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Abstract

This paper proposes a data-to-decisions framework—a methodology and a com-
putational strategy—to assist real-time decisions associated with structural mon-
itoring and informed by incomplete, noisy measurements. The data-to-decision
structural assessment problem is described in terms of sensor data measure-
ments (such as strain components) and system capabilities (such as failure in-
dices). A MultiStep Reduced-Order Modeling (MultiStep-ROM) strategy tack-
les the time-critical problem of estimating capabilities from measured data. The
methodology relies on an offline-online decomposition of tasks, and combines
reduced-order modeling, surrogate modeling, and clustering techniques. The
performance of the approach is studied for the case of uncertain measurements
arising from spatially distributed sensors over a wing panel. Both sensor noise
and sensor spatial sparsity affect the quality of the information available online.
The discussion is supported by three investigations that explore the efficiency of
the online procedure for multiple combinations of quantity and quality of sensed
data. The method is demonstrated for an unmanned aerial vehicle composite
wing panel undergoing local degradation of its structural properties.

Keywords: data-driven reduced-order modeling, data-driven structural
assessment, data-to-decisions, sparse and uncertain measurements, real-time
capability assessment, self-aware vehicle.

1. Introduction

Advances in sensing technologies offer new opportunities for on-board mon-
itoring of structural health in support of real-time vehicle operational decision
making. As noted in Ref. [1], a modern approach to structural health monitor-
ing should combine sensors and automated reasoning techniques, which together5

can support the data-to-decision flow. One important challenge is the cost (and
possibly weight) penalties of sensing technologies, which motivates the question
of effective strategies to place and employ a limited number of sensors [2–6],
as well as the interest for efficient protocols to handle data acquisition [7, 8].
A second challenge is management of uncertainties in the data-to-decision pro-10

cess, including uncertainty associated with sensor measurements as well as the
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uncertainty introduced through inference from sensor data that may be sparse
and spatially distributed. A third challenge is the limited computational time
and resources associated with data processing and algorithmic execution in sup-
port of real-time decision making. These challenges motivate a data-to-decisions15

mapping that is rapid, adaptive, efficient, effective, and robust.
Existing approaches to structural health assessment include strategies that

evaluate changes in structural properties through dynamic analysis and modal
characterization [9–15], and strategies that estimate structural parameters via
static responses in terms of displacements [16–20] or strain [21, 22]. Both dy-20

namic and static assessment strategies aim to solve a parameter identification
problem, with signature analysis, pattern recognition, system identification and
model updating being the main approaches used [23–25]. Quantification of the
uncertainties that affect the measurements combined with different levels of
knowledge about the damage is an important effect that has been studied in25

several contexts [26–28]. To target rapid online structural assessment, neural
networks have been used to cast the damage identification as a pattern recogni-
tion problem [12, 20, 29–33], while surrogate modeling has been used to create
efficient representations of the behavior of damaged structures [34–40].

This paper addresses real-time structural health monitoring as a system30

assessment task in support of autonomous operational decisions. The decision-
oriented perspective allows reframing the structural assessment task to empha-
size the prediction of system capabilities rather than just the identification of
system parameters. In particular, we formulate the problem in the form of a
sense-infer-plan-act information flow associated with two distinct sets of35

quantities of interest: measured quantities of interest and capability quanti-
ties of interests (Figure 1). Measurements are physical quantities that can be
monitored with sensors (e.g., strain components); they represent a source of
information about the state of a system (e.g., damage condition). Capabilities
(e.g., failure indices) are quantities that dynamically evolve with the state of40

a system; they limit the space of possible actions (e.g., vehicle maneuvers). In
this sense-infer-plan-act setting, we then tackle directly the time-critical
problem of estimating capabilities from measured data. In doing so, we avoid
the costly inverse problems related to the inference step (from measurements to
system parameters, Figure 1) and we reduce the computational burden associ-45

ated with full-order prediction problems (from system parameters to capabili-
ties, Figure 1). Instead, we exploit directly the low-dimensional nature of the
measurement-to-capability mapping.

In previous work, we introduced a data-driven adaptive strategy that ex-
ploits reduced-order models, surrogate modeling and clustering techniques [41].50

Our approach combines parametric proper orthogonal decomposition (POD)
[42–45], self-organizing maps (SOMs) [46–49], and local response surfaces, into
a MultiStep Reduced-Order Modeling (MultiStep-ROM) strategy. The method-
ology comprises an offline phase, in which we generate data from high-fidelity
physics-based simulations (e.g., a finite element model) and construct a sur-55

rogate model, and an online phase, in which the surrogate model is exploited
to realize a fast mapping from sensor measurements to vehicle maneuver ca-
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Figure 1: sense-infer-plan-act framework associated to measurements and capabilities. The
dotted box (black) frames the original workflow that includes parameter identification (from
measurements to system parameters) and full-order prediction problems (from system param-
eters to capabilities). The solid line box (green) frames our MultiStep-ROM approach that
exploits the low-dimensional nature of the measurement-to-capability mapping: solid arrows
indicate the offline phase, dashed arrows denote the online phase.

pabilities. In [41], the mapping strategy was demonstrated in a deterministic
structural assessment problem, i.e., assuming that measured values and sensor
locations were exactly known.60

In this paper, we extend this work to incorporate the effects of uncertainty.
In particular, we develop the MultiStep-ROM approach to assist real-time deci-
sions informed by uncertain sparse measurements. We consider uncertainty con-
tributions due to (i) lack of knowledge about the actual location of the sensors
and (ii) measurement noise associated with sensor accuracy. To study our com-65

putational methodology applied to this class of problems, we define performance
metrics to assess accuracy and computational cost of the online procedure. The
strategy is demonstrated for a specific data-to-decision problem of autonomous
structural assessment onboard an unmanned aerial vehicle (UAV). In particu-
lar, we consider a UAV composite wing panel undergoing local degradation of70

the structural properties (damage). In the context of this representative test
problem we investigate the limits and potential (number of sensors needed and
robustness to uncertainty) of our approach.

Section 2 of this paper summarizes the MultiStep Reduced-Order Modeling
method—originally introduced in Ref. [41]—and expands the method to include75

further algorithmic choices to improve online performance. Section 3 defines the
structural assessment application addressed in this paper. In Section 4, we pro-
pose particular metrics to assess accuracy and runtime performance. Section 5
discusses our investigations and the relevant outcomes. Finally, Section 6 sum-
marizes the key findings and concludes the paper.80
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2. MultiStep-ROM: Methodology and parameters

Our MultiStep Reduced-Order Modeling (MultiStep-ROM) strategy is based
on an offline-online structure. During the offline phase we exploit the informa-
tion provided by high-fidelity complete datasets to obtain an adaptive efficient
model. This efficient model is then used during the online phase to rapidly85

process the information provided by sparse sensor measurements and estimate
specific quantities of interest. In the following sections we briefly introduce
these two phases together with the related algorithmic parameters. The details
of the MultiStep-ROM methodology are described in Ref. [41]. In this paper we
extend this technique to estimate system capabilities from sensor measurements90

that are sparse and affected by uncertainty.

2.1. Offline phase

The offline phase comprises four computational steps dedicated to the con-
struction of an adaptive efficient model. The core idea is to leverage the physics-
based knowledge, provided by high-fidelity data sets, by embodying it in a useful95

form through a combination of reduced-order modeling techniques and localiza-
tion strategies.

