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We present here a definition of system complexity and a quantitative metric for measuring
that complexity based on information theory. We also derive sensitivity indices that indi-
cate the fraction of complexity that can be reduced if more about certain factors of a sys-
tem can become known. This information can be used as part of a resource allocation

procedure aimed at reducing system complexity. Our methods incorporate Gaussian pro-
cess emulators of expensive computer simulation models and account for both model
inadequacy and code uncertainty. We demonstrate our methodology on a candidate
design of an infantry fighting vehicle. [DOI: 10.1115/1.4007587]

1 Introduction

Over the years, engineering systems have become increasingly
complex, with astronomical growth in the number of components
and their interactions. With this rise in complexity comes a host
of new challenges, such as the adequacy of mathematical models
to predict system behavior, the expense and time to conduct
experimentation and testing, and the management of large,
globally distributed design teams. These obstacles contribute
uncertainties to system design, which can have serious, often dis-
trastrous, implications for program outcome. A notable example is
the Hubble Space Telescope which, when first launched, failed its
resolution requirement by an order of magnitude. A Shuttle repair
mission, costing billions of additional dollars, was required to
remedy the problem [1]. The V-22 Osprey tilt-rotor aircraft is
another example: over the course of its 25-year development
cycle, the program was fraught with safety, reliability, and afford-
ability challenges, resulting in numerous flight test crashes with
concomitant loss of crew and passenger lives [2]. More recently,
the Boeing 787 Dreamliner transport aircraft program has experi-
enced a number of major prototype subsystem test failures, caus-
ing budget overruns of billions of dollars and service introduction
delays of about 3 yr. One major source of blame for Boeing’s set-
backs is its aggressive strategy to outsource component design
and assembly, which created heavy program management burdens
and led to unforeseen challenges during vehicle integration [3].

In these cases and numerous others, the design program was
unaware of the mounting risks in the system, and was surprised by
one or more unfortunate outcomes. Although these examples are
extreme, they are suggestive that current system design practices
are unable to recognize performance, cost, and schedule risks as
they emerge. Such unanticipated or emergent behavior is often
attributed to the complexity of the underlying system [4]. This has
led to a desire to measure system complexity in a manner that will
enable design trades and improve parameterization of cost and
schedule. Thus, our objectives are to quantitatively define
system complexity in terms of system quantities of interest and to
formulate a complexity-based sensitivity analysis. The resulting
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methodology identifies the key contributors to system complexity
and provides quantitative guidance for resource allocation deci-
sions aimed at reducing system complexity.

We define system complexity as the potential for a system to
exhibit unexpected behavior in the quantities of interest. A back-
ground discussion on complexity metrics, uncertainty sources in
complex systems, and related work presented in Sec. 2. We mea-
sure this complexity as the exponential information entropy of the
probability distribution of the quantities of interest associated
with a given system. Exponential entropy has been established by
Ref. [5] as a rigorous measure of the extent of a probability distri-
bution and is described in more detail in Sec. 3, which also
includes the development of our sensitivity analysis procedure,
which may be used to direct a design refinement process [6]. We
apply our methodology to a design of an infantry fighting vehicle
(IFV). The quantity of interest for the application is the range of
the vehicle. The application is described in more detail in Sec. 4.
A demonstration of the use of our methodology is presented in
Sec. 5, where two IFV options are considered and general conclu-
sions are drawn in Sec. 6.

2 Background

Complexity in system design is an elusive concept for which
many definitions have been proposed, though none formally
adopted. Early work in the field of complexity science by Warren
Weaver posited complexity as the nebulous middle ground
between order and chaos, a region in which problems require
“dealing simultaneously with a sizeable number of factors which
are interrelated in an organic whole” [7]. Another interpretation of
this idea considers a set of “phase transitions” during which the
fundamental features of a system undergo drastic changes [8]. As
an illustrative example, consider the phase transitions of water
[9]. On one end of the spectrum, water is frozen into a simple
lattice of molecules whose structure and behavior are straightfor-
ward to understand. At the other extreme, water in gaseous form
consists of millions of molecules vibrating at random, and the
study of such a system requires methods of statistical mechanics
or probability theory [10]. In between the two lies the complex
liquid state, wherein water molecules behave in a manner neither
orderly nor chaotic, but at once enigmatic and mesmerizing,
which has captured the imagination of fluid dynamicists past and
present.
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Though the above example makes the idea of complexity relat-
able to a large audience, the debate over its definition still persists.
However, many researchers agree that there are several properties
that complex systems tend to share [11-15]: (1) they consist of
many parts; (2) there are many interactions among the parts; (3)
the whole exceeds the sum of the parts, that is, the parts in combi-
nation produce synergistic effects that are not easily predicted and
may often be novel, unexpected, even surprising; and (4) they are
difficult to model and to understand.

