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ABSTRACT
Digital Thread is a data-driven architecture that links together information from all stages of the product lifecycle.

Although it is finding increasing application in manufacturing, maintenance/operations, and design related tasks, a
principled formulation of analyzing the decision making problem under uncertainty for the Digital Thread remains
absent. The contribution of this paper is to present a formulation using Bayesian statistics and decision theory. First,
we address how uncertainty propagates in the product lifecycle and how the Digital Thread evolves based on the
decisions we make and the data we collect. Using these mechanics, we explore designing over multiple product
generations or iterations and provide an algorithm to solve the underlying multistage decision problem. We illustrate
our method on an example structural design problem where our method can quantify and optimize different types
and sequences of decisions, ranging from experimentation, manufacturing, and sensor placement/selection, in order
to minimize total accrued costs.

1 Introduction
Digital Thread is a data-driven architecture that links together information from all stages of the product lifecycle

(e.g., early concept, design, manufacturing, operation, post-life, and retirement) for real-time querying and long-term
decision making [1, 2]. Information contained in the Digital Thread may include sufficient representation (e.g., through
numerical/categorical parameters, data structures, textual forms, etc.) of available resources, tools, methods, processes, as
well as data collected across the product lifecycle. A desired target of Digital Thread is its use as the primary source from
which other downstream information, such as that used for design, analysis, and maintenance/operations related tasks, can be
derived [2, 3].

Though a significant challenge of the Digital Thread involves development of an efficient architecture and its associated
processing of information, a relatively unexplored aspect of the Digital Thread is how to represent and understand the
propagation of the uncertainty within the product lifecycle itself. High levels of uncertainty can lead to designs that are
over-conservative or designs that may require expensive damage tolerance policies, redesigns, or retrofits if analysis cannot
show sufficient component integrity. One way to reduce this uncertainty is to incorporate data-driven decisions that are
informed from data collected throughout the design process.

To assess the benefits data-driven decisions can provide, incorporating the value of future information into the decision
making process becomes critical. Performing this type of analysis opens up the possibility to assess not just the current product
generation or iteration but also the ones to follow. From this, new ways of thinking about design emerge, such as how can
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strategic collection of data from the current generation be used to improve the design of the next? For example, we may start
asking what data should be collected, where should the data be collected, and when should the data be collected to minimize
overall accrued costs? This problem involves analyzing uncertainty and the data collected over sequential stages of decision
making. In this paper, we showcase how our Digital Thread analysis methodology introduced in [4], and further developed
in [5], analyzes this problem using Bayesian inference and decision theory, and solves it numerically using approximate
dynamic programming.

To set the stage for discussion, we give a brief overview of the aspects of Digital Thread that are of relevance. Digital
Thread can be seen as a synthesis and maturing of ideas from product lifecycle management (PLM), model-based engineering
(MBE), and model-based systems engineering (MBSE). PLM is the combination of strategies, methods, tools, and processes
to manage and control all aspects of the product lifecycle across multiple products [6]. These aspects might include integrating
and communicating processes, data, and systems to various groups across the product lifecycle. A key enabler of efficient
PLM has been the development and implementation of MBE where data models or domain models communicate design intent
in order to avoid document-based exchange of information [7, 8], the latter which can result in lossy transfer of the original
sources, as well as to eliminate redundant and inconsistent forms of data representation and transfer. Examples of MBE data
models include use of mechanical/electronic computer aided design tools and modeling languages such as system modeling
language (SysML), unified modeling language (UML) and extensible markup language (XML). MBSE applies the principles
of MBE to support systems engineering requirements related to formalization of methods, tools, modeling languages, and best
practices used in the design, analysis, communication, verification, and validation of large-scale and complex interdisciplinary
systems throughout their lifecycles [8–11]. Many recent assessments and applications of these ideas in the context of the
Digital Thread can be found in additive manufacturing [12], 3D printing and scanning [13], CNC machining [14], as well as
detailed design representation, lifecycle evaluation, and maintenance/operations related tasks [15, 16].

With a functional Digital Thread in place, characterizing uncertainty and optimizing under it can be performed with
statistical methods and techniques. For instance, relevant sources of uncertainty within the product lifecycle, such as design
parameters, modeling error, and measurement noise, can be identified, characterized, and ultimately reduced using tools and
methods from uncertainty quantification [17–19]. With a means of assessing uncertainty, optimization under uncertainty can
be performed with stochastic-based design and optimization methods. For instance, minimizing probabilistically formulated
cost metrics subject to constraints that will arise for the Digital Thread decision problem may involve utilizing either stochastic
programming or robust optimization. In stochastic programming, uncertainty is represented with probabilistic models and
optimization is performed on an objective statement with constraints involving some mean, variance, or other probabilistic
criteria [20]. Alternatively, in robust optimization, the stochastic optimization problem is cast into a deterministic one through
determining the maximum/minimum bounds of the sources of uncertainty and performing an optimization over the range of
these bounds [21]. Additionally, if reliability and robustness at the system level is required, uncertainty-based multidisciplinary
design optimization can be employed [22–24].

Of course, decision making using the Digital Thread is not a one time occurrence. Understanding the sequential nature of
the multistage decision problem of the Digital Thread where one decision affects the next is critical for producing effective
data-driven decisions. These decisions will have to be guided through some appropriate metric of assessing costs and benefits.
This problem is explored in optimal experimental design where the objective is to determine experimental designs (in our
case decisions) that are optimal with respect to some statistical criteria or utility function [25]. To assess the sequential
nature of decision making for the Digital Thread in particular, sequential optimal experimental design can be employed where
experiments (again, decisions in our case) are conducted in sequence, and the results of one experiment may affect the design
of subsequent experiments [26].

Despite the range of development and growth of Digital Thread and its application to manufacturing, maintenance/operations,
and design related tasks in various multidisciplinary settings, a principled formulation that considers the propagation of
uncertainty in the product lifecycle in the context of the Digital Thread is sparse. Furthermore, a mathematically precise way of
analyzing and optimizing sequential data-informed decisions as new information is added to the Digital Thread remains absent.
To address these gaps, in this paper we show that 1) the Digital Thread can be considered as a state that can dynamically
change based on the decisions we make and the data we collect. We then show that 2) the evolution of uncertainty within the
product lifecycle can be described with a Bayesian filter that can be represented in the Digital Thread itself. After expressing
the Digital Thread in this way, we show how 3) the evolution of the Digital Thread can be modeled as a dynamical system that
can be controlled using a stochastic optimal control formulation expressed as a dynamic program where the objective is to
minimize total accrued costs over multiple stages of decision making. Finally, we provide a 4) numerical algorithm to solve
this dynamic program using approximate dynamic programming.