2.1.1. Data collection

High-fidelity data represent our source of information about the physical
quantities we aim to process online. These quantities of interest are all functions100

of the system parameters x and can be divided into two main groups reflecting
the online distinction between quantities measured by the sensors and quantities
characterizing system capability, Figure 1. Accordingly, we can distinguish M
measured quantities of interest, qm, m = 1, ...,M , and C capability quantities
of interest sc, c = 1, ..., C.105

The first step collects sets of complete snapshots of measurements and ca-
pabilities. In many cases these data are generated by running numerical high-
fidelity simulations for ns different x; however, the source of information can
be a diverse set of models of the system, including historical and experimen-
tal data. In general, the number of snapshot elements, ne, can differ for each110

quantity of interest, while all the quantities need to be evaluated for the same
ns system conditions.

2.1.2. Projection-based model order reduction

The second step exploits the collected data to realize reduced-order models
for each measurement qm(x) and capability sc(x). In particular we employ115

parametric proper orthogonal decomposition (POD) [50] because it has been
shown to be effective in compressing high-dimensional information arising from
discretized fields [51–55], such as those in our problem of interest.

Considering the method of snapshots introduced by Sirovich [43] and the
connection between POD and singular value decomposition [56, 57], for each
quantity of interest we assemble the ne × ns matrix of complete snapshots and
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compute the POD basis vectors. This orthonormal basis is optimal in the least-
square sense [58, 59] and ordered according to the fraction of variance explained
by each mode (reflected by the magnitude of the corresponding eigenvalue). The
reduction is then achieved by retaining only a small number of the POD modes
that capture most of the energy of the system. Thus, each quantity of interest
can be approximated in a low-dimensional representation as a combination of
its dominant POD modes:

q̃m(x) = q̄m +

nm∑
j=1

αmj (x)φmj m = 1, ...,M, (1)

s̃c(x) = s̄c +

lc∑
j=1

βcj (x)ψcj c = 1, ..., C. (2)

In Equation (1) and (2), q̄m and s̄c are the average value of qm, over the
snapshots {qim}

ns
i=1, and the average value of sc, over the snapshots {sic}

ns
i=1,120

respectively. In the expansion terms, {φmj }
nm
j=1 and {ψcj}

lc
j=1 denote the mth

measurement POD modes and the cth capability POD modes, respectively;
similarly, {αmj }

nm
j=1 indicates the mth measurement POD modal coefficient and

{βcj}
lc
j=1 represents the cth capability POD modal coefficient.

The model reduction is realized by truncating the POD expansion such that
nm � ne and lc � ne. The criteria to determine such truncation are based on
the amount of information recovered with the retained terms. This is commonly
assessed by evaluating the amount of cumulative energy E associated to the
preserved modes:

E(nm) =

∑nm
j=1 λ

m
j∑ns

j=1 λ
m
j

m = 1, ...M E(lc) =

∑lc
j=1 µ

c
j∑ns

j=1 µ
c
j

c = 1, ..., C, (3)

where λmj and µcj are the magnitudes of the POD eigenvalues associated to the125

jth POD mode of the mth measurement and cth capability, respectively.
This step aims to construct the model so as to avoid the computational

cost associated with the direct evaluation of high-fidelity (full-order) models
to compute qm(x) and sc(x). These high-fidelity models are typically too ex-
pensive and onerous to run in real-time. With the next two steps we present130

a method to map rapidly and effectively from measurement POD models to
capability POD models. Specifically, we seek a mapping from the measure-
ment modal coefficients {αmj }

nm
j=1, m = 1, ...,M to capability modal coefficients

{βcj}
lc
j=1, c = 1, ..., C. A relationship that globally models this mapping with ac-

ceptable accuracy may still be complicated and too expensive to meet real-time135

resource constraints. Therefore, we propose to tackle this problem with a divide
and conquer strategy comprising the identification of localized subdomains and
their characterization with local, simple models.
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2.1.3. Localization

The third step of our offline process is dedicated to the empirical identi-140

fication of subdomains in the space defined by the POD coefficients retained
for all measurements and capabilities. The main goal is to find domains in
the coefficients space over which we characterize the relationship between mea-
surements and capabilities with simple local models (e.g., low-order response
surfaces). Several localization strategies are possible [60–64]; our particular im-145

plementation adopts self-organizing maps (SOM), also referred to as Kohonen’s
method or Kohonen’s map [46–49]. SOM is a neural network that allows group-
ing of sample data according to their intrinsic similarities. It also projects the
multidimensional input space onto a lower dimensional topological space where
proximity of the clusters reflects their similarity in the higher dimensional input150

space.
Training data for the SOM is gathered by exploiting the POD models ob-

tained in the previous step. For each quantity of interest, we evaluate the modal
coefficients associated to each system state sampled in the first step. For system
state x, we collect these modal coefficients in the vector τ (x):

τ (x) =

[
{αmj (x)}j=1,...,nm

m=1,...,M
, {βcj (x)}j=1,...,lc

c=1,...,C

]
= [α(x),β(x)] . (4)

This results in a vector for each one of the ns sampled states: {τ i}ns
i=1, where

τ i ≡ τ (xi) for state xi. The collection of these vectors constitutes the SOM
training dataset. Each vector has dimension npod = nα + nβ , where nα =∑M
m=1 nm and nβ =

∑C
c=1 lc denote the size of vectors α(x) and β(x), respec-155

tively.
During the training phase, the SOM computes a set of nw weight vectors,

{wj}nw
j=1, each of dimension npod. These weight vectors are the result of an

iterative unsupervised learning [64–67] that groups similar training vectors into
nc clusters. For each cluster k = 1, ..., nc, the training phase also determines
the representative weight vector, wk, as the one for which the distance from the
training vectors in k is minimized:

k = arg min
j∈1,...,nw

{‖τ i −wj‖}. (5)

Specifically, we adopt the distance metric ‖ · ‖Λ that we introduced in Ref. [41]:

‖τ i −wk‖Λ =
√

(τ i −wk)>Λ(τ i −wk). (6)

Equation (6) indicates a scaled L2-norm where the diagonal matrix Λ contains
the normalized POD eigenvalues, ordered to correspond to the POD coefficients
sequence in τ , as defined in (4). At the end of the training phase, the weight
vectors represent the cluster prototypes, embodying the average properties of160

their training elements. By adopting metric (6) as a dissimilarity measure, we
aim to achieve a better characterization of the most energetic and informative
dimensions of our POD coefficients space. The results discussed in Section 5 of
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this paper will reveal the advantages of this particular choice, as it is largely
responsible for the efficient behavior of our strategy.165

The number of clusters nc is not imposed a priori, but determined by the
SOM. However, this output of the localization step is limited by the number
of weight vectors that characterize the SOM neural network. Thus, nc ≤ nw

because each cluster has a representative weight vector, but in principle not
all the nw vectors end up leading a cluster. Moreover, at this stage we must170

consider another important constraint: each of the nc clusters must include a
minimum number of training vectors, nτ , to permit the construction of the local
models. Thus, since the overall number of training vectors is ns, the size nw of
the SOM network should be chosen such that nw < ns/nτ .

The final SOM clusters empirically represent subdomains in the space of the175

retained POD coefficients; in the next step, each subdomain is characterized
with its own local model. Therefore, the algorithmic parameter nc plays a key
role and represents a trade-off between partitioning the POD coefficients space
to have simple local models and avoiding data over-fit.

2.1.4. Local data-fit models180

The fourth step finalizes our divide and conquer approach to obtain an ef-
fective mapping from measurement POD coefficients α to capability POD co-
efficients β. We wish to characterize each subdomain k with a dedicated set of
simple data-fit models of the capability coefficients as a function of measure-
ment coefficients. In particular, for every single capability coefficient βcj we seek
a simple response surface (RS) model for βcj (α), valid exclusively for the specific
kth subset:

β(k) ≈ β̃(α)(k) = {β̃cj (α)}(k)
j=1,...,lc
c=1,...,C

, k = 1, ..., nc, (7)

where β̃cj (α) ≈ βcj (x) and α = α(x) as defined in (4). Equation (7) indicates the
set of functions that constitute the actual online mapping and will eventually
be suitable to run in real time.

