribe a ground truth evolution of the
structural health parameters (as shown in Fig. 6a), but this
is unknown to the digital twin. In fact, we deliberately pre-
scribe the structural health evolution in a way that does not
exactly match the digital twin’s predictive model. Observed
data are shown in Figure 6b for a subset of the sensors, while
Figure 6a shows the digital twin estimates for each structural
health parameter after assimilating this data. In this exam-
ple, the digital twin is able to assimilate the observed data in
order to maintain an accurate estimate of z1 with relatively
low uncertainty. On the other hand, the digital twin has rel-
atively high uncertainty in its estimate of z2, indicating that
observed data are less informative about this parameter. Note
that the earlier calibration phase plays a critical role in the
data assimilation process, as it ensures that the digital twin
models are accurate and reduces their uncertainty, thereby
improving the performance of this online data assimilation.

Quantities of interest are shown in Figure 6b for a subset of
sensor locations. Note that uncertainty in the quantities of in-
terest is due to a combination of uncertainty in the structural
health parameters, z, and uncertainty in the Young’s modu-
lus scale factor, e, carried forward from the calibration phase
via our unified graphical model. Control inputs estimated
by the digital twin are shown in Figure 6c. We see that the
digital twin is able to respond intelligently to the degrading
structural health by switching to less aggressive maneuvers
within two timesteps of when the (unknown) ground truth
UAV structural health necessitated this change. The reward
functions, shown in Figure 6d, reflect the structural health
and control favorability of the UAV, as well as the predictive
accuracy and uncertainty of the digital twin models.

Discussion

The probabilistic graphical model formulation advances the
field of digital twins by clearly defining the elements compris-
ing an abstract representation of an asset-twin system, identi-
fying the interactions between elements that need to be mod-
eled, and incorporating end-to-end uncertainty quantification
via a Bayesian inference framework. Our model demonstrates
how the digital twin paradigm incorporates dynamic updat-
ing and evaluation of computational models into a data as-
similation and feedback control loop. These computational
models offer valuable insights, unattainable through raw ob-
servational data alone, which can be leveraged for improved
data-driven modeling and decision making [17].

This paper presented an example application of the model,
focused on a structural digital twin for a UAV. We first for-
mulated a series of calibration experiments, where measured
data are used to tailor the digital twin models to the as-
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Figure 6: Numerical results for the online phase of the simulated UAV mission. Probabilistic estimates are shown via the
mean and two sigma uncertainty bands for the digital state (structural health parameters), quantity of interest (normalized
strain), and reward functions (Rhealth, Rcontrol, and Rerror). The maximum a posteriori estimate is shown for the control
input.

manufactured specifications of the UAV. We then demon-
strated how the calibrated digital twin could be leveraged in
the operational phase of the UAV for dynamic in-flight health
monitoring and adaptive mission planning. This application
was chosen in order to demonstrate the process of defining
quantities and instantiating the proposed graphical model. It
also highlights how the flexibility of the model allows it to ex-
tend across phases of the asset lifecyle. In our demonstrative
application, the graphical model enables principled data as-
similation for digital twin adaptation, leveraging of the digital
twin models for analysis and decision-making, and end-to-end
uncertainty quantification. Beyond this UAV application, the
declarative and general nature of the graphical model mean
that it can be applied to a wide range of applications across
engineering and science. Indeed, this application is just one
example of a much broader class of next-generation intelligent
physical systems that need to be monitored and controlled
throughout their lifecycle.

Many opportunities exist to integrate specialized or appli-
cation specific formulations for specific tasks within our prob-
abilistic graphical model framework. For example, our struc-
tural health monitoring formulation could be extended to en-
able detection of unknown or anomalous states by integrating
the graphical-model-based formulation for damage detection
and classification presented in [18].

