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This work proposes an approach that combines a library of component-based reduced-order
models with Bayesian state estimation in order to create data-driven physics-based digital
twins. Reduced-ordermodeling produces physics-based computationalmodels that are reliable
enough for predictive digital twins, while still being fast to evaluate. In contrast with traditional
monolithic techniques for model reduction, the component-based approach scales efficiently
to large complex systems, and provides a flexible and expressive framework for rapid model
adaptation—both critical features in the digital twin context. Data-driven model adaptation
and uncertainty quantification is formulated as a Bayesian state estimation problem, in which
sensor data is used to infer which models in the model library are the best candidates for the
digital twin. This approach is demonstrated through the development of a digital twin for a
12ft wingspan unmanned aerial vehicle. Offline, we construct a library of pristine and damaged
aircraft components. Online, we use structural sensor data to rapidly adapt a physics-based
digital twin of the aircraft structure. The data-driven digital twin enables the aircraft to
dynamically replan a safe mission in response to structural damage or degradation.

I. Introduction
Computational models are used throughout engineering, but insights depend on the model being an accurate

reflection of the underlying physical system. Differences in material properties, manufacturing processes, and operational
histories are just some of the many factors that ensure that no two engineering systems are identical, even if they share
the same design parameters. Using a single static model to approximate many similar assets ignores these differences,
fundamentally limiting their ability to model any particular asset. The digital twin paradigm aims to overcome this
limitation by providing an adaptive, comprehensive, and authoritative digital model tailored to each unique physical
asset. The digital twin paradigm has garnered attention in a range of engineering applications, such as structural
health monitoring and aircraft sustainment procedures [1, 2], simulation-based vehicle certification [1, 3], and fleet
management [1, 4, 5]. Although the promise of digital twins is recognized, it is also acknowledged that a shift toward
digital twins presents a number of complex challenges. Creating, calibrating, and maintaining the models required for
even a single digital twin already presents a considerable challenge [1, 6]. This difficulty is only multiplied by the fact
that such a model must be maintained for each and every physical asset.

This work develops an approach for creating data-driven physics-based digital twins. At the heart of our approach is
a library of physics-based reduced-order models of the system. We adopt a component-based model reduction approach
that scales efficiently to large-scale assets, while the construction of a library of model components admits flexible and
expressive model adaptation. By sharing a single model library across many assets, this approach also scales to settings
in which a large number of digital twins are required. With this model library as a foundation, we create data-driven
digital twins by formulating an estimation problem in which online sensor data from a physical asset is used to infer
which models in the model library should comprise the digital twin.

In some application areas, a digital twin is thought of as being constructed from data alone. In this work we
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argue that, particularly in engineering applications, it is critical that the digital twin also incorporate physics-based
models of the asset. A digital twin that incorporates both physics and data is sometimes referred to as a hybrid twin[7].
In our work, the physics models underlying the digital twin are computational models based on discretized partial
differential equations (PDEs). In contrast with purely data-driven models, physics-based models offer a greater degree
of interpretability, reliability, and predictive capability. Such models are already ubiquitous in engineering, and are
typically solved using approaches such as finite-element analysis (FEA). Accurately modeling a complete engineering
system often requires extremely large computational models that require significant computational resources to evaluate.
In many applications, digital twins are required to provide near real-time insights in order for them to be used effectively
for operational decision making. This requires the ability to rapidly adapt the computational model in the face of
changing model parameters, and rapidly evaluate the model to provide analysis and prediction. Traditional large-scale
physics-based models are usually intractable to solve in this type of real-time, many-query context.

Model order reduction [8–11] provides a mathematical foundation for accelerating complex computational models so
that they may be operationalized in the digital twin context. Reduced-order modeling involves investing computational
time during an offline phase to develop reduced-models; these reduced models can then be rapidly evaluated during an
online operational phase. However, many methods for building reduced-order models during the offline phase require
many evaluations of the full-order model, which is intractable for large, system-level models. Furthermore, in order
for the digital twin to be capable of representing a wide range of asset states and operating conditions, the underlying
model needs an expressive parametrization, often involving many parameters, wide parameter ranges, and discontinuous
solution dependencies. In this work, we address these challenges by adopting a parametric component-based model
reduction methodology [12]. This method scales efficiently to large-scale assets, and admits flexible and expressive
model adaptation via parametric modifications and component replacement. Using this method, we create and train a
library of reduced-order models, each representing different states of the asset relevant to the purpose of the digital twin.
This model library is designed a priori to include models that accurately reflect the current asset state and anticipated
future states, as well as additional models designed to detect new unexpected or anomalous states. The scalability of the
component-based reduced-order modeling strategy enables the model library to scale to large asset state-spaces, and to
be further extended and enriched on-the-fly by adding additional component models over the lifetime of an asset.

We then address the challenge of automating the calibration and adaptation of digital twins to ensure that they
accurately reflect an evolving physical asset. Motivated by the proliferation of low-cost sensors and increasing
connectivity between physical assets, we adopt a data-driven approach in which sensor data gathered by an asset guides
adaptation of the digital twin. We show how the pre-specified model library allows us to frame the digital twin adaptation
problem as a tractable, yet mathematically rigorous Bayesian state-estimation problem[13, 14]. This state-estimation
procedure combines observed sensor data with a state transition probability model (typically derived from historical
data or computed via physics-based simulations), to yield a probabilistic classification of the current state of an asset
into the model library. The use of reduced-order models in the model library greatly accelerates the Bayesian inference
problem[15], making it tractable to solve in near-real time. The resulting probabilistic classification provides a basis for
updating the digital twin and quantifying the associated uncertainty in the model. The updated digital twin model can
then be used for accurate, up-to-date analysis and prediction.