In order to meet a problem’s specific computational constraints and resource
limitations, this last offline phase can be properly tuned by acting on a few185

parameters: (i) the actual number of measurement modal coefficients that con-
stitute the domain of the local RS, nrs

α , (ii) the degree of the local polynomial
RS, p, and (iii) the actual number of retained capability modes, nkβ . We discuss
here some key considerations regarding choices of these parameters.

Response surface approximations tend to be more effective and reliable for190

smooth functions defined on low-dimensional domains. The final objective here
is to obtain reliable approximations while keeping the local models simple.
Therefore, we adopt RSs defined over a nrs

α -dimensional domain (αrs ∈ Rnrs
α )

rather than over the entire nα-dimensional space of retained measurement POD
coefficients (α ∈ Rnα): if nrs

m ≤ nm for each m measured quantity, then195

nrs
α =

∑M
m=1 n

rs
m ≤

∑M
m=1 nm = nα. Our particular strategy takes advan-

tage of the fact that for each measurement m the nrs
m modal components are

7



dominant and ordered. In this way, the resulting RS domain still represents a
large information content to obtain useful local approximations β̃cj (α

rs). Then,
we act on p and choose simple low-degree polynomials as local RS.200

These choices lead to approximations β̃cj that are more effective for the first
POD coefficients because the first modal terms are smoother than the higher
order components. We take into account this fact to realize a further selective
reduction of the capabilities terms. We introduce a criterion to cut out all the
capability coefficients that are poorly approximated in offline tests. By fixing205

a maximum allowable offline error for β̃cj , we aim to limit the large corruption
introduced online with badly approximated components (typically the higher

order ones). As a consequence lkc ≤ lc and nkβ =
∑C
c=1 l

k
c ≤

∑C
c=1 lc = nβ ,

that is, the number of capability coefficients to approximate can be reduced
and generally differ from cluster to cluster, as the set of local RSs does.210

2.2. Online phase

The online phase constitutes the computational procedure to run on-board
to execute decisions in real-time. This procedure consists of four steps leading
to a final estimate of system capabilities, given sparse sensor measurements.
The online process addresses the sense-infer-plan-act information flow with215

all the related challenges, including the incomplete measurements and the pa-
rameter identification problem (see Figure 1). Our strategy aims to exploit
the multi-step adaptive model reduction computed offline to map directly from
measurements to capabilities without resolving the expensive inverse problem
placed in between.220

2.2.1. Measurement coefficients reconstruction: from q̂m to αg

The first online step is the most delicate one because it deals with sensor
measurements, that is, the on-board source of information about the condition
of the system. Since those data feed the entire online process, measurements
should be carefully manipulated. A further significant challenge is the fact that225

online we can usually measure our quantities of interest only in a fraction (fp)
of the complete points we have offline. This is due to both the large cost of
sensing systems and the limited resources available on-board [68, 69].

We need to extrapolate the most informative content from sparse data with
an efficient computational process. In particular, we here wish to translate the
sensor measurements into input data suitable for a mapping in the form β(α),
as defined offline with Equation (7). Hence, we have to reconstruct the POD
coefficients of the measured quantities α using the information provided by
incomplete (sparse) snapshots q̂m, m = 1, ...,M . To do this, for each measure-
ment m we exploit the related POD basis {φmj }

nm
j=1, computed offline (1), to

recover the coefficients using gappy POD (GPOD)[70–72]. This involves solving
M linear systems in the form:

Gmαmg = fm (8)

8



where αmg =
[
αmg1, ..., α

m
gnm

]>
are the unknown mth POD coefficients to com-

pute, the ijth entry of Gm is Gmij = (φmi , φ
m
j )g, the ith entry of vector fm is230

fmi = (q̄m, φ
m
i )g, and (·, ·)g denotes the gappy inner product which considers

only those elements in the vectors that correspond to the available sensed data.
Finally, the coefficients reconstructed for the M measurements are all gathered
in αg =

[
(α1

g)>, ..., (αMg )>
]
.

It can be seen that αg is a nα-dimensional vector; nevertheless, there may235

be an advantage in reducing the number of modal components to be recon-
structed online via GPOD, such that ng

α ≤ nα (and αmg = [αmg1, ..., α
m
gng
m

]> with

ng
m ≤ nm). We also require that nrs

α ≤ ng
α, since we wish to recover at least

the modal coefficients over which we defined our local RSs; otherwise, we will
not have sufficient information to estimate β later on (Section 2.2.3). These240

considerations limit the range of choices for the parameter ng
α and constrain the

selection of the modal term αg to recover .

2.2.2. Classification: from αg to wk

The second online step determines the set of models (those corresponding
to the k∗th cluster) best suited to represent the system condition revealed by
sensor measurements. To do this, we need to classify the sensed information,
now condensed and represented in terms of coefficients αg, into one of the nc
clusters determined offline with SOM. The SOM clusters are represented by
their leading weight vectors {wj}ncj=1 (prototypes). Thus, we simply need to
find the closest cluster whose weight vector wk∗ minimizes the distance metric
(6) defined offline:

k∗ = arg min
j∈1,...,nc

{‖τ ∗ −wj‖Λα}. (9)

In Equation (9), vector τ ∗ = [αg,β
∗] collects the ng

α coefficients αg, recon-
structed via GPOD, and the nβ-dimensional vector of unknowns β∗, while245

‖ · ‖Λα indicates that the weighted norm ‖ · ‖Λ is now computed only over
the coefficients αg, that is, over ng

α elements of the vectors. If ng
α < nα, the

tuple αg includes zero elements corresponding to the non reconstructed modal
terms so that αg = [(αmg )>, [0]nm−n

g
m ]Mm=1 where [0]nm−n

g
m denotes a (nm−ng

m)-
dimensional row vector of zeros.250

2.2.3. Local approximation: from wk to β(k)(αg)

Once the most representative cluster (the k∗th) is identified, the set of related

models β̃
(k∗)

computed offline is used to approximate each of the nk
∗

β modal
coefficients of the capabilities as a function of the reconstructed αg:

βcj ≈ β̃cj (αrs
g )(k∗), (10)

where αrs
g denotes αg in the nrs

α -dimensional domain of the local RSs. This third
online step explains the constraint introduced in Section 2.2.1 on the minimum
number of measurement coefficients to reconstruct online via GPOD. According
to that, we wish to recover at least the modal components that constitute the255
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domain of the local RSs (nrs
α ≤ ng

α). Otherwise, in this third stage we would
not have enough information to estimate the unknown coefficients βcj with our

local models. In addition, note that nk
∗

β ≤ nβ ; in practice, we do not recover all

the nβ elements of the unknown β∗, but only the nk
∗

β components downselected
offline (see Section 2.1.4).260

2.2.4. Capability estimate: from β(k)(αg) to sc(αg)

The last online step provides the final estimate of the capability quantities
of interest, that is the actual information we wish to derive from the quantities
measured by the sensors. The expansions (2), computed offline, are here ex-
ploited to estimate each capability s̃c as a combination of its POD modes ψcj :

s̃c(αg) = s̄c +

lk
∗
c∑
j=1

β̃cj (αg)(k∗)ψcj c = 1, ..., C. (11)

Equations (11) differ from the original expansions (2) for the coefficients that
are now approximated with the k∗th set of local models (10). Moreover, each
capability expansion might not include all the original lc modal terms retained
in (2), but only the subset of lk

∗

c components screened with the downselection265

introduced in Section 2.1.4.
In this paper we employ the criteria introduced in Section 2.1.4 and we

set the algorithmic parameters to obtain an efficient implementation of our
methodology. We adopt simple local RS models defined on a low-dimensional
domain (nrs

α � nα) and retain only the few capability modal terms that satisfy270

offline constraints (nkβ � nβ , ∀k). Such further model reductions permit very
efficient implementations and help to speed up the entire online phase.