We illustrate our methodology through an example composite fiber-steered component design problem where the objective
is to minimize total accrued costs over two design generations or iterations. In addition to evaluating design choices such as
performing coupon level experiments to reduce uncertainty in materials as well as manufacturing and deploying a component
to obtain operational data, effectiveness of data collection can be further tailored by determining where to place sensors
(sensor placement) or selecting which sensors to use (sensor selection). The novelty in our approach is that these choices will
be guided by the objective directly without the need for additional metrics or criteria.
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Fig. 1. Geometry, initial sensor locations, and boundary conditions for the design problem for one loading condition. Transverse shear is
directed out of the page and is not shown for clarity.

The rest of this paper is organized as follows, Section 2 sets up the illustrative design problem through which our
methodology will be described as well as lays out the mathematical machinery that describes the dynamical process underlying
the Digital Thread. Section 3 details the decision problem for the Digital Thread enabled design process and presents the
numerical algorithm to solve the decision problem. Section 4 presents results for the example design problem. And finally,
Section 5 gives concluding remarks.

2 Design Problem Formulation
In this section, we formulate the design problem to be solved using our methodology. Subsection 2.1 describes the

example design scenario through which we convey our methodology, Subsection 2.2 lays down the mathematical description
of the problem, and Subsection 2.3 describes the underlying dynamical models that will be used for the overall decision
making process.

2.1 Scenario Description
The design problem involves finding the optimal fiber angle and component thickness for a composite tow-steered

(fiber-steered) planar (2-D) component subject to cost and constraint metrics. We consider specifically the design of a
chord-wise rib within a wingbox section of a small fixed wing aircraft of wingspan around 15 meters, as shown in Fig. 1. The
overall geometry has five holes of various radii with curved top and bottom edges.

A challenge to our design task is the presence of uncertain inputs that directly influence the design of the component. In
this problem, the uncertain inputs are the loading the component will experience in operation, the material properties of the
component, and the specific manufacturing timestamps. Situations where these variables have most relevance occur during the
early stage of design when testing and experimentation have not yet taken place or when a brand new product is brought to
market where only partial information can be used from other sources due to its novelty.

Large uncertainties in these inputs can lead to conservative designs that can be costly both to manufacture and operate.
Thus, the goal is to collect data to reduce these uncertainties to the degree necessary to minimize overall costs. Data can be
collected through three different lifecycle paths: material properties can be learned through collection of measurements from
coupon level experiments; manufacturing timestamps can be learned from a combination of a bill of materials, timestamps of
individual processes, and other related documentation when a prototype or product is manufactured; and operating loads can
be learned from strain sensors placed on the component in operation.

Although the task of learning the uncertain input variables through measurements can be addressed with methods from
machine learning, and more classically from solution methods for inverse problems, this task in the context of the overall
design problem is made complicated by the fact that collecting data comes at a cost. To see this, we illustrate the Digital
Thread for this design problem in Fig. 2. Here we see that collecting relevant data can require both time and financial resources.
Though material properties data can be obtained fairly readily and quickly during the design phase through coupon level
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Fig. 2. Illustration of Digital Thread for the example design problem. The product lifecycle stages of interest here are between design and
operation.

experiments, manufacturing data can only be obtained once a prototype is built. Additionally, operational data can only be
obtained once a prototype or a full component is built, equipped with sensors, and put into operation. Depending on the scale
of the component, the manufacturing process can take weeks or months, and putting a full component into operation with
proper functionality of all its parts and sensor instrumentation may take much longer. Thus, making cost effective decisions
that reduce uncertainty is critical for product reliability, reducing design process flow time, and minimizing total product
expenses across its lifecycle.

2.2 Mathematical Formulation
The key elements of the design problem are broken down into five items: a notion of time or stage, the uncertain input

variables (what we would like to learn), the measurement data (what we learn from), the Digital Thread itself (how to represent
what we know), and the decision variables (the decisions and design choices we can make).

Time or Stage Time is modeled using non-dimensional increments that enumerate the sequence of decisions made or to be
made up to some finite horizon T ∈ N. It is expressed as t ∈ T = {0, ...,T}. Physical time is allowed to vary, and will be the
case when different decisions take shorter physical times to execute (e.g., performing coupon experiments) or longer physical
times to execute (e.g., manufacturing and deploying a component).

Inputs The Ny inputs (the uncertain quantities to be learned) are described at each stage t as yt ∈ RNy . The variable yt
is composed of parameters of a finite discretization of the five integrated through thickness traction terms (in-plane loads
per unit length, in-plane moments per unit length, and transverse shear per unit length) on the component boundary for a
particular operating condition, material properties (material strengths), and parameters of a manufacturing process model
to compute process times consisting of Nm total steps. The composite structural model is based on the small displacement
Mindlin-Reissner plate formulation [27, 28] specialized for composites. For the manufacturing process model, we employ the
manufacturing process and associated parameters detailed in the Advanced Composite Cost Estimating Manual (ACCEM)
cost model [29, 30] that consists of Nm = 56 total steps for our problem.

Measurements The Nz measurements are described at each stage t as zt ∈ RNz . The variable zt is composed of three strain
sensor components for Ns sensor locations located on the top surface of the component, material properties data determined
from coupon level experiments, and timestamps for the Nm total steps of the manufacturing process. Coupon level experiments
here involve the static failure of composite test specimens of appropriate loading and geometry in order to acquire data about
material properties and failure strengths used for structural analysis. Note, as illustrated in Fig. 2 the components of zt are
taken at different points along the product lifecycle (corresponding to coupon tests, manufacturing, and operation) and may
not be fully populated at every stage t.
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Decisions Decision making will encompass different strategies related to performing coupon tests and manufacturing and
deploying a new design to reduce uncertainty while minimizing costs. Associated with manufacturing and deployment
are additional specifications of fiber angle, component thickness, and sensor placement/selection. We designate a high-
level decision as ud

t = {E,D} where ud
t = E will correspond to performing coupon tests and ud

t = D will correspond to
manufacturing and deployment. For ud

t = D, we designate the additional design specifications as ut = [up
t ,us

t ]
> ∈ RNu , where

up
t ∈ RNp specifies the geometrical parametrization of the component and us

t ∈ [0,1]Ns specifies the parametrization for sensor
selection.

For this problem, up
t is composed of the coefficients of a finite dimensional parametrization of fiber angle and through

thickness of the component body, as well as the spatial locations for all Ns sensors. For simplicity, we model ply angle
as a continuous function of the component body and not model more detailed specifications such as individual ply and
matrix compositions, additional layers consisting of different ply types, ply thicknesses, number of plies, and ply cutoffs at
boundaries.