We demonstrate our methodology and illustrate the benefits of our contributions by means of a case study. We
create a digital twin of a fixed-wing unmanned aerial vehicle (UAV). The goal of this digital twin is to enable the UAV
to become self-aware, in the sense that it is able to dynamically detect and adapt to changes in its structural health due to
either damage or degradation [16–18]. We demonstrate how a component-based reduced-order structural model of the
aircraft scales efficiently to the full UAV system, and how we construct a component-based model library designed to
enable the rapid adaptation of the digital twin to a wide range of effective damage states. We then demonstrate how
the model library enables data-driven model adaptation, and how near real-time estimates of the effect of incurred
damage enables dynamic decision-making. We present simulation results for an illustrative UAV mission, in which the
UAV estimates its structural state online and uses this estimate to decide whether to perform faster, more aggressive
maneuvers, or fall back to more conservative maneuvers to minimize further damage.

The remainder of this paper is organized as follows. Section II presents an overview of the component-based
reduced-order modeling methodology we adopt. It then describes how we use this methodology to construct a model
library, and the benefits this provides. Section III formulates the problem of data-driven model updating using a
component-based model library. Section IV presents the self-aware UAV case study which serves to demonstrate our
approach. Finally, Section V concludes the paper.
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II. Component-Based Model Libraries
This section describes our methodology for constructing a component-based library of reduced-order models,

from which a digital twin can be instantiated. Section II.A describes the component-based reduced-order modeling
methodology we adopt. Next, Section II.B describes how we leverage this methodology in order to construct a model
library. Finally, Section II.C argues how our approach meets the needs of the digital twin context.

A. Component-based reduced-order models
The component-based reduced-order modeling approachwe adopt is the Static-Condensation Reduced-Basis-Element

(SCRBE) method, developed in [12, 19–21]. We present a relatively high-level overview of the method herein, and refer
the reader to these prior works for a detailed treatment of the underlying theory and procedures for offline training.

Traditional single-domain model reduction techniques such as reduced-basis (RB) methods [22–27], work to reduce
a full system-level finite element (FE) approximation space directly. The key limitation in these approaches is that the
full system-level problem is typically very large for complex engineering systems for which we require digital twins.
So much so, that even a single solution of the full FE system (which is required even for RB methods during offline
training) is often intractable. Even if the full system-level model can be solved, the adaptivity and expressivity of a
digital twin typically requires a large number of parameters, each with large domains and potentially discontinuous
effects on the solution (e.g. geometric parameters). Such parameter spaces are generally not amenable to single-domain
model-reduction techniques [28].

The SCRBE method is a component-based model-order reduction strategy that aims to address these challenges.
The core idea of SCRBE is to apply the substructuring approach to formulate a system in terms of components [29, 30],
and then apply the Certified Reduced Basis (RB) Method within each component. This brings the advantages of the
RB method (accuracy, speed, parameters), as well as enhanced scalability and flexibility due to the component-based
formulation.

As with all reduced-order modeling methods, the SCRBE approach requires an offline training phase in order to build
a dataset for each component, which then enables rapid online evaluation of system-level reduced models. Crucially, the
need to solve the costly full system FE problem during the offline stage is circumvented by the “divide-and-conquer”
nature of the component-based formulation: the system is decomposed into components and then the training procedure
is performed using only individual components and small groups of components.

It is well-known in the context of parametric ROMs in general, and the RB method in particular, that the Offline
and Online computational cost of ROMs generally increases rapidly as the number of parameters increases — this is
the so-called “curse of dimensionality.” However, the SCRBE framework also circumvents this issue because each
component in a system typically only requires a few parameters each, since engineering systems are often characterized
by many spatially distributed parameters. This means that we can set up large systems assembled from many parametric
components in which each component only has a few parameters but the overall system may have many (e.g. thousands)
of parameters, all without being affected by the “curse of dimensionality.” These features combine to enable the SCRBE
approach to scale efficiently to complex, evolving engineering systems—precisely the systems for which digital twins
are arguably most beneficial.

Each component in an SCRBE model is defined by a set of parameters, µci , where i denotes the component index.
These parameters can be geometric parameters that affect the spatial domain of the component, or non-geometric
parameters such as material properties. A component with a specified set of parameters and associated parameter ranges
is referred to as an archetype component. Specifying values for these parameters is referred to as instantiating the
archetype component. The component is based on a computational mesh, including component interface surfaces called
ports on which a component may be connected to a neighbor component via a common port mesh. Figure 1 shows
an example of a typical component from the UAV application considered in this work: a spanwise section of a three
dimensional aircraft wing. A full system model is constructed by instantiating a set of components and connecting them
at compatible ports. The parameters for the system-level assembly, which we denote by µ, is then simply the union of
the component-level parameters, i.e. µ =

⋃
µci .

We associate with each component a governing PDE and external boundary conditions where needed. In this work
we consider the governing equations of linear elasticity, which provide a physics-based model of an asset’s structural
response to an applied load. The parametrized weak form at the system level can be written

a(u, v; µ) = f (v; µ) ∀ v ∈ X(µ), (1)

where u(µ) is the asset’s structural displacement field. Details of the bilinear and linear forms a(u, v; µ) and f (v; µ)
respectively, as well as the function space X(µ), can be found in [28]. The SCRBE model-reduction approach builds
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Fig. 1 An example component: A spanwise section of a three dimensional wing. Labels indicate the information
required to completely define this component.

upon an underlying FE approximation of the system. In particular, the FE approximation can be stated as seeking a
solution uh(µ) ∈ Xh(µ) such that

a(uh, v; µ) = f (v; µ) ∀ v ∈ Xh(µ). (2)

where Xh(µ) ⊂ X(µ) is the system-level FE approximation space, corresponding to a system-level mesh created by
connecting the meshes of all components in the system. Let NFE = dim(Xh(µ)) denote the number of degrees of
freedom in the system level FE approximation.