3. Structural assessment problem

In this paper we consider the application of the strategy to the structural
assessment of an unmanned aerial vehicle (UAV). Specifically, we address the275

test problem of a composite wing panel subjected to static, uniaxal, uniform
compression loading. Figure 2 illustrates the layout of the panel. It consists
of a 18×18 square-inch component made up of four carbon-fiber layers with
symmetric staking sequence [45◦, 0◦]s. The panel has fastened borders reinforced
with two additional plies of orientation 0◦ and 45◦.280

The collection of the snapshot datasets is achieved through high-fidelity anal-
yses of panel behavior for different damage conditions. For these purposes, we
employ a finite element model: the panel is discretized into ne = 3921 two-
dimensional laminate plate elements. The four edges are clamped in fasteners
locations, emulating the presence of the bolts along the perimeter. The presence285

of the damage is simulated by weakening the local stiffness of the elements that
belong to the prescribed damage area. This specific modeling choice is one of
the simplest options among possible models for structural damage and presents
some fidelity limitations. Nevertheless, it still provides a useful basis on which
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Figure 2: Panel parameters (damage location and damage size) and loading definition. Panel
layout and layers sequence.

to investigate the effects of limited and noisy data on our ability to conduct290

real-time structural assessments.

3.1. Problem setup

Referring to the general structure of the information flow represented in Fig-
ure 1, it is possible to describe our structural assessment problem in terms of
system parameters x, measured quantities of interest qm, and capability quan-
tities of interest sc. The system parameters define a specific damage condition
in terms of damage location and extent. Our parameter vector x includes five
components prescribing damage size along y and z directions (∆y and ∆z, re-
spectively), damage centroid location on y and z coordinates (yd and zd), and
damage depth as the number of undamaged plies (dd):

x = [∆y,∆z, yd, zd, dd]
>. (12)

The measured quantities of interest are three components of strain, for which
values of the specific locations are provided by sensors placed on the external
face of ply 4. We consider the normal components along the main orthotropic
axes of the ply (εn1 and εn2) and the shear component on the ply plane (εs12).
This leads to three distinct measurement quantities of interest (M = 3) for a
given state x:

q1(x) = εn1(x) q2(x) = εn2(x) q3(x) = εs12(x), (13)

where each qm(x) is an ne-dimensional vector whose components are the element-
wise values of the mth strain quantity over the panel. Given fixed loading and
boundary conditions, the deformation field is determined by the specific dam-295

age affecting the structural integrity of the panel. Therefore, the measured
quantities defined in Equation (13) are all functions of the structural parameter
x.
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We consider a single capability quantity of interest: the failure index, FI,
defined as the ratio between the experienced stress and the maximum allowable
stress (a set of specific properties of the material that characterize its behavior
under tension, compression and shear loading). Due to the orthotropic nature of
our material, five failure modes characterize a single ply, yielding five different
values of FI for each ply, in every element of the panel. We condense this data
into a single capability vector (C=1) of dimension ne:

s1(x) = FI(x) (14)

whose components are the maximum values of FI over all the failure modes and
plies, for each element. As for the strain field, given fixed loading and boundary300

conditions, the stress field is determined by the characteristics of the damage
affecting the panel. Hence, the capability quantity defined in Equation (14) is
a function of the structural parameter x.

3.2. Algorithmic setup

The study presented in this paper employs two sets of reference data: an305

evaluation set, to compute the surrogate models offline, and a validation set, to
test the models and simulate the online phase. The evaluation set consists of
measurements and capability snapshots computed for ns =3000 different damage
conditions x. The different cases are selected with a Latin hypercube exploration
of the parameter space described in Table 1. Similarly, a second different Latin310

hypercube exploration determines the sample of nv = 500 damage conditions
that constitute the validation set.

Parameters Min Value Max Value Units

∆y damage size 2 8 [in.]
∆z damage size 2 8 [in.]
yd damage location 4 14 [in.]
zd damage location 4 14 [in.]
dd damage depth 1 3 [plies]

Table 1: Damage parameter space: components and related bounds of variation.

We extensively investigated the sensitivity of our methodology with respect
to a variety of algorithmic settings. In particular we studied how the tuning
parameters affect the accuracy and computational time that characterize the315

online evaluations. We take into account this experience to choose the algo-
rithmic setup of our strategy. The tuning parameters are: (i) the number of
SOM weight vectors, nw, that is the maximum number of possible SOM clus-
ters partitioning the space of modal coefficients (as nc ≤ nw), (ii) the number
of measurement modal coefficients that constitute the domain of local RS, nrs

α ,320

(iii) the degree of the local polynomial RS, p, and (iv) the maximum allowable
offline error for capability coefficients, mβ , that determines the actual number
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of retained capability modes nkβ . The role of these parameters was already dis-
cussed in Sections 2.1.3 and 2.1.4. For all the simulations presented hereafter in
this paper we adopt a 5 × 5 SOM network and linear local RSs β̃cj (α

rs) whose325

domain is defined by the first two modal coefficients of each measured quantity
(αrs = [α1

1, α
1
2, α

2
1, α

2
2, α

3
1, α

3
2]). We also allow a 30% relative error in offline re-

construction tests for βcj . These choices lead to a specific setup with nw = 25,
nrs
α = 6, p = 1, and mβ = 30%.

Measurements System Parameters Capabilities

Strain Components Damage Condition Failure Indices

Data Collection

Model Reduction

Localization

Local Models

Sparse and Uncertain

Sensor Measurements

Capability

Estimate

wing
panel

1
Figure 3: The MultiStep-ROM approach applied to the structural assessment of a wing panel.
Solid line arrows (blue flow) illustrate the offline process (data collection, model reduction,
localization, local models). Dashed line arrows (red flow) depict the online procedure to
estimate capabilities from sparse and uncertain measurements.

Figure 3 illustrates the conceptual stages of our offline-online computational330

strategy applied to the real-time structural assessment of a wing panel. The
solid-line arrows of the diagram depict the multi-step offline procedure (blue
flow); the information contained in the evaluation set (3000 damage cases) is
progressively condensed (via POD, SOM, and RS) into simple models that em-
body the knowledge to be used online. The dashed-line arrows visualize the335

on-board process (red flow) that exploits such knowledge to estimate the Failure
Index (capability quantity) from sparse gages of strain components (incomplete
measured quantities). The simulation of the real-time process is replicated for
the entire validation set, that is, for 500 different damage cases.
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4. Assessment metrics340

In this paper we assess and discuss the behavior of our computational strat-
egy in the case of sparse measurements affected by uncertainty. In particular
we wish to monitor the procedure step by step, throughout the entire online
phase. To do that, we propose specific accuracy and runtime metrics for each
online stage.345

Measurement coefficients reconstruction.. The accuracy of the first step is as-
sessed using the reconstruction error arising from the gappy approximation of
the POD coefficients, αg. For each modal term we compute the normalized
root mean square error (εαmj ) over the entire validation set and scale it with

its relative energy contribution Emj = λmj /
∑ns

i=1 λ
m
i . Then, we average over

the reconstructed terms to obtain the accuracy measure Emα for each quantity
m = 1, ...,M :

Emα =
1

ng
m

ng
m∑

j=1

εαmj E
m
j with εαmj =

‖αmj −αmgj‖2(
(αmj )max − (αmj )min

)√
nv

× 100%. (15)

In Equation (15), αmj = {αmj (xi)}nv
i=1 are the jth POD coefficients of the

mth quantity for all nv validation cases. Similarly, αmgj = {(αmgj)i}
nv
i=1 denotes

the corresponding reconstructions obtained from sensor measurements using
gappy POD. (αmj )max and (αmj )min are the maximum and minimum values in
αmj , respectively. ng

m indicates the number of reconstructed modes for the350

mth quantity such that
∑M
m=1 n

g
m = ng

α. The scaling term Emj mitigates the
additive effects that would otherwise lead to larger errors by simply increasing
the number of reconstructed modal coefficient; this permits a fairer and more
meaningful comparison of the different cases investigated in this paper. Our
structural assessment problem has M = 3 measured quantities of interest; thus355

we monitor E1
α and E2

α for the normal components of strain, and E3
α for the

shear one.