Limitations of the proposed framework include the chal-
lenge of defining and parameterizing the models comprising
the digital twin. A central aspect of this challenge is a need to
quantify and manage model inadequacy (sometimes referred
to as model discrepancy [19]), a topic that is beginning to re-
ceive more attention throughout computational science. An-
other open challenge is sensor design for digital twins, as high-
lighted in our UAV structural health monitoring demonstra-
tion. In our graphical model this could be formalized through
the control theoretic notion of observability, i.e., whether the
available observational data combined with carefully selected
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control inputs is adequate to inform the digital state. Fi-
nally, computational resource limitations remain a challenge
for the realization of predictive digital twins. The probabilis-
tic inference and planning procedures developed in this paper,
even when accelerated via approximation techniques, require
many evaluations of the high-fidelity physics-based models
comprising the digital twin. Such models require approxi-
mations such as reduced-order modeling, surrogate modeling,
and other compression techniques [20].

Methods

Physical UAV asset

The physical asset used for this work is a fixed-wing UAV
testbed vehicle [21]. A rendering of the vehicle is shown in
Figure 2. The fuselage, empennage, and landing gear are
from an off-the-shelf Giant Telemaster airplane. The wings
have been custom designed with plywood ribs and carbon
fiber skin, in order to mimic the structure of a commercial or
military-grade vehicle, albeit at a reduced scale. The wings
are connected to the fuselage via two carbon rods that extend
25% of the way into each wing. The electric motor, avionics,
and sensor suite are a custom installation. Further details on
the sensors used for this work are provided in the experimental
methodology section.

The calibration experiments in this work were conducted in
a laboratory environment. As the calibration is focused only
on the aircraft wings, they are detached from the fuselage and
mounted to a fixed support. The wings are mounted upside-
down so that typical aerodynamic forces can be more easily
applied as downward forces.

Computational models comprising the UAV
digital twin

The computational model at the heart of the UAV structural
digital twin is a physics-based model for the linear elastic
structural response of the aircraft [16]. This model relates a
time-varying load on the aircraft (e.g., wing loads for a given
aircraft maneuver), to its structural displacement. We adopt
a finite element spatial discretization, so that this relation-
ship can be expressed as the second-order ordinary differential
equation

M(d)ẍ(t) + V(d)ẋ(t) + K(d)x(t) = f(t). (12)

Bolded quantities represent vectors of nodal quantities. In
this case, x, ẋ, and ẍ denote the displacement, velocity, and
acceleration, respectively, while f denotes the applied force at
each node in the finite element mesh. The mass, damping,
and stiffness matrices, M(d), V(d), and K(d) respectively, are
parametrized by the digital state, d. As defined by (5), the
digital state is an asset-specific parameter vector that reflects
the unique geometric and structural properties of each indi-
vidual UAV.

The static load-displacement experiment used to generate
data at step t = 2 in the calibration application is simulated
by the digital twin via the static version of (12),

K(d)x = f . (13)

Note that in the load-displacement calibration experiment,
we set the applied loads vector, f , to represent a point load of
magnitude, f , near the tip. We solve the model to compute
the displacement vector, x, and post-process the solution to
extract the tip displacement, x. Through a computational
study using the static elasticity model (13), it is found that
the aggregate wing stiffness, k, i.e., the coefficient of propor-
tionality between an applied tip load, f , and the tip displace-
ment, x, depends linearly on the Young’s modulus scale factor
applied to the model, e. In particular, we establish the rela-
tionship

k = 0.5752e+ 0.1018. (14)

While the calibration process focuses on a tip load, note that
once calibrated the digital twin is able to accurately simulate
the deformation of the wing to any load, an example of the
power of computational models for prediction and analysis.
This is demonstrated in the operational phase, where we use
(13) to predict the strain field in the wing while the aircraft
is performing a steady level turn. For notational convenience,
we define a function

εj(d, u) (15)

which encapsulates the result of the following algorithm: 1)
compute the wing loading, f , for a given maneuver, u, using
an ASWING [22] aerostructural model of the aircraft, 2) ap-
ply the computed load to (13) to compute the displacement
field, x, and 3) post-process this displacement field to compute
the strain field and extract the strain value corresponding to
sensor j.