In addition to qualitative descriptions of complexity, there have
also been many attempts to explain complexity using quantitative
measures. These definitions can be classified into two general
categories, structure-based metrics and process-based metrics.
Structure-based metrics quantify the complexity associated with
the physical representation of a system [16]. They typically
involve counting strategies: in software engineering, the source
lines of code (SLOC) can be used to describe a computer program
[17]; in mechanical design, analogous measures include the
number of parts [18], functions [19], or core technologies [20]
embodied in a product. Though appealing, these counting metrics
may be susceptible to different interpretations of what constitutes
a distinct component—depending on the level of abstraction, a
component may be as high-level as an entire subsystem, or as
basic as the nuts and bolts holding it together. More sophisticated
structure-based metrics also attempt to address the issue of com-
ponent interactions through an analysis of the topology and con-
nectivity of the system [21,22]. For example, McCabe proposed
the idea of cyclomatic complexity in software engineering, which
uses graph theory to determine the number of control paths
through a module [23]. Numerous others have also recommended
approaches to estimate system complexity by characterizing the
number, extent, and nature of component interactions, which
govern the interconnectedness and solvability of the system
[15,24-26]. Overall, structure-based complexity metrics are usu-
ally easy to understand and to implement, but they may not be
meaningful except in the later stages of design, after most
design decisions have been made, and the system is well-
characterized [27].

A second class of complexity metrics quantifies system uncer-
tainty in terms of processes required to realize the system. One
metric in this category is algorithmic complexity, or Kolmogorov
complexity, which measures the compactness of an algorithm
needed to specify a particular message [28-30]. Similar defini-
tions include the number of basic operations required to solve a
problem (computational complexity), or the amount of effort nec-
essary to design, modify, manufacture, or assemble a product
[16,27,31,32]. Another possible interpretation of complexity is
related to the information content of a system. The concept of
information entropy was originally proposed by Claude E. Shan-
non to study lossless compression schemes for communication
systems [33]. Information entropy, or Shannon entropy, measures
the uncertainty associated with a random variable. It also has an
intuitive and appealing analogy to entropy in the thermodynamic
sense, as a measure of a system’s tendency toward disorder [34].
In this work, we propose a complexity metric based on exponen-
tial information entropy, which is described in Sec. 3. It is impor-
tant to note here that there are many different metrics of
complexity and each can be useful in different ways and thus, all
are important. We intend our complexity metric to be used in
simulation-based design activities where limited information is
known about quantities of interest relevant to the design of a com-
plex system. This is a context that has also been considered by
Refs. [35] and [36] in terms of life cycle design and design opti-
mization, respectively. Given our context, our metric is based on
the information content in our estimates of quantities of interest.
Thus, our metric reflects a correspondence between uncertainty in
a system and the complexity of the system, as consistent with our
complexity definition stated in Sec. 1. This correspondence does
not exist for many of the other complexity metrics noted, particu-
larly the structure-based metrics.
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3 Methodology

In this section, we define our complexity metric and develop a
quantitative measure of it. We then develop a sensitivity analysis
procedure designed to identify the key contributors to system
complexity in an effort to identify how to best allocate resources
for complexity reduction.

3.1 Complexity Metric. We define complexity as the poten-
tial of a system to exhibit unexpected behavior in the quantities of
interest, which are the quantities characterizing the performance,
cost, schedule, and other relevant attributes of the system. Thus,
we wish to characterize the amount of knowledge we have with
respect to our quantities of interest. To measure this amount of
knowledge, or level of information, we define a metric of com-
plexity based on exponential information entropy. For a discrete
random variable Y with probability mass function p(y), the infor-
mation entropy of Y is defined as

H(Y) = =) _p(y)logp(yi) (1)

where yy,y,, ... are values of y such that p(y) # 0. For a continu-
ous random variable X with probability density function fx(x), the
differential information entropy of X is defined as

00
) == [ frlotog fulr)a @
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where the integrand is taken to be zero when fx(x) = 0. Our work
here focuses on continuous random variables. For both the discrete
and continuous cases, the base of the logarithm is chosen by the user.
We will deal exclusively in this work with the natural logarithm.
Thus, our quantitative metric of system complexity is given as

c@ =ew{~ [ fola)nota)ia} ®

where Q is the random variable associated with a quantity of inter-
est of a given system.