For sensor selection, we use a soft approach based on activation probabilities [31] to avoid the combinatorial problem
associated with an exact binary (on/off) representation. Specifically, us

t gives probabilities where the ith sensor is selected
(active or on) with probability (us

t )i and not-selected (inactive or off) with probability 1− (us
t )i during operation. To quantify

the effective number of active sensors for this particular parametrization, we use an effective sensor utilization quantity defined
as

es
t =

1
Ns

Ns

∑
i=1

(us
t )i (1)

Here, es
t = 0 when all sensors are always off/inactive and es

t = 1 when all sensors are always on/active.

Digital Thread The Digital Thread Dt ∈I at stage t reconciles the uncertain parts of the product lifecycle with its certain
(or deterministically known) parts as

Dt = (Q t ,Rt) (2)

where Rt is the representation of the deterministically known parts of the product lifecycle at stage t that we will collectively
call resources, Q t is the representation of the uncertainty within the product lifecycle itself at stage t, and I is an information
space over the product lifecycle encapsulating all possible uncertain and certain elements across all stages t ∈ T . Provided a
criterion of sufficiency is maintained [5], the Digital Thread can be represented in a number of equivalent ways. In this paper,
the uncertainty within the product lifecycle is represented using Q t = p(yt | It ,ut) that specifies the probability distribution of
the uncertain inputs yt given the history of collected data It = {R0,u0, ...,ut−1,z0, ...,zt−1} and the current decision to be made
ut . The resources Rt are represented using a multi-data type set that contains numerical, categorical, and/or character-like
specifications of:

1. Methods, Tools and Processes: Enterprise level information and protocols of available methods, tools, and processes
across the product lifecycle.

2. Products: Product specific design geometry, manufacturing process details, operational and data collection protocols,
operation/maintenance/repair history, and lifecycle status.

2.3 Dynamical Process of the Digital Thread
With the design problem modeled, the dynamics of the Digital Thread can be described using the transition model

Dt+1 = Φt(Dt ,ut ,zt) (3)

where Φt : I ×RNu ×RNz 7→I evolves the Digital Thread from stage t to t +1 given the decision ut and measurements zt at
stage t. Within this transition model, Q t = p(yt | It ,ut) is updated using the Bayesian filter

p(yt+1 | It+1,ut+1) =
1

p(zt | It ,ut)

∫
RNy

p(yt+1 |yt ,Rt+1,ut+1)p(zt |yt ,Rt ,ut)p(yt | It ,ut)dν (4)

while the resources are updated according to

Rt+1 = Ψt(Rt ,ut) (5)
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Here, the integration is performed over the uncertain inputs yt and ν is the measure (or volume) over the uncertain inputs
yt . The function Ψt allows for changing resources (adding new elements, updating existing elements, or removing existing
elements) at stage t. The Bayesian filter in Eqn. (4) models the process of data assimilation from stage t to stage t + 1.
First, the likelihood term p(zt |yt ,Rt ,ut) inside the integral represents the collection of new measurements after a decision
is performed, followed by the updating of our knowledge of yt after incorporating those measurements. Next, the term
p(yt+1 |yt ,Rt+1,ut+1) represents inheritance and modification of information carried over from a previous design into the
next design (e.g., loads from a past airplane reused and modified for a new airplane with a longer fuselage). Details of the
derivation of this Bayesian filter can be found in [5].

The Bayesian filter in Eqn. (4) can be computed using sequential Monte Carlo methods [32] or other linear/non-linear
filtering methods where appropriate. For linear models with Gaussian uncertainty, for example, the Bayesian filter is a variant
of the Kalman filter (with the prediction and analyze steps reversed) and can be computed analytically. The resources can be
managed and updated through MBE, MBSE, and PLM related tools or software as well as through other data management
techniques.

3 Decision Making Using the Digital Thread
In this section, we describe the decision making problem for the design problem. Subsection 3.1 describes the specific

decisions of interest, Subsection 3.2 describes the mathematical optimization problem associated to those decisions, Subsection
3.3 describes the approximate dynamic programming technique we employ to solve the mathematical optimization, and finally
Subsection 3.4 provides a numerical algorithm to implement the approximate dynamic programming technique.

3.1 Decisions for the Problem Scenario
For this problem scenario, we will produce two generations of a component where we are allowed to perform one set of

coupon experiments. This will correspond to a three stage problem where t ∈ T = {0,1,2}. In particular, we will be interested
in the high-level decision sequences {ud

0 = E,ud
1 = D,ud

2 = D} that we will denote as EDD and {ud
0 = D,ud

1 = E,ud
2 = D} that

we will denote as DED. For example, the sequence DED means to manufacture and deploy a new design first, followed by
performing coupon level experiments second, and finally manufacturing and deploying another new design. The second design
benefits from data collected from both coupon experiments and operational measurements of the previous design. These two
sequences are distinguished by whether coupon experiments should be performed before any design is ever manufactured (and
subsequently deployed) via the sequence EDD or right after the first design is manufactured and deployed via the sequence
DED.

For each of these two sequences, we are interested in how subsequent data assimilation influences designs and costs
of the component over the two generations. This will be explored through a greedy scenario that makes no use of future
information, a sensor placement scenario, and a sensor selection scenario. Sensor placement and selection are not combined
together for this problem setup in order to assess the performance of each (location vs. activity) independently.

3.2 Decision Statement for the Digital Thread
The decision statement for the Digital Thread enabled design process is given by the following Bellman equation:

V ∗t (Dt) = min
ut∈RNu

E
[
rt(Dt ,ut ,yt)+ γV ∗t+1(Φt(Dt ,ut ,zt)) |Dt ,ut

]
s.t. E

[
gt(Dt ,ut ,yt) |Dt ,ut

]
≤ 0, t ∈ T , V ∗T+1 = 0

(6)

Here, V ∗t : I 7→ [0,∞) is the optimal value function or cost-to-go at stage t, the parameter γ ∈ [0,1] is a discount factor,
and the symbol ∗ denotes optimal quantities or functions. The solution to this Bellman equation yields an optimal policy
π∗t = {µ∗t , ...,µ∗T} that defines a sequence of functions µ∗t (·) = ut specifying new designs and changes to the Digital Thread
for each stage t up to the horizon T . Each function µ∗t of the optimal policy is a function of Dt (a feedback policy), i.e.,
π∗t = {µ∗t (Dt), ...,µ∗T (DT )}. The expectation is taken over the uncertain inputs {yt , ...,yT} and measurements {zt , ...,zT}.