The discretized weak form (2) corresponds to a matrix system

K(µ)U(µ) = F(µ) (3)

where K(µ) ∈ RNFE×NFE is the (symmetric) stiffness matrix, F(µ) ∈ RNFE is the load vector, and we seek the displacement
solution U(µ) ∈ RNFE . In the context of digital twins of large-scale and/or complex systems, the system (3) may be very
large (e.g., of order 107 or 108 degrees of freedom are typical) and can therefore can be computationally intensive to
solve. Therefore, we pursue an alternative approach, which—as indicated above—is to utilize substructuring to bring in
a component-based formulation on which we may then apply RB.

We illustrate this idea for the simple case of a two-component system with a single port, with the understanding that
the same ideas carry over unchanged to systems with any number of components and ports. We let the subscript p
(resp. 1 or 2) denote the degrees of freedom associated with the port (resp. component 1 or 2), and we let Np denote the
number of degrees of freedom on the port. Then we can reformulate (3) as

Kp,p Kp,1 Kp,2

KT
p,1 K1,1 0

KT
p,2 0 K2,2




Up

U1

U2

 =


Fp

F1

F2

 . (4)

Note that all quantities in (4) depend on µ, but we omit the µ-dependence from our notation for the sake of simplicity.
The matrix structure here suggests a convenient way to proceed: we may solve for U1 and U2 in terms of Up as follows:

Ui = K−1
i,i (Fi − KT

p,iUp), i = 1, 2. (5)
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Substitution of (5) into (4) then yields a system with only Up as unknown:

Kp,pUp +

2∑
i=1

Kp,iK−1
i,i (Fi − KT

p,iUp) = Fp, (6)

or equivalently (
Kp,p −

2∑
i=1

Kp,iK−1
i,i KT

p,i

)
Up = Fp −

2∑
i=1

Kp,iK−1
i,i Fi . (7)

We introduce the notation:

K =

(
Kp,p −

2∑
i=1

Kp,iK−1
i,i KT

p,i

)
, F = Fp −

2∑
i=1

Kp,iK−1
i,i Fi, (8)

for the substructured stiffness matrix and load vector, where K ∈ RNp×Np , and F ∈ RNp . Hence we have:

KUp = F. (9)

Here (9) is an exact reformulation of (3), where the key point is that by performing a sequence of component-local
solves as in (5) the system is reduced to size Np × Np instead of the original size NFE × NFE.

However, there remain two computational difficulties associated with this classical static condensation approach,
and the SCRBE method proposes model reduction strategies that address each of these issues in turn. Firstly, to
evaluate the matrix inverse in (5) in a practical way, we must perform a sequence (one per port degree of freedom)
of component-local FE solves. Thus the formation of the matrix K will typically be costly, and this must be repeated
in component i each time µci is modified. This is addressed by replacing the FE space within each component with a
reduced-basis approximation space of a much smaller dimension, which drastically speeds up the solves required to
form K, and also allows parametric changes on component interiors to be incorporated efficiently. As discussed above,
the training procedure for this interior reduction can be performed on each component independently.

Secondly, K is typically much denser than K because each component contributes a dense block to K based on
the number of port degrees of freedom associated with the component. This increased density can, in many or even
most cases, undermine any computational advantage provided by substructuring compared to a full order solve. This
is a well-known issue with substructuring, and the usual advice to address this is to make sure that ports contain as
few nodes as possible (e.g. by locating ports in regions that are small, or coarsely meshed) to limit the size of the
dense blocks. In practice these requirements impose very severe limitations on the application of substructuring, and in
many cases (depending on the model geometry or mesh density) it is not possible for the requirements to be satisfied.
This issue is addressed in the SCRBE framework by applying model reduction to the ports, which is referred to as
port reduction. With port reduction the goal is to construct a reduced set of Npr (� Np) degrees of freedom on each
port, while retaining accuracy compared to the full order solve by ensuring that the dominant information transfer
between adjacent components is captured efficiently. The reduction from Np to Npr typically greatly reduces the overall
size of K, and also reduces the size of its dense blocks and hence significantly increases sparsity. This results in a
significant computational speedup compared to both the non-port-reduced version of (9), and the full order system
(3). Port reduction requires offline training to determine the dominant modes for each port, and here we follow port
reduction approaches from the literature, i.e., pairwise training [20, 31], which involves performing proper orthogonal
decomposition (POD) of port data obtained from pairs of components, or “optimal modes,” which solves a transfer
eigenproblem to obtain an optimal set of port modes [32, 33]. These port reduction schemes operate based on small
submodels of an overall system, so—as discussed above—this does not require us to perform a full order system-level
solve during the offline stage.

In the preceeding formulation the governing equations were linear. Extension to non-linear analysis is also possible
within the SCRBE framework using the hybrid SCRBE/FE solution scheme presented in [28]. This framework combines
SCRBE in linear regions and FE in nonlinear regions within a fully-coupled global solve. This allows one to handle the
full range of nonlinear analysis via the generality of FE, while still benefitting from the SCRBE reduced order modeling
approach in linear regions. The SCRBE/FE approach does not accelerate the FE region, but in the case that most of the
model is linear (which is often the case when analyzing localized damage scenarios within a large system, for example)
then the SCRBE/FE approach still provides a significant speedup compared to a global FE solve.
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B. Constructing a model library
We construct a library of component-based reduced-order models, which are trained during an offline phase. This

model library can then be used during an online phase to rapidly create, adapt, and evaluate reduced-order models.
Mathematically, we define a component library to be a set of archetype components, C. Recall that an archetype

component has free parameters, µci , with specified parameter ranges. Training for each archetype component
Cj ∈ C, j = 1, . . . , |C| is performed during the offline phase. In the online phase, a system model can be constructed by
selecting a subset of the component library, instantiating the components by specifying the parameter vector µ, and
connecting the components at compatible ports. We define a model library,M, to be a finite set of unique models (each
corresponding to a unique value of µ), and denote each model in the library by Mj , for j = 1, . . . , |M|. With this model
library in hand, any of the |M| reduced models can be rapidly evaluated. Figure 2 illustrates the relationship between
the component library and model library, using the UAV application considered in this work as an example.

