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ABSTRACT  
A digital twin is an evolving virtual model of a specific system or physical asset, assimilating asset lifecycle data 
so that the digital twin becomes a dynamically updated asset-specific model that underpins intelligent automation 
and drives key decisions. Digital twins have potential impact across critical areas of national security, industrial 
development, and societal well-being. If made reliably predictive, digital twins could revolutionize key decision-
making processes that depend on dynamically evolving estimates of the state of a complex system. This paper 
illustrates how a predictive digital twin – one that combines data-driven learning with predictive physics-based 
modelling – can contribute to improved mission readiness. The digital twin is represented mathematically as a 
probabilistic graphical model in which the key elements of state, control, observations, quantities of interest, and 
reward are modelled as random variables. The graphical model represents the relationships between these 
different elements, as well as their evolution in time and their uncertainties. The formulation is illustrated for the 
development of a structural digital twin for an unmanned aerial vehicle (UAV). The digital twin combines high-
fidelity structural finite element models, computationally efficient reduced-order models, and observational data 
generated from onboard structural sensors. An illustrative example shows how the digital twin is updated as the 
UAV undergoes in-flight structural degradation and then used to optimally re-plan the mission trajectory. 

1.0 INTRODUCTION 

A digital twin is an evolving virtual model that mirrors an individual physical asset throughout its lifecycle 
(Grieves and Vickers, 2018; AIAA, 2020).  An asset-specific model is a powerful tool to underpin intelligent 
automation and drive the key decision-making processes that contribute toward improved mission readiness of 
UxVs. For example, digital twins have the potential to facilitate predictive maintenance, optimized vehicle 
utilization and fleet management, and end-to-end integration of information throughout the asset lifecycle (Tuegel 
et al., 2011; Glaessgen and Stargel, 2012). In this work, we focus on the application of digital twins to enable 
dynamic mission reconfiguration in response to changes in the state of the UxV. 

Key to the digital twin concept is the ability to sense, collect, analyze, and learn from the asset's data. Of particular 
importance is a synergistic multi-way coupling between the physical asset, data collection, computational models, 
and the decision-making process. This synergistic coupling has been explored extensively under the dynamic data-
driven application systems (DDDAS) paradigm (Blasch et al., 2018; Darema, 2004). The tasks of data-driven 
modeling, inference, assimilation, prediction, control, and planning are all a part of enabling the digital twin 
paradigm. These tasks all can benefit from the formulations and methods of machine learning. However, when it 
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comes to engineering assets such as UxVs, which serve high-consequence critical societal functions, it is not 
enough to rely on data-driven machine learning alone. The digital twins of these UxVs will be used to drive 
decisions that by their very nature are based on predictions that go beyond the available data.  

The digital twins of these UxVs must account for their complex multi-scale multi-physics dynamics, must 
represent high-dimensional uncertain parameters that cannot be observed directly, and must accurately 
characterize rare events. These predictive digital twins can only be achieved through a synergistic combination of 
predictive physics-based modeling, data-driven machine learning, and uncertainty quantification. This paper 
summarizes an approach to create, update, and deploy data-driven physics-based digital twins. We demonstrate 
the approach through the development of a structural digital twin for an unmanned aerial vehicle (UAV).  

2.0 PREDICTIVE DIGITAL TWIN 

Our recent work (Kapteyn et al., 2021) has developed a probabilistic graphical model formulation to formalize the 
definition of a digital twin. The elements of the formulation are as follows:  

• Physical state, 𝑆𝑆: the parameterized state of the physical asset (e.g., vehicle geometry, structural health, 
etc.) 

• Digital state, 𝐷𝐷: the parameters (i.e., model inputs) that define the computational models comprising the 
digital twin (e.g., geometry, structural parameters, boundary conditions) 

• Control inputs, 𝑈𝑈: actions or decisions that influence the physical asset (e.g., in-flight maneuvers, 
maintenance decisions, inspection decisions, sensor installation) 

• Observational data, 𝑂𝑂: available information describing the state of the physical asset (e.g., measured 
strain or accelerometer data, flight logs) 

• Quantities of interest, 𝑄𝑄: quantities describing the asset estimate via model outputs (e.g., stress, strain, 
displacement fields, failure stress, remaining useful life) 

• Reward, 𝑅𝑅: quantifies the overall performance of the asset-twin system (e.g., mission success, fuel burn, 
maintenance costs, inspection costs) 

To build the digital twin, we define each of these elements and represent them using random variables. The digital 
twin mathematical model is then realized as a dynamic Bayesian network that relates the various quantities at 
different timesteps through conditional probabilities. This network then becomes a foundation on which we can 
conduct the tasks of asset monitoring (via Bayesian inference), digital twin updating (via data assimilation), 
prediction, uncertainty quantification, and control. See Kapteyn et al. (2021) for details. 