The functions rt : I ×RNu ×RNy 7→ [0,∞) and gt : I ×RNu ×RNy 7→ RNg denote the stage-wise cost and constraint
functions, respectively, for the problem with Ng total constraints. For the stage-wise cost model, we employ a linear
combination of the manufacturing cost model with cost functions that penalize aggressive fiber angle variation, aggressive
component thickness variation, operational costs including strain sensor usage, as well as costs associated to coupon tests [5].
We do not penalize the placement of sensors for this particular setup. For the stage-wise constraint function during design
stages, we use the Tsai-Wu failure criterion [33].

In some cases, the distribution of gt may be heavily-tailed in which case the expected value of the constraint given in
Eqn. (6) may not produce robust enough designs. In those cases, the expected value of the constraint can be replaced with an
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appropriate measure of probabilistic risk, e.g., P[gt(Dt ,ut ,yt)≤ 0 |Dt ,ut ]> 1− ε for some small ε > 0, or other criteria that
can also take into consideration the severity of failure associated to the value of gt [34].

For the greedy scenario, the Bellman equation is solved by setting γ = 0. Although data assimilation still occurs through
evolution of the Digital Thread via the transition model from stage t to t +1, decisions determined from the Bellman equation
at stage t with γ = 0 do not take into consideration the benefits nor costs of future data assimilation because the value of
future information that comes through Vt+1 as stage t is canceled out. For the sensor placement scenario, γ = 1 and the
sensor locations are allowed to vary while the sensor selection probabilities are all fixed at one. For sensor selection, γ = 1
and the sensor selection probabilities are allowed to vary while the sensor locations are fixed. Note that structural tailoring
for the sensor selection and sensor placement setups also takes place by design of the Bellman equation because the future
value function Vt+1 is a function of ut . This dependency enables fiber angle and component thickness to also control the
effectiveness of subsequent data collection in addition to sensor placement or sensor selection.

In total, there are six policies to compare: the greedy, sensor placement, and sensor selection scenarios for both the EDD
and DED high-level decision sequences.

3.3 Solving the Decision Problem Using Approximate Dynamic Programming
We solve the decision problem by first rewriting the Bellman equation given in Eqn. (6) to produce the following

equivalent, but notationally simpler statement:

V ∗t (Dt) = min
ut∈RNu

Ot(Dt ,ut)+ γS∗t (Dt ,ut)

s.t. Gt(Dt ,ut)≤ 0, t ∈ T , S∗T = 0
(7)

where

Ot(Dt ,ut) = E
[
rt(Dt ,ut ,yt) |Dt ,ut

]
Gt(Dt ,ut) = E

[
gt(Dt ,ut ,yt) |Dt ,ut

]
S∗t (Dt ,ut) = E

[
V ∗t+1(Φt(Dt ,ut ,zt)) |Dt ,ut

] (8)

The function S∗t is the expected value of the forward t + 1 optimal value function, Ot is the expected value of the
stage-wise cost function at stage t, and Gt is the expected value of the stage-wise constraint function at stage t. Next, we
use a combination of Monte Carlo sampling with policy and function approximation [35] to solve the optimization problem
numerically. The functions Ot and Gt can be computed directly using Monte Carlo sampling methods. The remaining terms
that need to be determined, namely V ∗t , µ∗t , and S∗t , will be approximated and updated using policy and function approximation.
However, in order to apply the methods of function approximation to our problem, V ∗t , µ∗t , and S∗t need to first have explicit
parametrized forms. The parametrized forms we use are:

µt(Dt) = Atφt(Dt)+at

Vt(Dt) = exp{Btφt(Dt)+bt}
St(Dt ,ut) = exp{Ctϕt(Dt ,ut)+ ct}

(9)

where φt : I 7→ RMp is a vector of Mp basis functions at stage t, At ∈ RNu×Mp is a matrix of basis coefficients for the policy
function at stage t, Bt ∈ R1×Mp is a matrix of basis coefficients for the value function at stage t, ϕt : I ×U 7→ RMv is a vector
of Mv basis functions at stage t, and Ct ∈ R1×Mv is a matrix of basis coefficients for the expected value of the forward value
function at stage t. The variables at ∈ RNu and bt ,ct ∈ R are used for setting initial conditions (e.g., initial component fiber
angle, component thickness, sensor locations, etc.).

The symbol ∗ is dropped because we are now approximating the optimal functions with imposed structure, which may
lose optimality. In addition, the expression for Vt and St are exponentiated to ensure non-negativity of the value function. For
the implementation, the basis functions φt and ϕt are constructed using radial basis functions (Gaussian radial basis functions
in particular) with inputs appropriately scaled to lie within the bi-unit hypercube of appropriate dimension. These basis
functions are not direct functions of the Digital Thread, but functions of numerical features of the Digital Thread such as
mean, variances and/or or other statistical metrics of Q t as well as other relevant numerical quantities from Rt

Next, At , Bt , and Ct are trained using a combination of least squares and approximate solutions of the Bellman equation.
However, a direct application of least squares is challenging because we need to have a means of generating samples to train
At , Bt , and Ct in the first place. We also don’t know in advance how many samples are sufficient to yield good estimates of the
policy and value functions so we would like to have flexibility of incorporating new samples without much re-calculation of
the least squares formulas. Furthermore, performing the inverses in these least squares formulas can become computationally
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expensive for large dimensions of At , Bt , and Ct . Finally, we would like to have an incremental update rule to the approximation
of the policy where new samples are obtained through exploration using the latest approximation of the policy.

These issues can be addressed by utilizing a recursive update of the least squares formulas, known as Recursive Least
Squares (RLS) [36]. Associated to the RLS formulation is a class of recursive approximate dynamic programming techniques
given in [37] and [38] that we parallel. Details of the derivations for the RLS equations used for this paper can be found in [5].
The RLS equations take the form:

A j
t = A j−1

t +
(
u j

t −A j−1
t φ

j
t −at

)
[φ

j
t ]
>[H j

t ]
−1

B j
t = B j−1

t +
(
logQ j

t −B j−1
t φ

j
t −bt

)
[φ

j
t ]
>[H j

t ]
−1

C j
t =C j−1

t +
(
logV j

t+1−C j−1
t ϕ

j
t − ct

)
[ϕ

j
t ]
>[J j

t ]
−1

(10)

Here, j is the update index that increases by one when a new data point is added, φ
j
t = φt(D j

t ), and ϕ
j
t = ϕt(D j

t , û
j
t )

at some Digital Thread D j
t ∈ I and decision û j

t ∈ RNu . The terms Q j
t ∈ (0,∞) and u j

t ∈ RNu are determined from the
minimization

Q j
t = min

u j
t ∈RNu

Ot(D j
t ,u

j
t )+ γ exp

{
C j

t ϕ
j
t + ct

}
s.t. Gt(D j

t ,u
j
t )≤ 0, t ∈ T , ST = 0

(11)

while V j
t+1 is given by

V j
t+1 = exp

{
B j

t+1φt+1(Φt(D j
t , û

j
t ,z

j
t ))+bt+1

}
z j

t ∼ p(zt | I j
t , û

j
t )

(12)

The decision û j
t is generated by sampling in the neighborhood of the current iteration of the policy, or decision iterates during

optimization of Eqn. (11). Note, this decision is different than u j
t to allow additional flexibility on when and where to update

St . This is because unlike µt and Vt , St is a function of both the Digital Thread and decision, and thus requires a different
sampling approach to capture different values of the decision at a given state of the Digital Thread.