The dynamic response of the aircraft structure can also
be characterized by the digital twin via an eigenanalysis. The
computational model (12) can be adapted to perform an eige-
nanalysis of the form

K(d)x̃i = M(d)ω2
i x̃i (16)

where x̃i is a nodal displacement vector representation of the
mode shape, and ωi is the natural frequency for mode i. This
model is used at step t = 3 of the calibration procedure.

We adopt a Rayleigh damping model [23] which defines the
damping matrix, V, as a combination of mass-proportional
damping and stiffness proportional damping as follows:

V(d) = αM(d) + βK(d). (17)

Under this model the ith modal damping ratio, ζi, is given by

ζi =
α

2

1

ωi
+
β

2
ωi, (18)

where ωi is the ith natural frequency.
During calibration we focus on the first two bending modes,

i = 1, 2, as these are clearly evident in our experimental data.
However, the calibrated computational model is not limited to
these modes—indeed the digital twin enables us to compute
higher bending modes as well as torsional and skin buckling
modes, which are difficult to characterize experimentally.

In this demonstration, the structural health parameters, z1,
and z2, represent a percentage reduction in stiffness in specific
regions of the aircraft wing. This is implemented in the finite
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element models, (12), (13). and (16), by identifying elements
within these regions and reducing their Young’s modulus pa-
rameters. Note that in practice these structural health pa-
rameters could correspond to specific causes of damage, for
example the length of a crack or the extend of a delamina-
tion. In our demonstration, these parameters are designed
to simply account for the effect of any damage or degrada-
tion present in the corresponding region. Further discussion
on this choice of structural health parameterization can be
found in [16].

Prior estimate for the digital state

Our prior estimate of the geometric parameters, g =
[l, croot, ctip], is based on the nominal or as-designed value for
each parameter, as stated on technical drawings for the wing
design that were provided to the wing manufacturer. The al-
lowable manufacturing tolerance is stated in these drawings as
±2.5mm. Thus, our prior estimate of each geometric param-
eter is modeled as a Gaussian distribution, where the mean
corresponds to the nominal design value, and the standard
deviation is set to give a 95% credible interval width equal to
the manufacturing tolerance.

We set the prior distribution over the carbon fiber Young’s
modulus scale factor, e, to be a Gaussian distribution with
mean 1 and a 95% credible interval equal to ±5% variability.
This prior uncertainty is an expert-driven estimate that could
be refined over time as more wings are manufactured and the
degree of variability in material properties is characterized
based on manufacturing data.

We add three point masses to the model: two have mass
mservo and represent the servomotor hardware that actuates
each aileron, while the third has mass mpitot and represents
the pitot tube attached to the wing tip. The location of each
of these hardware components is measured on the physical
asset and fixed in the digital twin model. It is not possible
to measure the mass of each component individually as they
are fixed to the wing during manufacturing. Instead, we mea-
sure the total weight of the wing hardware and compare this
with the mass accounted for in the computational model. A
discrepancy of 472g is identified. Thus, our prior information
about these point masses comes in the form of the constraints:

2mservo +mpitot = 472, (19)

mservo,mpitot ≥ 0. (20)

Finally, in this work we consider the prior estimates on the
Rayleigh damping coefficients, α and β, to both be zero. This
can be interpreted as having no damping in the model before
the damping is experimentally calibrated. We also assume
that the structural health parameters, z, are known to be
zero throughout the calibration phase, i.e., we assume that no
damage or degradation occurs until the asset enters operation.

Methodology for experimental calibration of
the UAV Digital Twin

This section provides additional details on the experimental
and computational procedures used for each step of the cali-
bration procedure.

Step 1: Calibrate geometry, g : The first calibration
step is focused on updating the components of the digital
state estimate corresponding to the geometric parameters
g = [l, croot, ctip].

To update the prior estimate over these parameters into the
posterior, p(D1 | O1 = o1), we measure the as-manufactured
wing geometry. The measured values constitute the observa-
tional data, o1 = [l̂, ĉroot, ĉtip]. The maximum measurement
error is estimated to be ±0.5mm. While each measurement
could be represented by a Gaussian distribution and incor-
porated via a Bayesian update, the resulting posterior uncer-
tainty would be practically negligible. We instead ignore this
uncertainty, setting the posteriors to delta distributions cen-
tered on the measured values. This provides computational
savings throughout the remainder of the calibration and al-
lows us to use a fixed computational mesh in the digital twin.