We note that the model library, M can be enriched in two ways. The first is to add new models by sampling
additional values of the SCRBE parameters µ. This enrichment requires no additional offline training, since it utilizes
the archetype components that are already trained in the component library, C. The second approach is to first add new
archetype components to the component library, thereby expanding the space of possible parameter vectors, µ, and then
add new models that utilize the new components to the model library. This type of enrichment is more flexible and
expressive, but does require additional offline training for the new archetype components.

Component library, C Model library,M

Fig. 2 Component and model libraries for a damaged UAV asset. In this example two of the components have
a free parameter to specify the severity of damage in the highlighted damage regions. Each model in the model
library has a different setting of these parameters, and thus represents a different UAV damage state.

C. Model libraries as an enabler of digital twins
A library of component-based reduced-order models provides a rich set of physics-based models from which we

can derive digital twins. In particular, we show in Sec. III how the digital twin of an asset at a given point in time can
represented as a stochastic mixture of multiple models in the library. Utilizing a model library as the foundation for
physics-based digital twins has a number of key benefits over constructing a single monolithic digital twin.

Firstly, in addition to being able to accommodate a large number of spatially distributed parameters, component-based
models can also accommodate more complex parameters than traditional single-domain techniques. For example,
complex geometric parameters can be introduced by including multiple versions of a component in the component
library, each with a different geometry (but with identical ports). Topological parameters can be introduced by
connecting library components in different topologies, and including each topology in the model library. This paradigm
of component instantiation and replacement provides an expressive, efficient, and intuitive way to perform the complex
model adaptation required for a digital twin. In particular, in many scenarios one is able to specify a set of potential
future states for an asset and monitor these closely. For example, we might know that an asset is at risk for a specific
fault or that a specific component is prone to degradation. This knowledge could arise from expert opinion, or from
prior experience and observations from other similar assets. In our component-based modeling approach, these known
possible future states can be modeled in components to a high degree of accuracy and realism, for example using

6



specialized damage models and tailored constitutive equations, combined with non-linear regions as described in Section
II.A.

Secondly, the model library facilitates life-long adaptation and development of digital twins. This is done by
continuously enriching the model library, as described in Sec. II.B. Such library enrichments can be made with only
incremental additions to the offline training data, so that the model library can be continuously updated. This ensures that
the digital twin is capable of detecting and adapting to unexpected and previously unforeseen asset states. For example,
a structural health monitoring application might encounter a damage state that is not represented in the component
library. Once such a situation has been detected, one could trigger, for example, a manual inspection of the asset to
accurately characterize the damage that has occurred. Once the damage is characterized, it can then be modeled and
added to the set of known potential states for the asset, and specialized library components created to accurately model
the damage and its anticipated progression.

Finally, the model library is even more powerful in settings where digital twins are required of many similar assets.
We refer to a group of similar assets as an asset class, For example, a fleet of vehicles sharing a common design might
constitute an asset class. In such settings creating, training, and maintaining hundreds or thousands of independent
digital twin models could pose a significant practical challenge. Instead, our approach involves creating and maintaining
a single model library, with a single collection of training data, which is shared across the entire asset class. This
approach leverages the assumption that differences between assets will often be localized differences due to damage,
material properties, manufacturing defects, or maintenance histories. In such cases assets within an asset class will be
substantially similar, with any differences being limited to only a small number of components. In these settings, our
library-based approach promotes model reuse and information transfer between assets. Due to the combinatorial nature
of assembling models from components in the library, adding just a single new component can add a large number of
possible new models. For example, if an asset is found to have developed a particular defect, a component would be
added to the library to model this particular defect in the digital twin. This defect component then becomes available
for use in the digital twins of all other assets in the class. This means that if any other asset were to develop a similar
defect in the future, the defect could be detected (see Sec. III) and incorporated into the digital twin. This example
illustrates model reuse: we have been able to re-use the defect component rather than having to incorporate the defect
again from scratch, and information transfer between assets: a defect discovered in one asset is preemptively monitored
as a potential defect in all other similar assets.

III. Data-Driven Digital Twins
This section outlines a data-driven approach for maintaining a digital twin of an evolving asset. We leverage sensor

data in order to infer the model (or models) from a given model library that best match the physical asset. This approach
provides a method for automating the calibration and adaptation of a digital twin during the online operational phase
of an asset. In Section III.A, we show how the problem of model adaptation can be formulated as a state estimation
problem, and how this state estimation problem can be solved using a sequential Bayesian data assimilation algorithm.
Section III.B briefly discusses the computational cost of this approach. Finally, Section III.C shows how the result of this
algorithm can be used to update a digital twin, as well as quantify the uncertainty in the digital twin and the inadequacy
of the associated model library.

A. Formulating digital twin model updating as Bayesian state estimation
We define the state of a physical asset to be the parameters of its digital twin. This enables us to use state estimation

in order to infer these parameters as they evolve, and thus, perform data-driven adaptation of the digital twin model.
More concretely, we model the evolution of the physical asset as a hidden Markov model (HMM), where the hidden
state that we estimate is the set of digital twin parameters that accurately describe the physical asset.