The symmetric matrix H j
t ∈ RMp×Mp at j = 0 is the regularization term in the original least squares formulas for At and

Bt . It is updated using the Sherman–Morrison matrix identity:

[H j
t ]
−1 = [H j−1

t ]−1− [H j−1
t ]−1φ

j
t [φ

j
t ]
>[H j−1

t ]−>

1+[φ
j
t ]>[H

j−1
t ]−1φ

j
t

(13)

An identical formula holds for the symmetric matrix J j
t ∈ RMv×Mv by swapping out φ

j
t with ϕ

j
t and H j−1

t with J j−1
t in the

above equation.
The Digital Thread D j

t+1 at stage t +1 is determined through forward simulation with the latest iteration of the policy
µ j

t = A j
t φ

j
t +at :

D j
t+1 = Φt(D j

t ,µ
j
t ,z

j
t )

z j
t ∼ p(zt | I j

t ,µ
j
t )

(14)

while the Digital Thread D j
0 at stage t = 0 is sampled from I . Sampling the Digital Thread D0 = (Q 0,R0) at stage t = 0

involves sampling different distributions for Q 0 = p(y0 | I0,u0), which can be performed through using a suitable hyperprior
distribution or through direct sampling of the parameters of the parametrization of Q 0, if applicable. Sampling R0 involves
direct sampling from the set of allowable values (discrete and/or continuous) its elements can take.

3.4 Numerical Implementation to Solve the Multistage Decision Problem
The numerical implementation for the algorithm presented in Subsection 3.3 is divided between Algorithms 1, 2 and 3.

To initialize and train a policy, first INITIALIZEPOLICY is called and then TRAINPOLICY is called however many times is
necessary until a convergence threshold on the policy or value function is achieved [38]. Details of the subroutines are given
in the following.
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Algorithm 1 Simulate and Initialize Policy
1: procedure SIMULATEPOLICY(Ds,π0)
2: for t = s : 1 : T −1 do
3: ut ← µt(Dt)

. Obtain measurement through forward simulation or from physical system
4: zt ∼ p(zt | It ,ut)

5: Dt+1←Φt(Dt ,ut ,zt)

6: return {Dt}T
t=s

1: procedure INITIALIZEPOLICY({(ud
t ,at ,bt ,ct)}T

t=0)
2: for t = 0 : 1 : T do

. Initialize values at each stage t
3: At ← 0Nu×Mp

4: Bt ← 01×Mp

5: Ct ← 01×Mv

6: H−1
t ← (1/ηt)IMp with ηt > 0

7: J−1
t ← (1/κt)IMv with κt > 0
. Update parameters of µt with initialized values

8: µt ←{At ,Bt ,Ct ,at ,bt ,ct ,H−1
t ,J−1

t ,ud
t }

9: π0←{µ0, ...,µT}
10: return π0

Simulate and Initialize Policy Simulating a policy is described in SIMULATEPOLICY. Here, a given policy π0 along with
a Digital Thread Ds at stage s ∈ T are used to generate the future evolution of Ds from stage s onwards. The output is the
trajectory (i.e., states) of the Digital Thread for t ∈ {s, ...,T}. Note, the transition model outputs the Digital Thread from stage
t +1 from stage t so stage T of the Digital Thread is computed from stage T −1, thus the for loop is truncated to stage T −1.

Information about product lifecycle elements (statistics of inputs, resources, products in operation and their Digital Twins,
etc.) at some t ∈ {s, ...,T} within this trajectory is extracted through post-processing of the appropriate Dt . Measurements are
synthetically generated if no physical measurements are available during offline training. Online, measurements come directly
from test data or the actual physical systems.

To initialize a policy from scratch, INITIALIZEPOLICY is called taking in as input the high-level decision sequence
and initial condition parameters. Here, the parameters ηt ,κt > 0 represent the scaling factors of the initial least squares
regularization term (in this implementation, the identity matrix of appropriate size).

Train Policy In TRAINPOLICY, a Digital Thread state D0 is first sampled from I followed by generation of a Digital
Thread trajectory using input π0. Using this trajectory as a skeleton, optimization is performed backwards from each Digital
Thread state in the trajectory. A call to a deterministic optimizer is made in OPTIMIZER and takes as arguments an initial
condition, a cost function, and a constraint function. The deterministic optimizer can be any appropriate off-the-shelf optimizer.
For this implementation, we use the trust-region method in MATLAB’s FMINUNC and impose inequality constraints using
penalty functions.

The optimizer can be run for a fixed number of iterations per call or until a suitable level of convergence is achieved.
During or after running of the optimizer, the parameters of µt , {At ,Bt , Ct ,H−1

t ,J−1
t }, are updated before moving to stage t−1.

For implementation, the update index j has been omitted since we only need to keep track of the current values of all relevant
objects at any particular point in the routines. The procedure TRAINPOLICY updates all parameters of the policy once over all
stages t ∈ T , allowing flexibility for sequential updating in the future when necessary.