Exponential entropy was first introduced in Ref. [5] as a mea-
sure of the extent of a probability distribution. Following Ref. [5],
we can express the range of a random variable as

R(Q) = j@ dg @
0) = J Lt (@)dg )
0fo(q)

where Q is a continuous random variable, fy(g) its associated
probability density function, R(Q) is the range of Q, and
Q ={q€0:fo(q) >0}. We can also express the generalized
mean of order 7 of f(¢) over Q as

Au@={hbl}£@wyﬂo¢m ©

0(q)

Mo(Q) = exp{J@ In [fQqu)} fo (q)dq} =0 O

It can be seen that the range as defined in Eq. (5) is the general-
ized mean of order 1. Furthermore, when =0, M((Q) is the geo-
metric mean of fp(g) over QQ [37]. For a uniform random variable
Q ~ Ula,b],M,(Q) = R(Q) = b — a for all «. For arbitrary orders
s and ¢, where s < ¢, the relationship between M,(Q) and M,(Q)
can be described by the generalized mean inequality [38]

M,(Q) < M,(Q) ®)
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where equality holds if and only if Q is a uniform random
variable. Setting s =0 and =1, Eq. (8) can be used to obtain a
general relationship between M (Q) and R(Q)

Mo(Q) < M1(Q) )

Mo(Q) < R(Q) (10

The quantity My(Q) is referred to as the intrinsic extent of Q,
which as shown in Eq. (10) is always less than or equal to the
range of Q. This intrinsic extent may be rewritten as

Mo(0) = exp{ - oto lnfg(q)dq} an

= exp{h(Q)} (12)
Thus, the intrinsic extent of a distribution is the exponential of the
information entropy of the distribution, which is termed the expo-
nential entropy. We propose that the exponential entropy of the
quantities of interest of a given system is a quantitative measure
of the complexity of the system, which we write as

C(Q) = exp{h(Q)} 13)
The exponential entropy of a uniform random variable can be
interpreted as the length of the support of the random variable
(and area, volume, and hypervolume for 2, 3, and n-dimensional
jointly distributed uniform random variables). To this end, the ex-
ponential entropy of any arbitrarily distributed random variable
can be related to the length of the support of an information-en-
tropy-equivalent uniform distribution.

3.2 Complexity Estimation. Defining complexity in terms
of exponential entropy implies that we are concerned with uncer-
tainty associated with quantities of interest. In modeling a poten-
tial system, which is typically done with numerical simulation
models, there are many potential sources of uncertainty that can
impact quantities of interest, and thus system complexity. Among
these are parametric uncertainty, parametric variability, code
uncertainty (CU), observation error, and model inadequacy.
Following Ref. [39], parametric uncertainty refers to uncertain
inputs or parameters of a model, parametric variability refers to
uncontrolled or unspecified conditions in inputs or parameters,
code uncertainty refers to the uncertainty associated with not
knowing the output of a computer model given any particular con-
figuration until the code is run, observation error is uncertainty
associated with actual observations and measurements, and model
inadequacy relates to the fact that no model is perfect. For the
application considered here, we do not incorporate experimental
data; therefore, our focus is on parametric variability, parametric
uncertainty, code uncertainty, and model inadequacy.

A simulation model, or simulator, is a function g(-) that maps
inputs X into an output ¢ = g(x). In our work, we incorporate the
presence of simulator model inadequacy by adding noise to simu-
lator output. Thus, the true value of a quantity of interest that has
been estimated by a simulator is in the form

q = 8(x) +&(x) (14)
where ¢(x) is additive noise that is permitted to vary throughout
the input space. In the demonstrations provided in Secs. 4 and 5,
we notionally account for model inadequacy by assuming nor-
mally distributed noise. The purpose of this is to ensure that we
are taking into account some form of model inadequacy in the
complexity estimation process and the sensitivity analysis meth-
odology. However, our approach does not require that the model
inadequacy term be normally distributed. The need to quantify
model inadequacy in simulation models was originally addressed
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in Ref. [39]. More general approaches to the quantification of
model inadequacy that incorporate both data and expert opinion
are important topics of future work.