We define a period of asset monitoring by discrete time steps t = 0, 1, . . . ,T . We denote by dt the digital twin of a
given asset at time t. The set of models we have available to represent the physical asset is defined by the model library,
M described in Sec. II. Thus we choose the state-space, i.e., the domain of dt , to be the model library,M. At each time
step t, the control inputs to the physical asset, ut , are known, and we observe measurements from the physical asset, ot ,
such as sensor measurements or inspection data. In this work we focus on the problem of maintaining an up-to-date
digital twin, and thus we focus on so-called filtering methods [34] in which we aim to estimate dt at every time step t.
We note that our formulation can be readily extended to instead estimate dτ for some τ < t or τ > t. These methods are
called smoothing and prediction methods, and aim to estimate past or future states respectively. Such methods could
also be of interest in the digital twin context. For example, smoothing could be used to better understand the state
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history of an asset while prediction could be used for planning and optimization.
We adopt a Bayesian approach to state estimation in which we maintain a probabilistic estimate for the digital twin,

which is updated as new data are acquired [35]. In particular, we treat the digital twin, dt , as a discrete random variable,
with probability mass function given by the posterior distribution

bt (Mj) B p(dt = Mj |u1, ..., ut, o1, ..., ot ), ∀Mj ∈ M (10)

We refer to bt as the belief state at time t. In our setting the belief state encodes the probability that the true state of the
asset is represented by each entry in the model library, given all the evidence acquired until time t. This term can also
be referred to as the posterior probability or posterior plausibility of model Mj[36, 37]. Hence, an equivalent way to
view this estimation problem is as a probabilistic classification problem: we use observations from the physical asset to
perform a probabilistic classification of the true asset state into the model library.

In sequential methods, the belief state is updated recursively at each time step. We begin the monitoring period at
t = 0 with some initial belief state b0. For t > 0, the belief, bt can be written in terms of the belief at the previous time
step, bt−1, using Bayes’ rule as follows:

bt (Mj) ∝

[
|M |∑
k=1

p(dt = Mj |dt−1 = Mk, ut )bt−1(Mk)

]
p(ot |dt = Mj, ut ). (11)

Here ut encapsulates any inputs to the system that affect the state or observation dynamics, for example, operating
conditions or applied loads.

The first term on the right-hand side of (11) is a summation over state transition probabilities, multiplied by prior
beliefs. The state transition probabilities describe the probability that the asset transitions from one state to another, in
this case the transition from model Mk to model Mj , given that the the input to the system was ut . In our setting, the
state transition probability model is treated as a companion to the model library. This model could be derived based on
expert opinion or dynamic simulations of the asset, or the transition probabilities can be learned from historical data
(see for example [38] or [39]). Learning from historical data is particularly attractive in the digital twin context, since
data could be collected from all assets that share the same model library. This approach provides a flexible means of
obtaining transition models, and would ensure that the transition model is constantly being updated and improved as
more data are obtained.

The second term on the right-hand side of (11) is the observation model describing the likelihood of observing
ot , given that the system was in some state Mj and the input was ut . This term is sometimes referred to as the model
evidence [36, 37]. A common modeling assumption is that observed quantities are some function of the state and input,
corrupted by zero-mean Gaussian error term, i.e.,

ot = Z(Mj, ut ) + vt, vt ∼ N(0, σ2), (12)

where σ2 is the covariance of the observation noise. The function Z(Mj, ut ) simulates the response of a physical asset
represented by model Mj , to an input ut , and predicts the various observed quantities, ot . In our setting, this simulation
is performed via the rapid evaluation of the reduced-order model Mj ∈ M. In this way, the model library makes
state-estimation tractable by providing a means of rapidly predicting observations for any asset state represented in the
model library.

B. Computational cost
It is well-known that the most complex numerical part of classical Bayesian inference is the propagation of

uncertainties in order to evaluate the posterior density, as well as the sampling of this density. However, a key feature
of the state-estimation problem in our context is that the state-space is discrete and finite, since we include only a
finite number of distinct models in the model library. This feature allows us to solve (11) directly for each Mj ∈ M.
In practice, the complexity of this approach is dominated by the |M| evaluations of the observation model, which
consequently requires the evaluation of each of the |M| different component-based reduced-order models in the model
library. Whether or not this is tractable is application dependent, and depends on the size of the model library, the
run-time of each reduced-order model, and the required update frequency of the digital twin, i.e., the discretization of
time t in the state-estimation problem.

For many applications the speed-up achieved by using reduced-order models, as opposed to full-order models,
will be sufficient to make this problem tractable. For other applications, for example those requiring high frequency
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model updates, there are a number of ways this algorithm could be accelerated. Firstly, we could choose to perform
inference over only a subset of the state-space at each iteration, so as to only consider m (� |M|) different models at
each time-step. For example, if the models in the library represent different values of some monotonically increasing
parameter (for example a damage parameter), we may choose to begin ignoring entries in the library once their parameter
value has been passed with high confidence. Another approach is based on the assumption that although the total
number of models in the model library might be large, it is often reasonable to expect that the bulk of the probability
density will be concentrated on only a handful of different models. In this case, instead of computing the full belief
state, we could instead take a greedy approach and perform an approximate belief state update by enumerating only the
m most likely state trajectories (see for example [40] for such an approach) In each of these cases, the state estimation
would require only m evaluations of library models at each time-step. The value of m could thus be guided by the
computational requirements.

Finally, if the the space of possible control inputs ut in the problem is small and discrete, it may be more efficient to
compute the values of Z(Mj, ut ) offline, for all Mj ∈ M and all possible values of ut . These values could then be stored
in a database, which could then be used as a look-up table during state-estimation. This circumvents the need to evaluate
any reduced models during the online phase. Note, however, that the look-up table approach still benefits from reduced
order modeling since the creation, and potential subsequent enrichment, of a look-up table is a many-query problem.