At lines 2-14 in COSTFUNCTION of Algorithm 3, Ms samples of the decision near the optimization iteration point are
generated and used to update the estimate of St . Updating St adaptively at the start of the cost function is implemented so
that new samples are taken near every evaluation point of the optimization. The terms Gt and Ot are computed using Monte
Carlo sampling; the same samples {yi

t}N
i=1 can be used for both Gt and Ot to save on computation, or for subsequent iterations

per optimization call if an expectation-maximization related strategy is used. The policy π0 in the call to the cost function is
passed “by reference” so that updates to any part of π0 is made immediately available to all levels and Algorithms.
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Algorithm 2 Train Policy
1: procedure TRAINPOLICY(π0)

. Build a skeleton trajectory to perform updates
2: Sample D0 ∈I

3: {Dt}T
t=0← SIMULATEPOLICY(D0,π0)

. Update terms going backwards from t = T
4: for t = T :−1 : 0 do
5: φt ← φt(Dt)

. Assign cost and constraint functions for deterministic optimizer at stage t
6: Q′t(u)← COSTFUNCTION(u,Dt ,π0)
7: G′t(u)← CONSTRAINTFUNCTION(u,Dt )

. Run deterministic optimizer
8: {ut ,Qt}← OPTIMIZER(Atφt +at ,Q′t(·),G′t(·))

. Update At and Bt using RLS update rule
9: lt ← H−1

t φt

10: H−1
t ← H−1

t − (lt l>t )/(1+φ>t lt)
11: lt ← H−1

t φt

12: At ← At +(ut −Atφt −at)l>t
13: Bt ← Bt +(logQt −Btφt −bt)l>t
14: return π0

4 Results
In this section, we provide computational results for the example problem using the numerical algorithm given in

Subsection 3.3. Data assimilation and uncertainty reduction trends are given in Subsection 4.1. Select component design,
sensor placement, and sensor selection results are given in Subsection 4.2. Comparison of total costs across all policies are
given in Subsection 4.3. Finally, a discussion on computational cost and complexity are given in Subsection 4.4.

4.1 Data Assimilation and Uncertainty Reduction
Typical data assimilation and uncertainty reduction as a result of collecting measurements throughout the various lifecycle

paths are shown for uncertain loads in Fig. 3, material properties in Fig. 4, and manufacturing process times in Fig. 5.
In Fig. 3, the loads used for the first design are compared to the loads estimated from operational data of the first design

after manufacturing and deployment. These estimated loads are then used for the final design. The mean and two standard
deviations of the variance for the initial estimate of loads (before any data assimilation) are shown with the red dashed-dotted
line and red shading, respectively. Similarly, the mean and two standard deviations of the variance for the estimate of the loads
after a design is deployed are shown with the blue dashed line and blue shading, respectively. The actual loads to be learned
are shown with the thick magenta line. In this figure, we see that the large shifts in the mean for all loading components and
variance reduction of the moments and shear after data assimilation indicate that the design of the next generation can be built
lighter (and therefore at a lower cost) than the previous generation. This is because the loads for this particular scenario are
learned to be of lower magnitude than what was used for the design of the previous generation. However, in order to have
obtained this knowledge first, we had to manufacture and deploy first, foregoing any benefits provided by performing coupon
experiments sooner.

In Fig. 4, the estimates of material strength properties known initially are compared to the estimates after learning from
coupon level experiments. The probability density function for the initial estimate of strength properties is given by the red
shaded curve. Similarly, the probability density function for the strength properties after performing coupon level experiments
is given by the blue shaded curve. The actual strength properties to be learned are shown with the thick magenta vertical
line. Here we see that the large shifts in the mean and variance reduction of the strength properties after performing the
coupon experiments indicate that the next design to be deployed will benefit from higher and more confident material strength
property estimates and therefore be lighter and of lower cost. Of course, to have obtained this knowledge first, we had to forgo
deploying a design earlier and the potential benefits it could have provided.

In Fig. 5, the estimates of manufacturing timestamps known initially are compared to the estimates after learning from
data collected from the manufacturing of a component. The mean and two standard deviations of the variance for the initial
estimate and final estimate of the timestamps are shown with the blue-shaded bars and yellow-shaded bars, respectively. The
actual timestamps to be learned are shown with the red-shaded bars. From this figure, we see that in addition to achieving
better estimates of process times, we also see that only a few number of process steps contribute significantly to the total
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Algorithm 3 Cost and Constraint Functions
1: procedure COSTFUNCTION(ut ,Dt ,π0)
2: if t < T and γ > 0 then
3: for i = 1 : 1 : Ms do
4: ût ← Sample in a neighborhood of ut

. Obtain measurement through forward simulation
5: zt ∼ p(zt | It , ût)

. Sample forward value function
6: Vt+1← exp{Bt+1φt+1(Φt(Dt , ût ,zt))+bt+1}

. Update Ct using RLS update rule
7: ϕt ← ϕt(Dt , ût)

8: qt ← J−1
t ϕt

9: J−1
t ← J−1

t − (qtq>t )/(1+ϕ>t qt)

10: qt ← J−1
t ϕt

11: Ct ←Ct +(logVt+1−Ctϕt − ct)q>t
. Construct forward value function

12: St ← exp{Ctϕt(Dt ,ut)+ ct}
13: else

. VT+1 (and hence ST ) is zero
14: St ← 0

. Evaluate Ot using Monte Carlo
15: Ot ← 1

N ∑
N
i=1 rt(Dt ,ut ,yi

t) where yi
t ∼ p(yt | It ,ut)

. Construct Bellman equation
16: Qt ← Ot + γSt

17: return Qt

1: procedure CONSTRAINTFUNCTION(ut ,Dt )
. Evaluate Gt using Monte Carlo

2: Gt ← 1
N ∑

N
i=1 gt(Dt ,ut ,yi

t) where yi
t ∼ p(yt | It ,ut)

3: return Gt

manufacturing time.

4.2 Component Design and Sensor Placement/Selection
We highlight the first and final designs produced through the greedy, sensor placement, and sensor selection policies

for the EDD decision sequence in Fig. 6 for component thickness and sensor location. For this example problem, optimized
design geometries tend to be thicker around the holes and near the left and right of the component, and regions directly
below the holes tend to thin out. Optimized geometries also tend to favor modifying thickness over modifying fiber angle to
minimize costs. As a result, fiber angle tends to be similar across all policies for the final design. Typical fiber directions for
the final design are shown in Fig. 7. Here, fiber steering tends to be more prominent near the surface of the component as a
result of the structure being heavily driven by out-of-plane loading for this problem.

4.3 Comparison of Total Costs
Comparison of mean total costs for all policies is shown in Fig. 8. Even though the final design produced from the EDD

and DED policies benefit from both operational and coupon level experimental data, the costs for each policy are accumulated
differently. As a result, we see that the EDD policies achieve lower total costs than the DED policies. The best strategy
from the given initial state of the Digital Thread is to first perform experiments to drive down the uncertainty of the material
strength properties, and second to manufacture and deploy that design to learn about the uncertain loading conditions from
data collected through operation. Interestingly, we see that manufacturing and deploying first leads to higher overall costs as a
result of designing heavier and more conservative designs from the lack of data about the material strength properties earlier.
Additionally, the corresponding operational costs are higher and accrued over a longer time frame. The results overall show
that material strength properties have a larger impact on the overall costs than do the input loads, despite the fact that the
means of the material strength properties were only 10% away from the true values compared to 50% for the input loads.