At the heart of the predictive digital twin are physics-based models of the vehicle. In contrast with purely data-
driven models, physics-based models offer a greater degree of interpretability, reliability, and predictive capability. 
The physics-based models play a key role in defining the digital state, 𝑫𝑫, and they will be used to compute the 
quantities of interest (e.g., characteristics of the structural response or measures of flight capability) with quantified 
uncertainty. For example, in building a structural digital twin of a UAV, we employ a high-fidelity finite element 
model. The digital state then comprises parameters defining the geometry, materials properties, and mass 
properties of the finite element model.  

While physics-based models are already ubiquitous in engineering, accurately modeling a complete UAV system 
requires complex computational models that entail significant computational resources to solve. Computational 
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resource challenges are heightened when digital twins are required to provide near real-time insights in order for 
them to be used effectively for operational decision making. This requires the ability to rapidly adapt the digital 
twin in the face of changing model parameters, and rapidly evaluate the underlying models to provide analysis and 
prediction. Traditional large-scale physics-based models (e.g., finite element models) are typically too expensive 
to solve in this type of real-time, many-query context (Hartmann et al., 2018). To overcome this challenge, we 
build a library of component-based reduced-order models derived from the high-fidelity finite element model of 
the vehicle (Kapteyn et al., 2020a). The component-based approach is key to achieving scalability to high-
dimensional parameters. The use of mathematically rigorous projection-based model reduction retains the physics-
based grounding of the model, while enabling rapid model evaluations suitable for the real-time or many-query 
context. 

Figure 1 illustrates how this approach is implemented. In an offline phase, we construct the library of component-
based models, each representing different asset states (e.g., different states of vehicle structural health). In the 
offline phase we also use machine learning to build a computationally efficient map from expected observations 
to vehicle state. This map may be manifested computationally as a classifier (e.g., a decision tree) or a regression 
model. In the online phase, we use this map to dynamically update the digital twin and use it for dynamic in-flight 
decision-making. For example, acquired sensor data may be used to rapidly update the structural health parameters 
of the digital twin models. The updated digital twin is then used to issue predictions, enabling the UAV to replan 
a safe mission in response to vehicle structural damage.  

 

 

Figure 1: System architecture for a structural digital twin of a UAV. The digital twin combines 
physics-based models with interpretable machine learning to enable dynamic in-flight mission 

replanning. 
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 3.0  DEMONSTRATION: DYNAMIC DATA-DRIVEN IN-FLIGHT HEALTH 
MONITORING AND MISSION ADAPTATION 

In this section we demonstrate an operational phase in which the calibrated digital twin is deployed alongside the 
UAV. We formulate the problem of in-flight structural health monitoring and self-aware dynamic mission 
adaption. We then combine the component-based UAV model library within the probabilistic graphical model 
foundation in order to demonstrate the self-aware UAV capability. 

3.1 UAV Asset and Digital Twin 
Figure 2 shows the 12ft wingspan UAV asset developed as part of this research. More details on the experimental 
testbed are given in Salinger et al. (2020). A component-based reduced-order model of this UAV asset has been 
developed, and key model parameters have been experimentally calibrated to match the as-manufactured 
hardware. Figure 3 depicts a solution to the physics-based structural model comprising the digital twin, where the 
applied force corresponds to a 3g aerodynamic load. 

 

Figure 2: Physical UAV asset developed for this work. 

 

 

Figure 3: Static elasticity solution computed using UAV finite element model. Top: Displacement 
field of the full UAV under a 3g aerodynamic load. Middle: Bending strain field. Bottom: von Mises 

stress field. 
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3.2 Mathematical Formulation via Probabilistic Graphical Model 
We consider an illustrative UAV mission in which the digital twin assimilates structural sensor data and 
dynamically estimates the structural health of the UAV. The estimated structural health is used to inform control 
inputs, which in this case determine how aggressively the UAV performs its mission.   