Step 2: Calibrate material properties, e : We calibrate
the Young’s modulus using a static load-displacement exper-
iment. A known mass is placed on the main spar of the wing,
5cm from the wing tip, generating a static tip load with mag-
nitude f̂ . To account for error in the applied force, as well
as the position of the force, we model the uncertainty using a
Gaussian distribution with a 95% credible interval equivalent
to±10g. The resulting static tip displacement, x̂, is then mea-
sured, with measurement error modeled as an independent
Gaussian with 95% credible interval equal to ±1mm. This
process is repeated for eight total measurements as shown in
Figure 5 (left): two times each for applied masses of 250g,
500g, 750g, and 1000g. Thus, the observational data is a set
of eight measured load-displacement pairs, o2 = {f̂ , x̂}. Each
measured load-displacement pair is converted into an estimate
of the aggregate wing stiffness, k̂ = f̂/x̂, then each of these
estimated stiffness values is converted into an equivalent esti-
mate of the Young’s modulus scale factor, ê, via (14).

The observational data, o2, is incorporated into the esti-
mate of e according to the Bayesian update formula

p(e | ê) ∝ p(ê | e) p(e) (21)

where p(e) is the Gaussian prior distribution and p(ê|e) is the
likelihood function corresponding to a single measurement, ê,
which in this case is non-Gaussian (due to the 1/x̂ depen-
dence). We estimate this likelihood density by sampling and
fitting a kernel density. In particular, we draw 106 sample
pairs from the Gaussian distributions centered on f̂ and x̂ re-
spectively. Each sample pair is transformed into a sample of
ê using the procedure described above. We then fit a kernel
density estimate to these samples, which serves as an estimate
of the likelihood p(ê|e). Each of these likelihood functions are
shown in Figure 5 (center).

The Bayesian update is performed by incorporating each
measurement iteratively using a standard particle filter ap-
proach. For each measurement, ê, we first draw 106 samples
from the prior distribution, p(e), and assign each sample a
uniform weight. We then scale the weight of each sample
by the likelihood, p(ê|e), before re-normalizing the weights.
This results in a weighted-particle approximation of the pos-
terior density after assimilating a single measurement. This
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process is repeated for each of the eight measurements taken,
incrementally updating the posterior estimate. After all eight
measurements are incorporated, we arrive at the posterior
estimate, p(e|O2 = o2). From this weighted-particle approxi-
mation of the posterior density we can estimate the mean and
standard deviation (reported in Table 1), as well as a poste-
rior 95% credible interval for e. This credible interval can be
translated into a credible interval in terms of the quantity of
interest, k, which is shown in Figure 5 (right). Finally, we
can draw samples from the posterior using inverse transform
sampling applied to the empirical cumulative density func-
tion. This enables us to propagate forward the uncertainty in
e into the next calibration step.

Step 3: Calibrate mass and damping, m,α, β : In the
final calibration step, we seek to calibrate the dynamic re-
sponse of the digital twin model by adding point masses that
represent unmodeled hardware, as well as determining the
appropriate coefficients for a Rayleigh damping model.

We first describe the experimental data, o3, used for this
step. We experimentally characterize the dynamic response
of the wing using an initial condition response experiment.
We apply an initial tip displacement of 10mm and release,
resulting in a decaying oscillation of the tip displacement.
During this oscillation we collect dynamic strain data, ε̂(t̂),
at time points, t̂, measured from the moment the wing is re-
leased. Dynamic strain is measured using thin flexible piezo-
electric patches that can be applied to different regions of
the wing. These sensors communicate wirelessly, simplify-
ing integration with the wing system. Data are taken at a
sampling frequency of 100kHz, downsampled to 2kHz dur-
ing post-processing. This experiment is repeated five times.
From each raw dataset, we generate a power spectrum via
fast Fourier transform. The power spectra for all experiments
show two clear peaks corresponding to the first and second
bending modes of the wing. We extract the locations of these
peaks, which correspond to the first and second damped nat-
ural frequencies, ω̂di . Using these frequencies, we seek to con-
struct a two-mode reconstruction of the measured signal, ε̂,
of the form