From Fig. 8 we see that there is no strong benefit of sensor placement in this example problem setting, even when the
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Fig. 3. Typical data assimilation and uncertainty reduction for the uncertain input loads after collecting strain sensor measurements during
operation. Here, σ stands for standard deviation. Loading components are given as a function of a parameter s ∈ [0,1] that wraps around
the outer boundary of the component starting at the center of the far right edge of the component.

Fig. 4. Typical data assimilation and uncertainty reduction for the uncertain material properties (material strengths) after collecting data from
coupon failure test.

location of sensors are not penalized. As long as sensors are initially well dispersed on the top surface of the component,
the cost improvement from moving the sensors around is small (< 1%). However, in our studies we observed that sensor
placement is typically more aggressive in the DED case than the EDD case. This is because in the DED case, not learning the
material properties before manufacturing the first design means that the first design will be thicker (and thus of higher costs)
compared to the EDD case. Consequently, more effort is put into placement of the sensors to recover the total cost.

Though the changes in total accrued cost are low (largely due to our particular choice for the sensor selection costs in
relation to total design costs), Fig. 8 shows that the optimized sensor selection policies have effective sensor utilization of
less than 40%. That is, only 40% of all sensors need to be effectively active to recover sufficient data to minimize costs.
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Fig. 5. Typical data assimilation and uncertainty reduction for manufacturing times after collecting timestamps during manufacturing, ordered
by decreasing step times (bottom to top) of the twenty longest processes. Here, σ stands for standard deviation. Numbers in parenthesis
correspond to the step number in the manufacturing process.

To understand why this is the case, we compare different load components in Fig. 3. For this example setup, the moments
are the best resolved (low variance and better mean estimates) loading components while the normal and tangent loads
are not resolved as effectively. From the standpoint of structural analysis, this means that generated designs are robustly
designed to variations of normal and tangent loading while dominant structural sizing will depend on the resolved moments
and possibly shears. Based on the low effective sensor utilization values, these moments can be resolved effectively with out
large utilization of the available sensors. Interestingly, because sensor utilization is penalized, the optimized sensor selection
policy for the DED case found it more advantageous to drive the sensor utilization to less than 20%, forfeiting some of the
structural efficiency of the next design, in order to preserve lower overall costs.

4.4 Computational Cost and Complexity
Computational cost depends on the number of the design decision variables, number of uncertain input variables, number

of measurements, and mesh discretization for the finite element model and cost calculation. For this example problem, each of
the two design-based stages consisted of 3,105 design variables (parameters for fiber steering, thickness, and sensor location).
The high number of design variables arises as a result of using a direct parametrization of the finite element model. The
number of uncertain input variables is 1,466 per stage (uncertain loads, material properties, and manufacturing parameters).
The number of measurements is 187 per stage (strain measurements, material properties, and manufacturing time stamps). The
policy and function approximation uses 2000 basis functions with input dimensions on the order of the number of uncertain
inputs for µt and Vt , and with input dimensions on the order of the number of uncertain inputs and design decision variables
for St . These approximations were updated one data point at a time using the rank-1 update of the RLS formulations (i.e.,
no matrix inversions). The process models for this problem for the uncertain input variables per stage are taken to be linear
with Gaussian noise, thus the Bayesian filter in Eqn. (4) is calculated analytically using a variant of the Kalman filter (with
the prediction and analyze steps reversed). This requires computing matrix inverses of dimension equal to the number of
measurements per stage. As a result, samples for Monte Carlo estimation could be easily drawn using appropriately scaled
normal distributions at each stage. It was determined that 50-100 Monte Carlo samples can be used to achieve estimates of
Rt and Gt with less than 1% error (the point of reference being taken at 10,000 samples). This was a result of these terms
having small variances for this problem. Optimization was accelerated through the use of gradient information computed
using adjoint solves of the finite element model and analytical derivatives of the policy and function approximation forms.
Detailed description of all modeling of terms can be found in [5]. In total, 100 policy updates for all six policies took on the
order of 8 hrs on a Windows 10 64-bit machine with 16 GB of RAM where the vast majority of the time was spent on solving
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Fig. 6. Thicknesses and sensor placement/selection for the greedy, sensor placement, and sensor selection policies for the EDD decision
sequence. Sensor locations are given by “+” markers while their initial locations (before optimization) are shown in the grayed out circle
markers. Sensor activation probabilities are represented using a gray shading of the “+” markers, lighter for values near zero and darker for
values near one. Strain sensor data is only collected for the first design.

the finite element model. Results were run for 2000 policy updates, although convergence of the policy to within 2% of final
values was achievable within 200 updates.

As with all methods involving quantification of uncertainty, efficiency of the approaches proposed here may become
challenging for higher dimensional problems. For instance, the main hurdle for scalability of the stage-wise optimization (line
8 in TRAINPOLICY of Algorithm 2) is the number of design variables. A way to reduce the number of design variables is
through a reduced geometrical representation, i.e., not using a direct parametrization of a detailed finite element model but
using instead simplified geometry or another low-dimensional representation of the component. Reducing the number of
design variables for a given component then allows scaling up to multiple components more readily. Supplying derivative
information for the stage-wise optimization is also beneficial. In addition, rather than run the detailed finite element model
during filter updates (line 5 in SIMULATEPOLICY of Algorithm 1), measurement generation via forward simulation (line 4 in
SIMULATEPOLICY of Algorithm 1 and line 5 in COSTFUNCTION of Algorithm 3), and stage-wise optimization, a projection-
based reduced order model can be employed instead [39, 40]. For filter updates themselves, exploiting independence of the
uncertain input variables can alleviate high dimensionality allowing one to work with smaller transition models to propagate
uncertain quantities. For instance, the loads on the component during operation are physically independent of the cost of
manufacturing that component, when given the design. Therefore filtering for loads and manufacturing parameters can be
done independently. For non-linear models, sequential importance sampling involved for the filter updates as well as sampling
for Rt and Gt can be accelerated through the use of multifidelity Monte Carlo sampling techniques where inexpensive (but less
accurate) models are used in conjunction with expensive (but more accurate) models to reduce the total number of expensive
evaluations for sampling [41, 42]. In addition, further acceleration for sampling can be achieved through the use of parallel
computations.
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Fig. 7. Typical optimized fiber direction for the final design across all policies. Fiber direction is shown in a scaled vertical coordinate where
a factor of 0.5 of the thickness corresponds to the top surface, a factor of 0 to the mid-plane, and a factor of -0.5 to the bottom surface. Arrows
designate the local fiber zeroth direction.