Using onboard structural sensors, we dynamically estimate the structural health parameters, as the health of the 
UAV evolves over time. For illustrative purposes, we consider here a component library that includes two 
structural defect regions and 13 pristine components. The defect regions are located on the top surface of the 
second and fourth spanwise component on the right wing. We then define two structural health parameters within 
the digital state, 𝑧𝑧1 and 𝑧𝑧2, which represent the percentage reduction in material stiffness applied to each of the 
defect regions. Note that this defines only part of the full digital state space, as there can also be variability in the 
other digital state parameters (such as the parameters defining the UAV geometry and material properties). 

 

Figure 4: A schematic of the considered illustrative mission. 

The illustrative UAV mission considered consists of successive level turns, as shown in Figure 3. In this phase, 
the timesteps 𝑡𝑡 = 4,5,6, … with control inputs 𝑈𝑈4,𝑈𝑈5,𝑈𝑈6, … and observational sensor data 𝑂𝑂4,𝑂𝑂5,𝑂𝑂6, … depicted 
in Figure 4 correspond to successive turns executed during the UAV's mission. In this illustration, the UAV 
undergoes structural degradation throughout its mission. The digital twin responds adaptively to the evolving 
structural health by determining optimal updated maneuvers for the UAV. In particular, at each timestep 𝑡𝑡 the 
digital twin issues a control input, 𝑢𝑢𝑡𝑡 ∈ {2g, 3g}, which instructs the UAV to take the next turn at a bank angle 
corresponding to an aerodynamic load factor (the ratio of lift to weight) of either 2g or 3g. Taking a turn at a 
steeper bank angle makes the path shorter, but also subjects the UAV to an increased aerodynamic load, which 
has a greater chance of worsening the UAV structural health. 

The digital twin is updated using dynamic estimates of the structural health of the UAV. This dynamic updating 
is achieved by using the digital twin’s calibrated internal models (Figure 3) to assimilate observational data and 
adjust its predictions accordingly. The observational data at each timestep are noisy strain measurements, from 
each of 24 uniaxial strain gauges on the upper surface of the wing (positioned near the defect regions, as shown in 
Figure 2). Observational data are assumed to be acquired during a quasi-static section of each turn. This allows us 
to simplify the problem by ignoring the transient structural loading between successive turns. 
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3.3 Planning and Optimal Control for Dynamic Mission Reconfiguration 
During flight, the digital twin uses its estimate of the current structural health parameters to select the appropriate 
reduced-order structural model from the library, which can then be evaluated to provide a deeper analysis of the 
UAV structural integrity and consequent flight capability. For this example, we define the quantities of interest to 
be computational estimates of the strain at strain gauge locations. This quantity is chosen to enable a posterior 
predictive check: the digital twin compares its posterior estimate of the strain with the observed strain in order to 
evaluate how well its models match reality. In practice this type of check can help validate other predictions made 
by the digital twin structural models, such as modal quantities or the full stress and strain fields. Here, we quantify 
the posterior predictive error via a reward function, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, that measures the difference between observed strain 
measurements and strains predicted by the digital twin, normalized by an estimate of the sensor standard deviation. 
We define two additional reward functions targeted at different aspects of the mission. The second reward function, 
𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ, measures how far the UAV is from structural failure, as defined by a maximum allowable strain level. 
This term rewards the UAV for remaining in good structural health, as indicated by low predicted strain. The third 
reward function, 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, is assigned to each applied control input. In this illustration the faster 3g turn is assigned 
a higher reward, indicating a preference for the more aggressive flight path.  

The UAV digital twin determines which health-aware control inputs to issue by solving a planning problem 
induced by the graphical model structure. In this demonstration we conduct offline planning: prior to the mission, 
the digital twin uses its internal models to predict how the structural health will evolve over the mission and uses 
this predictive capability to compute a health-dependent control policy. During planning, the digital twin seeks a 
control policy that optimizes a weighted sum of the reward functions over the mission, namely, 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ + 𝜂𝜂 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

where 𝜂𝜂 is a tradeoff parameter between UAV aggression and self-preservation. In this way, the optimal control 
strategy recommended by the digital twin balances structural preservation with mission aggressiveness, while 
enabling dynamic mission replanning in response to realized in-flight damage or degradation. 