C. Uncertainty and error quantification
A digital twin is typically thought of as a single model (or set of coupled models) that represents a physical asset. In

contrast, our data-driven approach instead treats the digital twin, dt , as a random variable, and estimates the associated
probability mass function, given by the belief state, bt . This approach allows us to quantify the uncertainty in the digital
twin. For example, if the belief state assigns relatively high probability to multiple models in the library, then there is
significant uncertainty about which model is most likely. This could be due to uninformative observations, or due to the
true asset state falling between discrete entries in the model library.

To demonstrate this, we suppose the digital twin is being used to estimate some output quantity of interest, Q(Mj),
for the physical asset. Having a distribution over possible models has the benefit that it allows us to propagate the
uncertainty in the digital twin in order to compute a distribution over the quantity of interest. We can then use the
expectation of this distribution as our estimate, i.e.,

Q̂t = Ebt [Q(Mj)] =
∑

Mj ∈M

bt (Mj)Q(Mj), (13)

and we could similarly compute the variance or other statistics of the quantity of interest in order to quantify the
uncertainty. Another way to see the benefit of maintaining a stochastic digital twin is that this approach accomodates
estimating the quantity of interest using an affine combination of multiple models in the model library, rather than just a
single model.

We define a measure of error in the digital twin that utilizes quantities we are able to observe from the physical asset,
namely the observations ot . We define

εt (bt, ot ;M) = |Ebt [Z(Mj, ut )] − ot | (14)

Here we explicitly call out the fact that this error depends not only on the belief state bt , and observation ot , but also on
the model libraryM (we assume that the control input, ut is known exactly, so that this does not contribute explicitly to
the error). This highlights the fact that the digital twin may be subject to error due to inadequacies in the model library.
If ε is small relative to the noise in the observations, it means that the observations are well explained by our digital
twin, i.e., by the affine combination of models given by the belief bt . One might then reasonably expect that quantities
of interest are also well approximated by the digital twin. On the other hand, if this error is high, it means that either the
belief bt is not assigning probability to the correct model in the library, or that none of the models in the library are a
good representation of the physical asset. Either of these options is cause for concern, and thus this error could be used
as an indicator that the digital twin may be unreliable. This situation can be remedied by enriching the model library via
the addition of new models. In some cases the belief state alone may provide sufficient guidance on where the library
requires enrichment. In other cases, this indicator could be used to trigger a manual inspection of the asset, with the
results of the inspection informing the development of new components and/or models which are subsequently added to
the respective libraries.
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IV. Case Study: Toward a Self-Aware UAV
This section presents a case study that serves to demonstrates the approaches described in the previous two sections.

Section IV.A presents the UAV that is the subject of this case study. In Section IV.B we develop a component-based
model library for the UAV, and demonstrate how this provides fast, accurate physics-based models by comparison with a
full order FE model. Finally, in Section IV.C we demonstrate how this model library enables us to create a data-driven
digital twin of the UAV, and how this digital twin enables the UAV to be self-aware. In particular, we demonstrate how
structural sensor data is used to perform online data-driven adaptation of the digital twin. The rapidly updating digital
twin enables the UAV to respond intelligently to damage or degradation detected in the wing structure.

A. Physical asset
Our physical asset for this research is a 12-foot wingspan, fixed-wing UAV. The fuselage is from an off-the-shelf

Telemaster airplane, while the wings are custom-built with a plywood and carbon fiber construction. The top surface of
the right wing is outfitted with 24 uniaxial strain gauges distributed in two span-wise rows, either side of the main spar,
between 25% and 75% span. The electric motor and avionics are also a custom installation. Photos of the aircraft during
a recent series of flight tests are shown in Figure 3. The wings of the aircraft are interchangeable so that the aircraft can

Fig. 3 The custom-built hardware testbed used in this research. We create a digital twin of this 12-foot
wingspan aircraft, and update the digital twin in response to online data from structural sensors on the aircraft
wings.

be flown with pristine wings or wings inflicted with varying degrees of damage. This will allow us to simulate damage
progression, and test whether a digital twin of the aircraft is able to adapt to the damage state using structural sensor data.

B. UAV model library
The goal of this case study is to enable the UAV to detect changes in the structural health of its wings, so that it may

adapt its mission accordingly. In order for the digital twin to accurately represent a wide range of structural states, the
underlying model must be detailed and expressive enough to accurately capture a range of structural defects, including
cracking, delamination, denting, and loss of material. To this end, a component-based reduced-order model for the UAV
has been developed using the Akselos Integra modeling software, in collaboration with Akselos Inc. This software
contains a proprietary implementation of the SCRBE algorithm described in Section II.A, which is called RB-FEA.
Figure 4 details the structure of the wing, as represented in our model. The model is divided into 15 components, as
shown in Sec. II.B, Figure 2. The number of components chosen for the model takes into consideration factors such
as the spatial distribution of parameters, component mesh sizes, etc. Our choice of 15 components provides a good
balance between model flexibility and complexity for a system of this scale. We first consider a UAV model with no
damage, which could be used as a physics-based digital twin of a pristine UAV. To emphasize the speed-up achieved by
the reduced-order model, Table 1 provides a comparison of the number of degrees of freedom (DOFS) between our
RB-FEA model, and a traditional FEA model created by stitching component meshes together to form a single domain.
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Fig. 4 The internal structure of the aircraft wing. We use a combination of material properties and element
types in order to capture the level of detail required to accurately model structural health in our digital twin.

FEA RB-FEA
# Components - 15
# DOFS 1,383,234 928

Table 1 DOF comparison between a full-order FEA model of the UAV versus our reduced-order RB-FEA
model.