ε̂reconstructed =a1e
−b1t cos(2πω̂d1(t̂− c1))

+a2e
−b2t cos(2πω̂d2(t̂− c2)). (22)

We fit this model to the measured data by solving a non-linear
least-squares problem for the coefficients, a1, a2, b1, b2, c1, c2,
using a Levenberg-Marquardt algorithm. From this model we
can extract the experimentally derived damping ratios, ζi, as
well as the undamped natural frequencies, ω̂i, by solving the
following system of equations:

ω̂i =
ω̂di√

1− ζ̂2i
, (23)

ζ̂i =
bi

2πω̂i
. (24)

This procedure is repeated for each dataset, resulting in a
total of five experimental estimates for the modal frequencies

and damping ratios, o3 = {ω̂i, ζ̂i}, for the first two bending
modes, i = 1, 2. We average across all experimental datasets.
In the following we refer to these averages by ω̂i and ζ̂i for
simplicity.

Recall that our goal is to update the belief at step t = 2,
namely p(D2|D1, O2 = o2, U2 = u2), into a belief state at
t = 3, namely p(D3|D2, O3 = o3, U3 = u3). We begin by
drawing a sample of the calibrated parameters from the pre-
vious belief state. Since the calibrated geometric parame-
ters are deterministic, this amounts to sampling a value for
the remaining parameter, e, from the posterior distribution
p(e|O2 = o2) computed during the previous calibration step.

Given the observational data o3, and a sampled value for
e, we seek to add to our sample a computed value for the
point masses m. Modifying these point masses in the compu-
tational model changes the mass matrix, M(d). Through the
computational model (16), this in turn changes the natural
frequencies, ωi, predicted by the model. Using this model we
formulate an optimization problem to fit the point masses,
m = [mservo,mpitot], so that the natural frequencies of the
first two bending modes predicted by the model, ω1, and ω2,
match the experimental data, ω̂2 and ω̂2, as closely as possi-
ble, while obeying the mass constraints (19)–(20). The objec-
tive function used in this optimization is the sum of relative
frequency errors, and the optimization problem is solved using
a Nelder-Mead gradient-free optimization method.

Finally, using the calibrated natural frequencies we com-
pute the coefficients, α, β, in the Rayleigh damping model
according to the system of equations

1

2

[
1/ω1 ω1

1/ω2 ω2

] [
α
β

]
=

[
ζ̂1
ζ̂2

]
. (25)

Note that this system is derived from (18), and ensures by
construction that the computational damping ratios, ζi, ex-
actly match the experimentally estimated damping ratios, ζ̂i,
for both modes i = 1, 2. The computed values for m,α, and β,
combined with the sampled value for e and the calibrated ge-
ometric parameters g, constitute a sample from the updated
belief state. We repeat this entire optimization procedure for
100 samples in order to build up a sample-based approxima-
tion of the final calibrated estimate of the digital state.

The quantities of interest for this step are the posterior
computational estimates of the modal frequencies and damp-
ing ratios, ωi, and ζi. The reward is the average discrepancy
between these values and the corresponding experimentally
estimated values, ω̂i and ζ̂i respectively.

Methodology for dynamic estimation of UAV
structural health

Mission Simulation We simulate a demonstrative UAV
mission consisting of successive level turns. We suppose that
throughout the mission the UAV undergoes structural degra-
dation. For this demonstration we prescribe a ground truth
evolution of the two structural health parameters, z, as shown
in Figure 6. This ground truth trajectory is intended to rep-
resent periods of gradual degradation in structural health, as
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well as sudden changes in structural health, e.g., due to dis-
crete damage events. The ground truth state is unknown to
the digital twin, and is only used to simulate sensor data.