When analyzing quantities of interest with computer models, it
is often necessary to approximate the input/output relationships of
expensive simulators using less expensive surrogate models. For
this, we employ the well-known technique of Gaussian process
regression [39-43]. Gaussian process regression is based on emu-
lating a simulator with a stochastic process model. Emulating
with a stochastic process ensures there is a complete statistical
approximation of the simulator, which enables the code uncer-
tainty associated with the use of the emulator in place of the simu-
lator to be quantified. This is essential for situations where the
code uncertainty of the emulator is a key driver of complexity.

When using an emulator, the true value of a quantity of interest
is in the form

q = G(x) + &(x) (15)
where G(x) ~ GP(m(x), k(x,x’)), m(x) is the mean function
of the Gaussian process GP(-,-), and k(x,x’) is the covariance
kernel of the Gaussian process. A Gaussian process emulator is
built with a set of training runs of the simulation model,
D = {(x;,q;)|i = 1, ...,n}. This training set is treated as data that
are used to estimate the simulation model. An example of one-
dimensional Gaussian process regression is shown graphically in
Fig. 1, where three data points from a simulator have been used as
training points for the emulator. The underlying simulator is the
function ¢g(x) = x + 3 sin(x/2). The emulator itself is a stochastic
process, which is represented on the figure as a mean function
(dashed line) and plus and minus two standard deviation bounds
(grayed area). The grayed area is a representation of the code
uncertainty associated with the use of this emulator in place of the
underlying simulator. The fitting of such an emulator is a machine
learning task that involves the estimation of several hyperpara-
meters. Details on how this may be accomplished can be found in
Ref. [42].

To estimate complexity with respect to a quantity of interest,
we require an estimate of the probability density function of the
quantity of interest, fp (). For situations where a simulator is used
to estimate the distribution of a quantity of interest as in Eq. (14),
we estimate fp(¢) using Monte Carlo simulation followed by ker-
nel density estimation. Each evaluation of ¢ in the Monte Carlo
simulation consists of randomly sampling x according to its joint
distribution, evaluating g(x), randomly sampling from &(x), and
adding the simulator and noise values. Once we have an estimate
of fo(¢q), we compute the information entropy of Q via a numeri-
cal integration technique. Following Ref. [30], assuming that
fo(g) is Riemann-integrable, 1(Q) can be estimated by discretiz-
ing fo(q) into N equal bins of size A. The quantity h(Q*)

20 T ‘ ‘ . . : : : :
151
10

o 5f ‘_,,—""‘. ------------------ e
o _.-m~"" —/
-5
40 1 2 3 4 5 6 7 8 9

X
Fig. 1 Example of Gaussian process emulation with three

training points. The dashed line is the mean function of the
emulator. The grayed area is the =2 standard deviation confi-
dence interval for the emulator.
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represents the estimate of /h(Q) computed using numerical
approximation

h(Q") = = [fold)Allog[fo(¢))A] +log A

J=1

(16)

Note that 2(Q*) — h(Q) as A — 0. An estimate of complexity is
then given by C(Q) = exp{h(Q™)}.

For situations where an emulator must be used in place of
a simulator to compute quantities of interest, the complexity esti-
mate must also account for code uncertainty. In this case, the pro-
cedure described in the preceding paragraph is conducted for each
sample of the emulator stochastic process. Letting the complexity
estimated for a particular sample of the emulator be written as
C(Q|G = G), the complexity estimate in the presence of code
uncertainty is defined here as

C€(Q) = max(C(QIG = G)) (17

which we estimate using Monte Carlo simulation. Equation (17)
reveals that our definition of complexity in the presence of code
uncertainty is conservative in the sense that the largest complexity
estimate that results from different emulator samples is taken to
be the complexity.