In order for the digital twin of the UAV to be capable of rapidly adapting to different damage states, we construct a
model library containing copies of each component inflicted with damage of varying degrees of severity. Rather than
a detailed structural damage model (which would be computationally intractable in our setting), we use an effective
damage model that is implemented via a reduction in material stiffness for selected regions of the wing skin. Our choice
of this effective damage model is motivated by our particular use case of in-flight decision-making: the reduced-stiffness
effective damage model is sufficient for detecting the effect of damage on vehicle flight capabilities. In our setting,
characterizing precisely what damage has occurred is not required online. Instead this could be done via a subsequent
detailed inspection of the aircraft on the ground. This manual inspection would be able to more accurately characterize
the damage that has occurred, and, if needed, inform the addition of new components to the model library that model
the damage in detail, as well as components representing anticipated damage progression.

Our effective damage model is implemented by creating copies of each archetype wing component, each with a fixed
damage region. Within each damage region we introduce a damage parameter corresponding to the percentage reduction
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in the Young’s modulus. Here we use isotropic constitutive equations so that the structural displacement solution has an
affine dependence on the damage parameter, which is assumed by default in the reduced-basis method we employ as
part of the component-based modeling framework. Note that a non-affine dependence (and thus anisotropic constitutive
laws in the damage region) could be achieved using methods such as the empirical interpolation method (EIM)[41].

The ability of the component-based model to scale to a large number of spatially distributed parameters allows us to
have a number of these such regions distributed over the wing, while still maintaining accuracy and efficiency of the
vehicle-level reduced model. In particular, our full model library currently contains 28 damage regions across both
aircraft wings. For illustrative purposes, in this case study we consider a restricted model library in which only two
effective damage regions are included. These regions are located on the top surface of the second and fourth spanwise
component on the right wing. We refer to these components by index i = 1, 2 respectively. Pristine versions of the
remaining 13 components comprising the UAV model are also included in the component library, C, but are excluded
from our notation for clarity. To construct the model library,M, we first sample five linearly spaced values of each
damage parameter, corresponding to a reduction in stiffness in the damage region of between 0% and 80%. We then
take all combinations of the two damage parameters, which gives a model library,M, containing |M| = 25 unique
models. This shows that even for our restricted model library with only two damage regions, our digital twin of the UAV
is able to adapt to 25 different effective damage states, each of which could represent the effect of a wide range of real
damage states. This model library is illustrated in Figure 5.

Fig. 5 An illustration of the model library used in this case study. We sample five values of the effective damage
parameter in each of the damage regions (highlighted red). The model library is constructed by taking all
combinations of damage parameters for the two components.

C. Digital twin model adaptation results
To demonstrate the concept of data-driven model adaptation using online sensor data, we propose an illustrative UAV

mission. We suppose that the UAV is flying a mostly predefined mission consisting of successive level turns. However,
we allow the UAV some flexibility in the maneuvers it executes in order to complete the mission. Taking the turn at a
steeper bank angle makes the path shorter, but also subjects the UAV to an increased aerodynamic load. In particular, we
will assume that the UAV can decide to take each turn at a bank angle corresponding to a load factor of either 2g, or 3g.

We discretize time such that each time index, t ∈ 1, ...,T occurs during the steady section of a turn. This allows us to
simplify the problem and ignore the transient period between turns. In practice this would mean the UAV would sample
structural sensors during the steady section of a turn, and use the transient time between turns to assimilate the data, and
decide on a load factor for the subsequent turn. We simulate a mission of length T = 100 turns. An example of such a
mission is depicted in Figure 6 below.

At each time step t, we estimate the UAV digital twin, dt , using the approach described in Sec. III. We assume that
the UAV is known to begin in pristine condition, and we wish to monitor and estimate the progression of damage in the
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Fig. 6 An illustration of the UAV of mission we consider in this case study. The mission consists of successive
steady level turn sections, which the UAV must decide whether to take at a 2g or 3g load factor.

two damage components. To define the state transition model, namely p(dt = Mj |dt−1 = Mk, ut ), ∀ j, k, we assume
that the probability of damage progression in each component is known, fixed, and conditionally independent given
the load on the aircraft wing (given by the load factor ut ∈ {2g, 3g}). In particular, we suppose that a 2g maneuver
has a 2% chance to worsen the damage by one level (i.e., 20% reduction in stiffness) in each component, while a 3g
maneuver has a 5% chance. The probability of damage increasing by more than 20% in a single time-step is set to zero,
and the probability of damage worsening beyond 80% reduction in stiffness is also set to zero. In practice this transition
probability model could be more complex, and would be estimated from offline experiments, damage progression
simulations, or historical data from past flights of similar UAVs.

During each turn, we acquire strain data from each of the 24 strain gauges on the aircraft wing. This data informs the
UAV about the current damage state. We assume that the strain measurements, ot are independent, unbiased, and have a
standard deviation of

√
500 microstrain. This gives the measurement model ot = Z(Mj, ut ) + vt , where vt ∼ N(0, 500I)

and I ∈ R24×24 is an identity matrix. As described in Sec. III.A, the function Z(Mj, ut ) predicts observations for a given
state and input. In this case it returns the predicted strain at strain gauge locations for a given UAV damage state and
aerodynamic load. For this function, we compute the aerodynamic load on the aircraft for a steady 2g or 3g turn using
an ASWING [42] model of the aircraft. We then apply this load to the component-based reduced-model defined by
Mj ∈ M and solve to compute the predicted strain at strain gauge locations.

While in flight, the structural model comprising the digital twin is updated at each time-step, so that the UAV
maintains an accurate estimate of its structural damage state. Note that designing a flight control system that combines
these damage estimates with specific mission parameters for optimal damage-aware flight planning is outside of the
scope of the current paper. Instead we we present a simple illustrative example to demonstrate one way in which the
UAV could leverage knowledge about its structural state to inform decision-making. In particular, we show how the
UAV could use its up-to-date digital twin to perform predictive simulations in order to determine whether an upcoming
maneuver would be safe to perform. In our scenario, if the result of this analysis suggests performing the more aggressive
3g maneuver has a high probability of failure, the UAV would instead falls back to the less aggressive 2g maneuver.