We discretize time such that each timestep t ≥ 4 occurs
during a quasi-steady section of a turn. This allows us to
simplify the problem and ignore the transient period between
turns. We simulate noisy strain measurements by using the
digital twin structural models, (15), to compute the true un-
derlying strain while assuming a truth value of e = 1.0073
(corresponding to the posterior mean). We then corrupt the
true strain for each sensor with zero mean uncorrelated Gaus-
sian noise with standard deviation equal to 150 microstrain.

The simulation is implemented and dynamically executed
using ROS [24]. One ROS node represents the simulated
UAV asset, and another represents the digital twin. At each
timestep, the UAV simulator generates strain data based on
its current state and most recent control input, and passes
this to the digital twin. The digital twin maintains an in-
stance of the probabilistic graphical model, which it uses to
perform planning, data assimilation, and estimation, as de-
scribed in the following sections. The digital twin completes
the timestep by deciding on the subsequent control input and
passing this to the UAV.

Bayesian Inference Formulation This section describes
how the proposed graphical model enables us to formulate
asset monitoring as a sequential Bayesian inference task. In
this application, our goal at each timestep is to estimate the
entire mission history of digital states, quantities of interest,
and rewards. Thus, our target belief state is the smoothing
distribution given by (1). As described in the Results section,
this distribution can be factorized according to the structure
of the proposed graphical model to reveal the interaction fac-
tors, (2)–(4). We first describe how we compute each of these
factors, before discussing how they are combined in a Bayesian
inference algorithm.

The digital twin update factor, φupdatet (Eq. (2)), quantifies
how the digital state is updated at each timestep, conditioned
on the digital state and control input at the previous timestep,
and any newly acquired observational data. Note, in this
demonstration we do not update our estimate of the Young’s
modulus scale factor, e, beyond the calibration phase. How-
ever, we do account for the posterior uncertainty in e when
updating our estimate of the structural health parameters,
Zt ∼ p(zt), at each timestep t. The update factor can thus
be written in the form

φupdatet =p(Zt | Zt−1, Ut−1 = ut−1, Ot = ot) (26)

=

∫
p(Zt | Zt−1, e, Ut−1 = ut−1, Ot = ot)p(e) de

(27)

The digital twin update term can be factorized further using
Bayes’ rule and conditional independence to explicitly sepa-
rate the contributions of data assimilation and state dynamics
to the digital twin update:

φupdatet ∝ φdynamics
t φassimilation

t , (28)

where

φdynamics
t = p(Zt | Zt−1, Ut−1 = ut−1) (29)

φassimilation
t = p(Ot = ot | Zt) =

∫
p(Ot = ot | Zt, e)p(e) de

(30)

The form (28) gives a predictor-corrector type update policy,
commonly seen in hidden Markov models, Kalman filtering,
particle filtering, etc. The first term in the right-hand side
of (28) corresponds to a prediction forward in time based on
the control-dependent transition dynamics of the system. To
define the state transition dynamics, φdynamics

t , we assume
that the probability of damage progression in each defect re-
gion is known, fixed, and conditionally independent given the
load on the aircraft wing (given by the load factor ut). In
particular, we suppose that the structural health in each de-
fect region has a 0.05 probability to worsen by 20% under a
2g maneuver, and a 0.10 probability to worsen by 20% un-
der a 3g maneuver. Note that this model is not a perfect
reflection of the true evolution of the UAV structural health
that we prescribe in this simulated mission. This is inten-
tional, and highlights the fact that the digital twin can lever-
age data to perform useful asset monitoring, even with an
imperfect model of the underlying asset dynamics. Also note
that in practice this transition probability model could be
more complex, and would typically be estimated from offline
experiments, physics-based damage progression simulations,
or historical data from past flights of similar UAVs.

The second term in the right-hand side of (28) encapsulates
a correction or reduction in uncertainty via data assimilation.
We equip the digital twin with a sensor model, namely that
the strain measurements for sensors j = 1, . . . , 24 are given
by

ε̂jt = εjt + vt, (31)

where vt ∼ N(0, σsensor) represents zero mean, uncorrelated
Gaussian noise with a standard deviation of σsensor = 125
microstrain. Note that this sensor model does not match our
simulated measurements exactly.