Classification.. The second online step assigns the sensed condition to the most
representative cluster. This classification is done according to the dissimilarity
measure we defined in Equation 6 to determine the closest cluster. To assess360

our online classification step we exploit an internal measure commonly used in
cluster analysis [67, 73]: the sum of squared errors, SSE. Specifically, we aim
to compare the offline clustering (of ns =3000 evaluation cases) with the online
classification (of nv =500 validation cases). The SSE is an additive measure that
grows with the number of clustered data; as we are comparing two sets with365

different cardinality, we need to mitigate this effect. Therefore, we rather use the
coefficient of determination R2 = 1 − SSE/SST, where SST denotes the total
sum of squares. Considering the particular dissimilarity measure adopted as
clustering and classification criterion, we define the offline and online coefficients
of determination accordingly.370
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Offline, the sum of squared errors and the total sum of squares are computed
for the SOM clustering of the training vectors {τ i}ns

i=1 (defined in Section 2.1.3):

SSEoff =

nc∑
k=1

nk∑
i=1

‖τ ki −wk‖2Λ SSToff =

nc∑
k=1

nk∑
i=1

‖τ ki −m‖2Λ. (16)

In Equation (16), wk denotes the kth cluster’s prototype, that is the SOM
weight vector that embodies the average properties of the nk elements in cluster
k, wk ≈ mk =

∑nk
i=1 τ

k
i /nk. The vector m is the mean vector evaluated

over all ns elements of the evaluation set. Therefore, R2
off indicates how good

the SOM clustering is in representing the training data in the evaluation set.375

Our scaled distance metric prioritizes the characterization of the most energetic
components, that is, the first modal terms of each quantity of interest. We can
observe this by comparing each cluster’s prototype wk with the corresponding
mean vector mk component-wise: they match accurately for the first modes of
each quantity, while the approximations progressively worsen for less informative380

terms (Figure 4).
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Figure 4: Clusters Prototype wk ---- and Clusters Mean mk × compared for different αmj .

Measure (6) privileges the characterization of the most energetic components, that is, the first
modal terms of each quantity of interest. Hence, prototypes and means match very accurately
for the first modes (first column), while the approximations progressively (left to right) worsen
for less informative terms.

For the online classification task, the sum of squared errors and total sum of
squares are evaluated over the validation cases {τ i}nv

i=1 (see τ ∗ in Section 2.2.2):
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SSEon =

nc∑
k=1

nk∑
i=1

‖τ ki −wk‖2Λα SSTon =

nc∑
k=1

nk∑
i=1

‖τ ki −m‖2Λα . (17)

In Equation (17), wk and m are again the kth prototype and the mean vector
computed offline—as, by construction, both the evaluation set and the vali-
dation set are representative samples of the same space and have the same
statistical moments. Thus, R2

on indicates how good is the SOM clustering (de-385

termined offline) in representing the validation set. We aim to compare different
online setups by monitoring their coefficients of determination: the more R2

on

approaches the offline reference value, the better the accuracy of the online
classification.

Local approximation.. The accuracy metric for the third online step relies on
the approximation error introduced by modeling the capability POD coeffi-
cients βcj as function of the reconstructed measurement POD coefficients αg.
For each capability quantity of interest we compute the normalized root mean
square error εβcj of the local approximation βcj(αg) with respect to the original

capability POD coefficients βcj ; then we scale it with the related fraction of en-
ergy Ecj = µcj/

∑ns

i=1 µ
c
i to mitigate the accumulation effect. For each quantity

c = 1, ..., C, the accuracy measure Ecβ is computed by averaging εβcj over the nkβ
retained terms:

Ecβ =
1

nkβ

nkβ∑
j=1

εβcj E
c
j with εβcj =

‖βcj − β
c
j(αg)‖2(

(βcj )max − (βcj )min

)√
nv

× 100%. (18)

In Equation (18), βcj = {βcj (xi)}
nv
i=1 are the jth POD coefficients of the cth390

capability quantity for all nv validation cases. Similarly, βcj = {βcj (αig)}nv
i=1 de-

notes the corresponding approximations obtained with the local linear response
surfaces. (βcj )max and (βcj )min are the maximum and minimum values in βcj ,
respectively. Since for our application C= 1, we consider the single metric Eβ
and drop the superscript.395

Capability estimate.. The overall accuracy of our strategy is assessed at the
fourth step, the final estimate of capability quantities of interest. For each
validation snapshot i, we compute the normalized root mean square error εisc
in predicting the cth capability snapshots s̃c(α

i
g) with respect to the original

FEM values sc(x
i). Then we define our accuracy measure Ecs averaging over

the entire validation set of nv damage cases:

Ecs =
1

nv

nv∑
i=1

εisc with εisc =
‖sc(xi)− s̃c(α

i
g)‖2

((sc)max − (sc)min)
√
ne
× 100%. (19)

In Eq (19), sc(x
i) denotes the original snapshot of the cth capability quantity for

the ith damage case, while s̃c(α
i
g) indicates its final estimate obtained online.
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(sc)max and (sc)min are the maximum and minimum values in snapshot sc(x
i),

respectively. For our application C=1, so we drop the superscript and refer to
the single accuracy metric Es.400

Runtime.. Along with accuracy, we are interested in the computational cost
associated to the four online steps of our procedure. In particular, we wish to
achieve a very effective online processing to obtain informative first-cut capa-
bility estimates at minimum computational time. Therefore, in this paper we
monitor the runtime, defined as the CPU time in seconds to complete a certain
computational step. Specifically, for each validation case i = 1, ..., nv we record
the CPU time tip to compute the pth online step; then we average over the en-
tire validation set to obtain a representative runtime Tp for each computational
stage:

Tp =
1

nv

nv∑
i=1

tip ∀p. (20)

The computational cost of the entire online procedure is denoted by the overall
mean runtime Ton =

∑4
p=1 Tp. The procedure is implemented in MATLAB and

all test cases are run on an Intel Core i7-2600 at 3.40 GHz.

5. Results and discussion

In this paper we demonstrate the efficiency of the multistep ROM strategy405

for the case of structural assessment from sparse measurements affected by un-
certainties. This specific problem can be described in terms of quantity and
quality of sensor information/measurements that feed the online process. In
particular, the quantity of sensed data is regulated by two algorithmic param-
eters, namely the fraction fp of online grid point measurements with respect410

to the complete data available offline, and the number ng
α of modal coefficients

to reconstruct via GPOD. In other words, the quality of sensor measurements
depends on uncertainty contributions due to poor knowledge about the exact lo-
cation of the sensors and/or due to the noise affecting the measurements. This
section develops three parametric explorations whose outcomes are discussed415

following the flow of online computational steps.