We define the quantities of interest to be the degree of damage in each damage region. We denote by Qi(Mj) the
stiffness reduction in the damage region of component i of model Mj . While in flight, the up-to-date digital twin
provides estimates of these quantities of interest. The structural model in the digital twin can also be used to simulate a
3g maneuver with a given reduction in stiffness, and predict whether structural failure will occur (for example due to
exceeding allowable stress limits). In this case-study, the UAV digital twin shows that performing the more aggressive
3g turn will result in structural failure if the reduction in stiffness in either damage region exceeds 30%. Mathematically,
the UAV’s control policy is as follows:

ut+1 =

{
3g, if max

i=1,2
Q̂i

t < 30%

2g, otherwise,
(15)
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where the digital twin estimate of the quantities of interest, Q̂i
t , are as defined in (13). This control policy allows the

UAV to act aggressively when it is in good condition, and more conservatively when damaged, so as to minimize further
damage and prevent eventual structural failure.

At each time step we randomly sample from the measurement model to produce a set of noisy strain measurements.
We then use these measurements to perform a belief update according to (11). In the first experiment, we simulate
stochastic state transitions using the state transition probabilities defined earlier. Note that this means that the true
damage state of the UAV is simulated as piece-wise constant, with instantaneous changes in the stiffness reduction. This
behaviour mimics sudden damage events, in which the state estimator must quickly detect that damage has occured, and
update the digital twin model accordingly. Figure 7 shows the results for one realization of this experiment. These
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Fig. 7 Simulation results illustrating data-driven model updating. In this experiment the evolution of the
ground-truth damage state is piece-wise constant, with stochastic transitions given by the probabilistic transition
model described in the text. Top left: Noisy strain measurements used for estimation, (showing a sample of
three out of 24 sensors). Top right: Action taken by the UAV at each time-step. Bottom: State estimates for the
damage in components i = 1, 2 (left and right respectively).

results show that the state estimate, and thus the digital twin model, is able to track the true state of the UAV. Tracking
performance is better for component i = 1 (the damage component nearest to the wing root). This is because the strain
measurements are more sensitive to damage in this component. Damage in this component also has a much greater
influence on the structural response under load, and the structural integrity of the wing.

We perform a second experiment, in which the true damage state of the UAV is prescribed to follow a deterministic
trajectory, namely, we suppose that each component experiences a linear reduction in stiffness from the pristine state
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down to the terminal state (80% reduction in stiffness) over the length of the mission. This type of damage progression
mimics slow degradation of the asset, rather than instantaneous damage. This experiment also highlights the fact that
the true state of the asset will not always be exactly represented in the model library. Figure 8 shows the result for one
execution of this experiment.
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Fig. 8 Simulation results illustrating data-driven model updating via state estimation. In this experiment the
evolution of the ground-truth damage state is deterministic and linearly increasing in severity. Top left: Noisy
strain measurements used for estimation, (showing a sample of 3 out of 24 sensors). Top right: Action taken
by the UAV at each time-step. Bottom: State estimates for the damage in components 1 and 2 (left and right
respectively).

These results show that in this case the state estimate still provides an accurate piece-wise constant approximation
to the linear underlying damage state. In many applications such a piece-wise constant approximation is likely to be
sufficient for significantly improving decision making, provided that a fine enough library discretization is used. Since
both of these experiments are stochastic, we repeat each experiment 1000 times. For each realization we compute several
performance metrics, which are averaged over all time steps t = 1, ...,T . We compute the state estimation error for each
component, i = 1, 2, as given by the absolute difference between the digital twin estimate, Q̂i

t , and the ground-truth
value. We also compute the observation error, εt , as given in (14). Finally, we report the accuracy of the UAV’s decision
making, given by the percentage of time steps in which the action taken by the UAV (informed by the state estimate),
matches the optimal action (informed by the ground truth). Table 2 reports the mean and standard error of the mean for
these quantities over the 1000 realizations.
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|Q1
t − Q̂1

t | |Q2
t − Q̂2

t | εt Action accuracy (%)

Ground-Truth State
Stochastic 0.78 (0.013) 5.47 (0.063) 23.1 (0.13) 95.8 (0.17)
Linear 4.59 (0.011) 5.59 (0.039) 32.6 (0.02) 95.0 (0.11)

Table 2 Estimation performance over a sample of 1000 independent realizations. The quantities in the first
three columns are averaged over the length of each realization, i.e., t = 1, ...,T . The first value in each cell is the
sample mean, with the associated standard error following in parentheses.

V. Conclusion
This work has developed an approach for enabling data-driven physics-based digital twins using a library of

component-based reduced-order models. The component-based models scale to large, complex assets, while the
construction of a model library enables flexible and expressive model adaptation via parametric modification and
component replacement. We proposed a method for data-driven model adaptation via Bayesian sequential state
estimation. In particular, we showed how online sensor data can be used to solve a probabilistic classification problem
in which we infer which entries in the model library best represent a physical asset. A limitation of our approach is that
although we can detect model inadequacy or model bias (via the error measure defined in Section III.C.), our inference
procedure does not automatically correct for model bias. Future work could involve extending our approach in this
direction (see for example [14, 15, 36]). Our methods have been demonstrated using a case study in which a fixed-wing
UAV uses structural sensors to detect damage or degradation on one of its wings. The sensor data is used to rapidly
update the digital twin of the UAV, which is then used to inform the UAV’s decision making about whether to perform an
aggressive maneuver or a more conservative one to protect from further damage. Future challenges include investigating
the robustness of the digital twin model selection with respect to corrupted sensor data and studying potential methods
for improving this robustness [43, 44], and incorporating a wider range of damage models to enable the detection and
classification of a wide range of actual damage states. The extreme cost of high-fidelity damage models remains a
significant barrier to their implementation in the digital twin setting.
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