In (31), εjt is the digital twin estimate of the true strain,
which is computed according to (15). The predicted strain
is a function of the digital state, in particular the Young’s
modulus scale factor, e, and the structural health parameters,
zt. We do this by first sampling a set of N = 30 values
from the calibrated estimate for e (shown in Figure 1). For
each sample ek, we compute the predicted strain, εjt , for each
possible damage state, zt. We then compute p(ε̂jt | zt, ek) via
the measurement model, (31), and average across samples to
compute the assimilation factor used to update our estimate
of Zt,

p(Ot = ot | Zt) ≈
24∏
j=1

1

N

N∑
k=1

p(ε̂jt | Zt, ek). (32)

The factor φQoI
t (Eq. (3)) encapsulates the process of ex-

ecuting the updated models comprising the digital twin in
order to estimate quantities of interest that characterize the
physical asset. In this example our quantities of interest are
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the true strain, εjt , at each sensor location, j, which are esti-
mated by propagating the uncertainty in e forward through
the strain model (15) for each possible damage state, zt. Here
we again use N = 30 samples drawn from the calibrated es-
timate of e. During inference this factor is multiplied by our
posterior estimate of Zt to give the posterior estimate of Qt.
Note that in this example the quantity of interest has an im-
plicit dependence on the control inputs, since they affect the
load on the airframe and thus the strain. This constitutes an
additional edge in the graphical model, but has no significant
impact on the inference process.

The updated digital state and quantities of interest are
then used to compute the reward via the evaluation factor,
φevaluationt (Eq. (4)). This reward factor is evaluated via the
reward functions (9)–(11).

The sequential Bayesian inference process proceeds as fol-
lows. When a new piece of observational data is acquired
from the physical asset, we increment the current timestep tc,
and denote the new data by otc . We add unobserved node Stc
and observed node Otc = otc to the graph. We also add the
nodes Dtc , Qtc , and Rtc , if they do not already exist due to
a past prediction. The edges connecting these nodes encode
the probabilistic factors described in this section. With the
graph assembled, we assimilate the newly acquired observa-
tional data in order to update our belief state, (1). This type
of belief propagation is a classical task in probabilistic graph-
ical models, and a wide variety of algorithms can be applied
depending on graph structure and the nature of variables in
the graph [14]. In our demonstrative example, we are per-
forming inference over a Bayesian network (directed, acyclic
graph), and the sample spaces of all unobserved random vari-
ables are discrete (note that the quantities of interest and
rewards are computed via continuous functions, but the set
of possible inputs is the discrete set of states and controls).
This allows us to use the classical sum-product algorithm to
perform the belief update exactly. Once the joint belief state
is computed we can perform marginalization to obtain pos-
terior marginal distributions over any variable in the graph,
for example, to estimate the current structural health of the
UAV.

Planning and Optimal Control At each timestep the
digital twin is tasked with responding to the evolving struc-
tural health intelligently by selecting and issuing a control in-
put. This section describes how the proposed graphical model
enables us to formulate a planning problem for which the solu-
tion is an optimal control policy. We approach the planning
problem by first noting that the segment of the probabilis-
tic graphical model (Figure 3) from the current timestep, tc,
until a chosen prediction timestep, tp, can be viewed as a par-
tially observable Markov decision process (POMDP) in which
the state is a combination of the digital state and quantities
of interest. In particular, we wish to choose control inputs,
utc , . . . , utp , that steer the state of the asset in a way that
maximizes the expected future reward.

The general solution to this planning problem is a control

policy, π, of the form

ut = π (p(D0, . . . , Dt, Q0, . . . , Qt | o0, . . . , ot, u0, . . . , ut−1)) .
(33)

That is, the control policy maps from the current belief over
the entire history to a control action. Thus, performing op-
timal control with a digital twin amounts to leveraging the
models comprising the digital twin in order to find a con-
trol policy that maximizes the expected accumulated reward
over the chosen prediction horizon. This can be stated as the
optimization problem

π∗ = arg max
π

tp∑
t=tc+1

γ(t−tc−1)E [Rt] , (34)

where γ ∈ [0, 1] is a discount factor applied to reward at future
timesteps.