5.1. Quantity of sensor information

The first parametric exploration investigates various parameter settings that
determine the actual amount of sensed information to process on-board. We
evaluate 490 combinations of parameter values resulting from a full factorial420

exploration that considers 49 levels for the fraction of measured information fp,
and 10 levels for the number of modal coefficients recovered with gappy POD
ng
α (Table 2).

For the wing panel of Section 3.1, the fraction fp is defined with respect
to a complete offline snapshot of ne = 3921 elements; accordingly, fp = 0.1%425

indicates that strain components are measured by sensors randomly placed in
only 4 grid points out of 3921, leading to 99.9% of missing data. In Table 2,
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Factors Levels Values Units

fp = n`
ne
× 100 49 0.1:0.1:2.0 2.5:0.5:5.0 6:1:10 15:5:100 [%]

ng
α =

∑M
m=1 n

g
m 10 6 9 15 30 60 90 150 225 300 471 [-]

Table 2: Parameters that regulate the quantity of sensor information: fraction of measured
information (fp, with n` denoting the number of grid points measured online) and number
of modal terms to recover with GPOD (ng

α). The full factorial exploration yields 490 combi-
nations of factor values. Notation a : c : b indicates that we consider values in [a, b] with step
c.

the smallest value of ng
α = 6 indicates that we reconstruct only the first two

modal coefficients of each measured component of strain (since ng
α =

∑M
m=1 n

g
m

and ng
m = 2 ∀m). The largest value of ng

α is determined by the number of430

modal terms needed to recover the 95% of energy of each measured quantity
of interest. For the three quantities of interest, we have E(nm) = 0.95 when
n1 = 176, n2 = 152 and n3 = 143, thus we obtain ng

α = nα = 471.
Figures 5, 6, 7, 8, and 9 illustrate the assessment metrics defined in Section 4

and computed for all combinations of the parameters in Table 2. The different435

settings are sorted by ng
α; the 10 sections are clearly visible, each comprising 49

results obtained for different values of fp.
Figure 5 shows the fractions of computational time Tp in ms dedicated to

each online step. The area diagram illustrates that the first online step has
sensitive scaling to the number of reconstructed modal coefficients. We investi-440

gated numerous algorithmic settings corresponding to different values of tuning
parameters (nw, n

rs
α , p, and mβ): we observed that the first online step is re-

sponsible for the largest runtime fractions. Therefore, in order to contain the
overall online processing time, we wish to reduce as much as possible the number
of measurement modal coefficients to recover with GPOD. The present study445

shows the possibility to efficiently act on this parameter without compromising
the quality of the final capability predictions.
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Figure 5: Computational time Tp dedicated to each online step for 490 parameter combinations
(Table 2). For each ng

α, settings are sorted by increasing fraction of measurements fp.

Figure 6 depicts accuracy metrics E1
α, E2

α, and E3
α assessing the first online

step. The three measured quantities of interest present similar trends: the
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accuracy of the coefficients’ reconstruction generally improves by adding sensed450

data fp, although such enhancement is more effective when only a few modal
terms are recovered. In fact, higher order terms are characterized with higher
spatial frequencies that need larger fractions of measured information to be
captured.
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Figure 6: Measurement coefficients reconstruction. Accuracy metrics Emα for 490 parameter
combinations (Table 2). For each ng

α, settings are sorted by increasing fraction of measure-
ments fp.

In addition, sparse measurements (small fp) and numerous modes to recover455

(large ng
α) together compromise the conditioning of the gappy matrix, leading to

high computational effort and poor accuracy. These phenomena can be observed
by comparing the trends for different ng

α. For ng
α = 6 we have a faster decay of

the error by adding more sensors and we obtain Emα < 5% ∀m for fp ≥ 1.5% in
Ton ' 1.1ms (T1 < 0.3ms); in contrast, for ng

α = 471 the error decay is delayed460

and we need at least fp ≥ 7% and Ton ' 18ms (T1 > 16ms) to reach similar
accuracy values.

We also observe that recovering more terms allows the errors to be lowered
below 1% for fp ≥ 30%, but this performance comes at the expense of a 10 to 20
times larger computational effort. Therefore, the challenge is now to exploit at465

best the information contained within the dominant modal terms. To this end,
the scaled L2 norm introduced in Equation 6 plays an important role. Recall
that this scaled norm is used as a dissimilarity measure for both the offline
clustering and the online classification steps.

Figure 7 compares the online coefficient of determination R2
on (computed470

over the validation set) to the reference offline value R2
off = 0.84 (computed

over the evaluation set). R2
on generally increases with the fraction of measured

data fp, but the actual trend differs with ng
α and nearly reflects the accuracy

measures recorded for the first step (Figure 6). However, in contrast with the
reconstruction step, here we obtain better performance with small ng

α even for475

larger fractions fp. Hence, faster settings (ng
α = 6, 9, 15) now outperform ex-

pensive settings—not only in terms of computational costs, but also in terms of
accuracy.

This result is due to the dissimilarity measure (6) that prioritizes the charac-
terization of the most informative dimensions, which correspond to the dominant480
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modes of each quantity of interest. This measure allows us to restrict the size
of the SOM network by efficiently placing the prototypes in the space of POD
coefficients; as a consequence, we obtain a faster classification step by reducing
the computational effort to identify the closest cluster. In addition, this dis-
similarity measure permits us to efficiently leverage the information content of485

the most energetic modal terms such that just a few of them are sufficient to
achieve good classifications.
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Figure 7: Classification. The online coefficient of determination R2
on is compared to the offline

reference value R2
off for 490 parameter combinations (Table 2). For each ng

α, settings are sorted
by increasing fraction of measurements fp.

Once the right cluster is determined, local approximations are employed to
recover the capability POD coefficients. Being in the correct cluster means that
the set of local models is the most representative one in the library. Figure 8490

depicts accuracy measure Eβ assessing the local approximations at the third
online step. The trend of Eβ is similar for all values of ng

α: this demonstrates
again that the classification step does a good job in exploiting properly the
most dominant modes. As a consequence, we can consider the possibility to
reconstruct only the POD measurements actually required to compute the local495

β̃cj (αg)(k∗), i.e., we can set ng
α = nrs

α .
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Figure 8: Local approximation. Accuracy metrics Eβ for 490 parameter combinations (Ta-
ble 2). For each ng

α, settings are sorted by increasing fraction of measurements fp.

Figure 9 illustrates the accuracy measure Es assessing the fourth online
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step. Similarly to Eβ , the final capability estimate presents analogous trends
for all levels of ng

α. Much larger variability is instead recorded for different
values of fp, as shown in Figure 10. The reason for that behavior is depicted500

in Figure 11 where we observe: (i) the number of validation damage cases for
which the final POD capability expansion includes a certain modal component,
and (ii) how this cardinality evolves as we increase the fraction of measured
data fp. For fp > 10% the cardinality collected for the dominant modes reveals
a quantization that resembles the original capability decomposition and the505

fraction of variance explained by each component. These results confirm that
both classification and local approximations work appropriately. For fp < 5%
the quantization appears much less defined because sensor measurements are
insufficient or even misleading due to their sparsity.
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Figure 9: Capability estimate. Accuracy metric Es for 490 parameter combinations (Table 2).
For each ng

α, settings are sorted by increasing fraction of measurements fp.
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Figure 10: Capability estimate. Accuracy metric Es for 490 parameter combinations (Table 2)
plotted with respect to the fraction fp of grid points measured online.