Fig. 8. Comparison of mean costs for all policies. Mean costs are normalized with respect to the total mean cost of the EDD - Greedy
policy. Effective sensor utilization is reported for policies with sensor selection.
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5 Conclusions
In this paper, we presented a methodology to enable decision making under uncertainty for a Digital Thread enabled

design process and applied it to a relevant structural composites design problem. This methodology enabled assessing
a variety of decision making strategies involving sensor placement, sensor selection, and structural tailoring as well as
high-level decisions involving experimentation or manufacturing and deploying. Implementation of an approximate dynamic
programming algorithm that utilizes a combination of function and policy approximation coupled with recursive least squares
was also detailed.

In addition to learning of sensor limitations in resolving various uncertain loading inputs in the example, our method
recognized that designs can be made robust to normal and tangent loadings where major sizing changes were driven
predominately by moment or transverse shear loading. Simultaneously, our method found that it could significantly reduce the
effective number of sensors that are active to be able to sense the dominant loading components efficiently while forfeiting
learning precisely the other loading components. This translated to reduced costs since fewer effective sensors are needed to
make cost efficient design decisions. In addition, our method was also able to show that sensor placement has only a small
impact on the overall costs for this example problem setting.

Overall, our design methodology showcases how data-driven design decisions change based on the sources of uncertainty
and the sequence in which we attempt to reduce them. Furthermore, limitations and advantages of resources can both be
exploited to drive costs down. Our methodology is able to identity the order in which uncertainty must be reduced to achieve
lowest costs. Resulting policies output realizable design geometries that can be assessed for further detailed analysis. The
novelty in our method is that sensor placement and selection can be determined directly (and to the degree necessary) from
total accrued cost without requiring specification of additional metrics.

Note that our solution method yields a policy, i.e., a function of the Digital Thread. For the example problem, we tested
this policy on just one set of inputs unknown to the policy. However, this same policy can be evaluated for other input
scenarios, provided the inputs and initial conditions of these other scenarios are within some reasonable neighborhood of
where the policy was trained. Furthermore, the computational effort to train a policy is divided between an offline step
(initialization and training of the policy) and inexpensive online evaluations for prediction or subsequent updates.

In our cost modeling for the example design problem, experimental coupon failure test costs are small with respect to
manufacturing costs. This may not be the case for larger scale static/fatigue testing of assemblies or systems. Nevertheless,
our method is adaptable through appropriate modification of the stage-wise costs and constraints. In addition, input loading
variances are relatively high with respect to the mean for this example, so designs generated by the optimized policies reflect
robustness to a wide range of possible uncertain inputs. Reducing input variance can lead to more specialized designs (more
specific tailoring of fiber angles and thickness) through cost savings obtained by limiting uncertain inputs that are less likely
to occur.

Future work will look into multiple loading/operating conditions and failure modes, other recurrent design applications,
expanding lifecycle costs to include inspections, maintenance, and repair, as well as applying the methodology to assemblies
or larger systems consisting of multiple components and/or assemblies. In the latter, further development may likely
need multilevel and sparse representations, reduced parametrization of individual component details, as well as employing
reduced-order modeling of physics-based simulations, in order to manage complexity and retain computational performance.

Acknowledgements
The work was supported in part by AFOSR grant FA9550-16-1-0108 under the Dynamic Data Driven Application System

Program (Program Manager Dr. E. Blasch); The MIT-SUTD International Design Center; and the United States Department
of Energy Office of Advanced Scientific Computing Research (ASCR) grants DE-FG02-08ER2585 and DE-SC0009297, as
part of the DiaMonD Multifaceted Mathematics Integrated Capability Center (program manager Dr. S. Lee).

Obtaining Analysis Code
Code to generate all analysis data and figures is available online at https://github.com/victornsi/DT-AVT.

All code is written in MATLAB R2018b on a Windows 10 64-bit machine.

Nomenclature
Superscripts/Subscripts
t Time or stage designating sequence of decisions
j Iteration index of terms in numerical algorithm
∗ Designation for optimal quantities or functions
Statistical Operators
E Expected value
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P Probability measure
p Probability distribution
Time or Stage
T Set of time or stage indices in consideration
T Final time index or horizon length from t = 0
Uncertain Inputs
yt Uncertain inputs at stage t
Ny Total number of uncertain inputs
ν Measure or volume over uncertain inputs
Measurements
zt Measurements across product lifecycle at stage t
Nz Total number of measurements
Nm Total number of steps in manufacturing process
Ns Total number of strain sensors on component
Decisions
ut Decisions at stage t
ud

t High-level decision between performing coupon testing or manufacturing and deploying a design at stage t
up

t Fiber steering, component thickness, and sensor placement parameters for design at stage t
us

t Sensor selection probabilities for design at stage t
es

t Effective sensor utilization during sensor selection for design at stage t
Nu Total number of decision variables
Np Total number of parameters to define fiber direction, component thickness, and sensor locations
Digital Thread
Dt Digital Thread at stage t
Q t Representation of uncertainty in the product lifecycle at stage t
Rt Resources related to tools, methods, and processes in the product lifecycle at stage t
It History of collected data at stage t
I Information space over product lifecycle
Φt Digital Thread transition model at stage t
Ψt Resource transition model at stage t
Multistage Decision Statement
V ∗t Optimal value function at stage t
π∗t Optimal policy at stage t
µ∗t Optimal policy stage function at stage t
rt Stage-wise cost function at stage t
gt Stage-wise constraint function at stage t
γ Discount factor
Ng Total number of stage-wise constraints for design
Numerical Algorithm
Ot Expected value of the stage-wise cost function at stage t
Gt Expected value of the stage-wise constraint function at stage t
St Expected value of the forward value function at stage t +1
At Matrix of basis coefficients for the policy at stage t
Bt Matrix of basis coefficients for the value function at stage t
Ct Matrix of basis coefficients for St at stage t
at Vector used for setting initial conditions for the policy function at stage t
bt Scalar used for setting initial conditions for the value function at stage t
ct Scalar used for setting initial conditions for St at stage t
φt Vector of basis functions for the value function and policy at stage t
ϕt Vector of basis functions for St at stage t
Ht Incremental regularization matrix used in the recursive least squares update for the policy and value function at stage t
Jt Incremental regularization matrix used in the recursive least squares update for St at stage t
ηt Least squares regularization scaling term for the policy and value function at stage t
κt Least squares regularization scaling term for St at stage t
Mp Total number of basis functions used for the parametrization of the policy and value function
Mv Total number of basis functions used for the parametrization of St at stage t
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