The solution of these types of planning problems has been
an active area of research in recent decades. Solving the
problem exactly is typically intractable, but many effective
approximate solution techniques exist. Recent approaches
typically restrict focus to a subset of the belief space [25],
or adopt Monte Carlo sampling approaches [26] and learn-
ing algorithms [27, 28, 29]. The choice of algorithm thus de-
pends on the nature of the state, control, and observation
spaces, as well as the desired frequency of replanning and the
planning horizon. A key challenge in our demonstration is
the continuous observation space (the space of possible strain
measurements). We choose to make the planning problem
tractable by approximating it as a fully-observable Markov
decision process (MDP). That is, we assume that in-flight
our strain measurements will provide an accurate and certain
estimate of the UAV structural health. This can be viewed
as a way of decoupling the sensing and control problems: we
design a controller assuming that our sensing capability is
sufficient. We also use an infinite planning horizon, assuming
that in practice the UAV would be flying successive missions
indefinitely.

With these simplifying assumptions, we seek a policy of the
form

ut = π̃ (d?, q?) , (35)

where d? and q? are our best point estimates (we use the maxi-
mum a posteriori estimate) of the current state and quantities
of interest for the UAV. This policy is suboptimal in general,
but performs well on this demonstrative problem since our
best point estimate of the UAV state is often accurate. We
solve the simplified MDP planning problem offline for a pol-
icy of the form (35) via the classical value iteration algorithm
[15]. We use the reward function

rt(ut, qt) = rhealtht (qt) + 2.5rcontrolt (ut), (36)

and a discount factor γ = 0.6. This weighted reward is tuned
to balance UAV aggression with self-preservation. Online,
the policy is applied to the updated belief state (1) at each
timestep, in order to determine the next control input to ap-
ply.
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Extension to Prediction We extend the asset monitoring
formulation to incorporate prediction over future timesteps.
The prediction regime is represented by the segment of the
probabilistic graphical model (Figure 3) from the current
timestep, tc, until a chosen prediction timestep, tp. We can
extend the target belief state to include prediction of digital
state, quantity of interest, and reward variables up until the
prediction horizon, tp, as follows:

p(D0, . . . , Dtp , Q0, . . . , Qtp , R0, . . . , Rtp ,

Utc+1, . . . , Utp | o0, . . . , otc , u0, . . . , utc)

∝
tp∏
t=0

[
φdynamics
t φQoI

t φevaluationt

] tc∏
t=0

φassimilation
t

tp∏
t=tc+1

φcontrolt ,

(37)

where
φcontrolt = p(Ut | Dt, Qt). (38)

The only additional term required is the control factor,
φcontrolt , which we define according to the control policy as

p(ut | dt, qt) =

{
1 if π̃(dt, qt) = ut,
0 otherwise.

(39)

Note that in the prediction regime, t = tc + 1, . . . , tp, we do
not include a data assimilation factor and conditioning on
Ot = ot is removed from the evaluation factor (i.e., we do
not compute the Rerrort term) as we have not yet observed
data, ot, for the future timesteps, t > tc. With these minor
adjustments and the additional control factor, both prediction
and asset monitoring are performed seamlessly in a single pass
of the sum-product algorithm.

Data availability
Experimental data acquired during the calibration experi-
ments of this study are available in the public repository
UAV-experimental-calibration[30].

Code availability
The code used to perform the calibration pro-
cedure is available in the public repository
UAV-experimental-calibration[30]. This code, when
combined with the provided experimental data, can be used
to generate Figure 5 and Figure 1. Additionally, code used
to implement the in-flight health monitoring simulation is
provided in the public repository UAV-digital-twin[31].
This simulation code was used to generate the results in
Figure 6.

The structural analysis software used to generate the results
in this paper is Akselos Integra v4.5.91. Since the Akselos
Integra software is proprietary and was used under license,
we are unable to provide its source code. Instead, the model
output data is provided directly in the repositories.
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