Taking into account these outcomes, for the algorithmic setup described510

in Section 3.2 we can adopt ng
α = nrs

α to recover only the coefficients αrs =
[α1

1, α
1
2, α

2
1, α

2
2, α

3
1, α

3
2] in T1 < 0.3ms. This choice (settings 1 to 49 in Figures 5,

6, 7, 8, and 9) allows us to take advantage of the reduced overall computational
cost: Ton ' 1.1ms is indeed a tiny fraction (1/105 to 1/104) of the time typically
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g
α), number of damage cases in the validation set that

retain the jth modal term in the final POD expansion of s̃c(αg).

required to solve the full-order problem associated to capability evaluation only.515

Even more, it permits large time savings with respect to the entire original
evaluation flow that includes the expensive parameter identification problem
(Figure 1). In terms of accuracy, good results are obtained even with sparse
measurement data. For example, fp = 5% yields Es < 6%. Adding sensors,
we achieve Es < 2% with fp = 10% (90% of missing data), and Es < 1.5% for520

fp ≥ 20%.

5.2. Quality of sensor information

In this section we conduct two parameter explorations to analyze the robust-
ness of the proposed MultiStep-ROM procedure to uncertainties about sensor
locations and measured values. The goal is to understand how the quality of525

sensor data may affect the accuracy of the online evaluations.

Robustness to sensor locations/positioning.. This study aims to assess the ef-
fects of uncertainties about the exact positions of sensors. To do that, we design
an exploration that combines full factorial sampling of quantity parameters fp

and ng
α, and Monte Carlo sampling of sensor locations. For each given pair530

of parameters (fp, n
g
α) we consider multiple random placements of n` sensors,

where the number n` is determined by fp. We define 7 levels for factor ng
α and

10 levels for factor fp (Table 3). Then, for each measurement fraction fp we
consider np = 50 random placements of the corresponding available sensors.
These random positions are selected from among all ne = 3921 grid points, with535

each grid point having equal probability to be picked as a sensor site. This
approach yields larger location uncertainties for larger percentages of missing
data, because sensor positions can differ significantly between random place-
ments. Conversely, uncertainty progressively reduces by adding more sensors to
increase the fraction of measured grid points fp.540
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Factors Levels Values Units

fp = n`
ne
× 100 10 0.1 0.2 0.5 1 2 5 10 20 50 100 [%]

ng
α =

∑M
m=1 n

g
m 7 6 9 15 30 60 150 471 [-]

Table 3: Parameters that regulate the quantity of sensor information: fraction of measured
information (fp, with n` denoting the number of grid points measured online) and number of
modal terms to recover with GPOD (ng

α). The full factorial exploration yields 70 combinations
of factor values.

The assessment metrics defined in Section 4 are evaluated for all the resulting
3500 settings. To visualize the outcomes, for each pair (fp, n

g
α) we monitor

three error indicators computed over the np random placements, namely mean,
maximum and minimum values of the accuracy measures:

(E(fp, n
g
α))mean =

1

np

np∑
i=1

E(fp, n
g
α, S

i
p(fp)),

(E(fp, n
g
α))max = max

i=1,...,np

E(fp, n
g
α, S

i
p(fp)),

(E(fp, n
g
α))min = min

i=1,...,np

E(fp, n
g
α, S

i
p(fp)).

(21)

In Equation (21), E may denote any accuracy metric in Section 4, since these
indicators can be computed for every online step; Sip(fp) is the ith random
selection of n` sensor locations for a given fp. Figures 12 and 13 show these
indicators for E1

α, E2
α, E3

α, and Es, respectively. The results are plotted for all
70 combinations of parameters (fp, n

g
α). The different settings are sorted by545

ng
α; the 7 sections are clearly visible, each comprising 10 results obtained for

different values of fp.
Figure 12 confirms that ill-conditioning of the gappy matrix occurs when we

try to recover many modal terms with only a small amount of sensed data: it
results in high reconstruction errors, as already noted in Section 5.1. All error550

indicators, from coefficient reconstruction (Figures 12) to capability prediction
(Figure 13), present common characteristics of their distributions. The accuracy
spread progressively reduces by increasing the number of measurement sites (fp),
until there is no spread for the case with sensors placed everywhere (fp = 100% –
settings number 10, 20, 30, 40, 50, 60, and 70). In addition, taking into account555

that in Figures 12 and 13 the quantities are plotted on a logarithmic scale, we
observe that the resulting distributions of error indicators are asymmetric and
squeezed towards lower values. Large errors occur rarely, and can be avoided
by adding sensors because more measured data contributes to cut the right tail
of the distributions (Figure 14). This can also be seen in Figure 15, where the560

error indicators computed for Es progressively collapse onto a single value by
increasing the fraction of sensor measurements fp.

23



0 10 20 30 40 50 60 70

Parameter Settings

10-1

100

101

102

103

104

105

E
1 α
[%

]

ng
α
=6 ng

α
=9 ng

α
=15 ng

α
=30 ng

α
=60 ng

α
=150 ng

α
=471

(E1
α
)max (E1

α
)min (E1

α
)mean

0 10 20 30 40 50 60 70

Parameter Settings

10-1

100

101

102

103

104

105

E
2 α
[%

]

ng
α
=6 ng

α
=9 ng

α
=15 ng

α
=30 ng

α
=60 ng

α
=150 ng

α
=471

(E2
α
)max (E2

α
)min (E2

α
)mean

0 10 20 30 40 50 60 70

Parameter Settings

10-1

100

101

102

103

104

105

E
3 α
[%

]

ng
α
=6 ng

α
=9 ng

α
=15 ng

α
=30 ng

α
=60 ng

α
=150 ng

α
=471

(E3
α
)max (E3

α
)min (E3

α
)mean

Figure 12: Measurement coefficients reconstruction. Error indicators (Emα )mean, (Emα )max,
and (Emα )min for 70 parameter combinations (Table 3). For each ng

α, settings are sorted
by increasing fraction of measurements fp. Each plot depicts a single measured quantity of
interest (M = 3).
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Figure 13: Capability estimate. Error indicators (Es)mean, (Es)max, and (Es)min for 70
parameter combinations (Table 3). For each ng

α, settings are sorted by increasing fraction of
measurements fp.
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Figure 14: Capability estimate. Distributions of the np = 50 values of accuracy metric Es

for three specific settings. The diagrams refers to setting number 3, 6 and 9 in Figure 13,
respectively.
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Figure 15: Capability estimate. Error indicators (Es)mean, (Es)max, and (Es)min for 70 pa-
rameter combinations (Table 3) plotted with respect to the fraction fp of grid points measured
online.

In summary, the online procedure based on our MultiStep-ROM strategy
appears robust to sensor locations for fp > 10%. In this case, choosing fp > 10%
yields (Es)mean < 1.5%, and (Es)max < 2.5% ∀ ng

α. For fp < 10% the limited565

sensed data can be misleading and large errors are possible, although rare in
the cases studied.
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Robustness to measurements noise.. The third analysis assesses the MultiStep-
ROM strategy for the case of measurements affected by uncertainty. In par-
ticular we assume that measured quantities of interest are corrupted with i.i.d.
additive Gaussian noise such that

q̌m = q̂m +N (0,σ2) m = 1, ...,M, (22)

where N (0,σ2) is the Gaussian noise with zero mean and variance σ2. We con-
sider standard deviation σ as an additional parameter in this last investigation.
We design an exploration that combines full factorial sampling of parameters570

fp, ng
α and σ, with Monte Carlo sampling of noise contributions. In particular

we define 7 levels for factor ng
α, 10 levels for factor fp, and 5 levels for factor σ

(Table 4); then, for each σ > 0 we consider nn = 50 random sampling of noise
contribution according to N (0,σ2).

Factors Levels Values Units

fp = n`
ne
× 100 10 0.1 0.2 0.5 1 2 5 10 20 50 100 [%]

ng
α =

∑M
m=1 n

g
m 7 6 9 15 30 60 150 471 [-]

σ 5 0 10 20 50 100 [µε]

Table 4: Parameters that regulate the quantity and quality of sensor information: fraction
of measured information (fp, with n` denoting the number of grid points measured online),
number of modal terms to recover with GPOD (ng

α), and standard deviation of the Gaussian
model for measurement noise (σ). The full factorial exploration yields 350 combinations of
factor values.