We make the planning problem tractable by approximating it as a fully-observable Markov decision process 
(MDP).  This can be viewed as a way of decoupling the sensing and control problems: we design a controller 
assuming that in-flight strain measurements will provide an accurate and certain estimate of the UAV structural 
state. Such a simplification may be applicable to many engineering systems, provided they are equipped with 
sufficient sensing capability. We also adopt an infinite planning horizon (effectively assuming that in practice the 
UAV would be flying successive missions indefinitely). The resulting policy is suboptimal in general, but performs 
well if the system is indeed well observed (i.e., the point estimates are accurate). However, one noteworthy 
limitation of adopting this assumption is that the asset will never perform actions that are purely for the purpose 
of information-gathering or improving observability over the state. This simplified MDP planning problem is 
solved offline using the classical value iteration algorithm (Russell and Norvig, 2002). The control input 𝑈𝑈𝑡𝑡 at time 
𝑡𝑡 is then defined by the policy, conditioned on the current estimated state of the digital twin.  

3.4 Results 
Figure 5 illustrates the control policies resulting from different values of 𝜂𝜂, the tradeoff parameter between UAV 
aggression and self-preservation within the planning reward function. As 𝜂𝜂 increases, the reward function favors 
mission aggressiveness over structural preservation. Figure 5 illustrates the computed control policies as a function 
of the structural health parameters 𝑧𝑧1, 𝑧𝑧2, where the policy defines the decision boundary between the 2g and the 
3g maneuver. The policy recommends that the UAV fly the more aggressive 3g maneuver until the maximum a 
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posteriori estimate of the structural health parameters progresses beyond a certain decision boundary. Figure 5 
shows that, as expected, the decision boundary becomes more aggressive as the value of 𝜂𝜂 is increased. 

 

Figure 5: UAV control policies computed for the simulated mission, under various values of the 
tradeoff parameter 𝜼𝜼 

Figure 5 also illustrates that in this example the control policies depend predominantly on 𝑧𝑧1, the structural health 
parameter of the inboard panel highlighted in Figure 1. In fact, for 𝜂𝜂 = 2.10, 2.30 and 2.50 the control policies 
shown are independent of 𝑧𝑧2. This result highlights the benefit of utilizing the digital twin physics-based structural 
models within the planning process. The structural analysis afforded by the digital twin models reveals that 𝑧𝑧1 has 
a greater influence than 𝑧𝑧1 on the structural integrity of the UAV, and this is naturally reflected in the computed 
control policies. 

Figure 6 depicts three snapshots in time for a simulation of the illustrative UAV mission we consider. Here we use 
a classification tree to estimate the structural health parameters, 𝑧𝑧1 and 𝑧𝑧2, based on incoming strain measurements 
(Kapteyn et al., 2020b). The UAV uses these estimates to update its internal structural model of the airframe, 
which can then be evaluated for rapid, up-to-date, structural analysis. In this example the UAV responds to 
worsening structural health by employing its control policy (in this case with 𝜂𝜂 = 2.30), to switch from the more 
aggressive flight path (3g maneuvers) to the more conservative flight path (2g maneuvers). This illustrates how 
the structural digital twin enables dynamic mission reconfiguration through data assimilation, prediction, and 
principled decision making. 
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Figure 6: Snapshots of the simulated UAV mission. The digital twin acquires strain measurements 
from wing-mounted strain gauges, and assimilates these data using a rapid and interpretable 

classification tree. The UAV employs the precomputed control policy to respond dynamically to 
worsening structural health estimates by switching from the aggressive flight path to the 

conservative flight path.  
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4.0  CONCLUSION 

Digital twins are being developed and deployed across a broad range of industries and disciplines. Early successes, 
particularly in structural health monitoring, point to the high-value potential of digital twins in achieving improved 
mission readiness. However, a number of open challenges remain in order for digital twins to achieve the levels 
of reliability and robustness needed to support mission-critical decisions. One key challenge is comprehensive 
quantification of uncertainty. This paper utilizes a Bayesian formulation of the digital twin that explicitly accounts 
for uncertainty, including time-dependent system uncertainty. A second key challenge is computational 
tractability, especially in real-time and resource-constrained settings. This paper has employed reduced order 
modeling to reduce computational cost, but more work is needed to create certified surrogate models that enable 
rapid model updating and tight feedback loops between models and data. A third challenge is addressing the 
interaction between the digital twin and a human decision-maker, including ensuring the interpretability of digital 
twin recommendations and information flows. 
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