For the wing panel described in Section 3, measured quantities of interest575

assume pointwise values over four orders of magnitude, from 10−1µε to 103µε.
For the damage cases collected in the evaluation and validation sets, average
values of strain components range from 102 to 103µε. Therefore, σ = 10µε
covers common sensor gage accuracy of 1 − 5%, while σ = 100µε corresponds
to much less probable corruption ranges of 10 − 100%, with noise of the same580

order of magnitude as the value to measure.
The assessment metrics defined in Section 4 are evaluated for all resulting

14070 conditions. To visualize the outcomes, for each triple (fp, n
g
α, σ) we mon-

itor three error indicators computed over the nn noise contributions, namely
mean, maximum and minimum values of the accuracy measures:

(E(fp, n
g
α, σ))mean =

1

nn

nn∑
i=1

E(fp, n
g
α, σ, S

i
n(σ)),

(E(fp, n
g
α, σ))max = max

i=1,...,nn

E(fp, n
g
α, σ, S

i
n(σ)),

(E(fp, n
g
α, σ))min = min

i=1,...,nn

E(fp, n
g
α, σ, S

i
n(σ)),

(23)

where E may denote any accuracy metric introduced in Section 4. Sin(σ) is the
ith sample of noise contributions from distribution N (0,σ2). Figure 16 shows
these indicators for E1

α (E2
α and E3

α behave in a similar way), and Figure 17
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shows these indicators for Es. The results are plotted for all 350 combinations of585

parameters (fp, n
g
α, σ). The different settings are sorted by σ, whose five sections

are clearly visible; for each value of σ we distinguish ten sections associated to
fp, each comprising 7 results obtained for different values of ng

α. For σ = 0µε
(settings 1 to 70) all the indicators defined in Equation 23 coincide and their
points are superimposed.590

In Figure 16 the error indicators associated to σ = 10µε and σ = 20µε
resemble the results obtained without any noise (σ = 0µε). Hence, the first re-
construction step is very robust for common values of measurement uncertainty.
Only when the noise is of the same order as the quantity to measure do we start
to see the errors magnify.595
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Figure 16: Measurement coefficients reconstruction. Error indicators (Emα )mean, (Emα )max,
and (Emα )min for 350 parameter combinations (Table 4). For each noise distribution (with
standard deviation σ), settings are sorted by increasing fraction of measurements fp; for each
fraction of measured grid points fp, settings are sorted by increasing number of reconstructed
modal terms ng

α. In particular, the diagram illustrates E1
α.

Figure 17 depicts the error indicators computed for the final capability esti-
mate. It shows that the error progressively increases with higher level of noise.
This is mainly due to the error introduced by the local RS approximations of
POD coefficients βcj , which are sensitive to the value of their input αrs

g . Hence,
this increase in the error is more relevant for cases with fp < 10%, and, as be-600

fore, we can achieve a significant mitigation of the uncertainty effects by adding
sensors. For fp ≥ 10% estimate accuracy progressively improves and assumes
similar values for all the noise distributions: settings 43-70 (σ = 0µε), 113-140
(σ = 10µε), 183-210 (σ = 20µε), 253-210 (σ = 50µε), and 323-350 (σ = 100µε)
record Es < 3% ∀ ng

α and Es < 2% for ng
α ≤ 60. Figure 18 illustrates that605

error indicators for Es progressively approach the same values as the fraction of
sensor measurements fp is increased. Similar results are observed for the error
spreads around the mean value. As shown in Figure 19, accuracy dispersion
over the nn cases increases with σ (along the column), but larger fractions of
measured data fp shrink the error distributions (along the row).610
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Figure 17: Capability estimate. Error indicators (Es)mean, (Es)max, and (Es)min for 350
parameter combinations (Table 4). For each noise distribution (with standard deviation σ),
settings are sorted by increasing fraction of measurements fp; for each fraction of measured
grid points fp, settings are sorted by increasing number of reconstructed modal terms ng

α.
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Figure 18: Capability estimate. Error indicators (Es)mean, (Es)max, and (Es)min for 350 pa-
rameter combinations (Table 4) plotted with respect to the fraction fp of grid points measured
online.

In conclusion, online evaluations are robust to uncertainties affecting mea-
sured values, in particular for fp ≥ 10%. For incomplete measurements present-
ing more than 90% of missing data, evaluation accuracy becomes more sensitive
to noise, because sensed information is insufficient or even misleading to charac-
terize the structural state. In contrast to the important role of fp, the number615

of modal coefficients to recover, ng
α, does not play a significant role in presence

of uncertainties. This is mainly due to the underlying algorithmic construction,
which prioritizes the informative contributions of the dominant modes. This
strategy benefits from the dominant modes being less sensitive to small pertur-
bations of measurement values. Small variations are indeed captured by higher620

order terms, but can be misleading in presence of uncertainties; therefore, with
this implementation of our MultiStep-ROM strategy their contributions are ei-
ther progressively mitigated or completely discarded.
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Figure 19: Capability estimate. Distributions of the nn =50 values of accuracy metric Es for
twelve specific settings. Each plot includes a dashed reference line that indicates the value
of Es obtained for the same pair of quantity parameters (fp, n

g
α) without measurement noise

(σ=0). Accuracy dispersion over the nn cases increases with σ (along the column), but larger
fractions of measured data fp shrink the error distributions (along the row).

6. Concluding Remarks

This work discusses the use of our MultiStep-ROM strategy to assist real-625

time decisions associated with structural assessment tasks and informed by in-
complete and noisy measurements. The representative application considered
in this paper is a UAV wing panel tested over a variety of local degradations
of the structural properties. This testbed lets us explore the issues of quan-
tity and quality of sensor measurements, which are relevant to a broad class of630

problems. Quantity and quality of measured data are here regulated by a few
governing parameters: the fraction fp of online grid point measurements with
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respect to the complete data available offline, the number of modal coefficients
ng
α to reconstruct via GPOD, and the standard deviation σ of the Gaussian

model of noise. The studies presented in this paper rely on three explorations635

of these parameters to assess advantages and limitations of the MultiStep-ROM
procedure when applied to this class of problems.

The first investigation focuses on the quantity parameters, namely fp and ng
α.

The results demonstrate the possibility to reduce the evaluation time through
controlling ng

α, the number of modal coefficients to recover via GPOD. In con-640

trast, the accuracy of the final estimate is not affected by ng
α, because the online

process benefits from the use of a scaled L2-norm as a dissimilarity measure for
both offline clustering and online classification. For the structural assessment
application discussed in this paper, we can evaluate capabilities in Ton ' 1.1ms
and achieve prediction errors lower than 6% from incomplete on-board mea-645

surements with 95% of missing data. In addition, capability estimates improve
by adding sensors and, at the same computational cost, it is possible to obtain
errors lower than 2% with 90% of missing data.

The second and third explorations focus on the quality of sensor information
and consider uncertainty contributions due to (i) lack of knowledge about the650

actual position of sensors on the measurement grid and (ii) intrinsic accuracy
of the sensor gages. The results revealed that, for measurements with less than
90% of missing data, online evaluations are robust to both sensor locations
and sensor accuracy. Conversely, if the sensors cover less than the 10% of
the reference grid points, measured data may be misleading or insufficient to655

properly represent the state of the system. This limitation is partially due to
the random positioning of the sensors we adopted in this paper; optimal sensor
placement strategies are an important area of future work that may address this
limitation.
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