3.3 Sensitivity Analysis. For situations where the system
complexity is large, it is desirable to identify factors of the system,
which include inputs, parameters, components, subsystems,
simulators, and emulators that are the largest contributors to
the complexity. Thus, we have developed a rigorous sensitivity
analysis procedure for indentifying the most significant factor
contributors to the system complexity associated with the quanti-
ties of interest. The development of such a procedure has been
achieved with respect output dispersion measures such as variance
[44], Kullback-Liebler divergence of output distributions [45],
and moment independent importance indicators [46]. The
approach taken here is similar to that of variance-based sensitivity
analysis as described in Ref. [44]. In the variance-based case, the
goal is to apportion the variance of a quantity of interest among
its various factor contributors. This apportionment is based on the
law of total variance, which for a given quantity of interest Q and
a given factor X; is written as

Var(Q) = E[Var(Q[X)] + Var(E[QX))  (18)

From this, a main effect sensitivity index, S;, for factor X; can be
written as

Var(E[Q]Xi])
Var(0)

which is the expected fraction of the variance of Q that is removed
if the true value of X; was known.

We consider the expected complexity of the system that would
remain if the true value of some factor X; was known. This quan-
tity is given as E[C(Q|X;)], where the random variable associated
with the quantity of interest for the system is Q. Thus, to identify
the expected fraction of complexity that can be removed if the
true value of a given factor X; is known, we define complexity-
based sensitivity indices as

C(Q) — E[c(2]X)]
c(Q)
where here the uncertainty associated with X; is attributable to

either parametric variability or parametric uncertainty. In Sec. 3.4,
we consider the numerical estimation of complexity-based

Si = (19)

ni = (20)
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sensitivity indices, which includes the potential presence of model
inadequacy and code uncertainty.

The information gained from our sensitivity analysis procedure
can be used as part of a resource allocation strategy aimed at
reducing system complexity. It is important to note here that the
system complexity we are referring to is that of our proposed defi-
nition based on the potential for unexpected behavior. For other
definitions of system complexity different means should be taken
for complexity reduction. For example, if structural complexity is
a concern for a particular design, increased modularity could be a
viable means for complexity reduction. In this work, we deal
exclusively with our proposed definition, and hence aim to
increase knowledge of the system quantities of interest via identi-
fication of key sources of uncertainty in the system.

3.4 Estimation of Sensitivity Indices. We consider first the
estimation of sensitivity indices in the case for which code uncer-
tainty is not present. In order to compute E[C(Q|X;)] as given in
Eq. (20), it is necessary to evaluate the complexity of Q given X;
for each possible value of X; on its domain. If X; is approximated
by m samples with values x/,...,x", then C(Q|X; = x}) must be
computed for each of j = 1, ..., m. By the Law of Large Numbers,
the mean of the N evaluations approximates the expected value
E[C(Q]X;)], and allows n, to be estimated as

. C0) - EXL[CA(QPQ =)

= 21
) @D

In general, estimating #; is computationally intensive. For k fac-
tors, if the C(Q|X; = x}) estimates involve N simulator evaluations
and j=1,...,m, then we require kmN simulator evaluations,
which can be prohibitively expensive. Thus, it is often necessary
to employ an emulator of the simulator model, which results in
the addition of code uncertainty and the need to modify the sensi-
tivity index estimates for the different system factors. The sensi-
tivity indices for factors associated with parametric uncertainty or
parametric variability are estimated as

i = Egln;(9)] 22)
which is estimated via Monte Carlo simulation. The indices are
computed for each sample of the emulator and then averaged to
give the expected sensitivity index for each factor with associated
parametric variability or parametric uncertainty.

It is important to also estimate the sensitivity indices of both
model inadequacy and code uncertainty. For example, if model
inadequacy is a key contributor to complexity, it may be possible
to incorporate higher fidelity simulation models. If code uncer-
tainty is a key contributor, it may be possible to better train the
emulator with more samples from the simulator. The sensitivity
index for model inadequacy is defined as

- _C(0) — C(Qle(x) =0)
= a (23)
i ()
The sensitivity index for code uncertainty is defined as
C(Q) — Eg[C(0|G = G
oy _ C1O) ~ FolCl0IG = ) o

Q)

While computing estimates of the sensitivity indices defined here
involve Monte Carlo simulations, it is important to note that the
simulations are conducted with the Gaussian process emulator,
which is computationally inexpensive. Indeed, the most expensive
aspect of the complexity analysis is typically the training of the
emulator as a result of the expense incurred from running the
simulator.
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3.5 Complexity Estimation Algorithm. We present here
algorithms for computing the complexity and the complexity-
based sensitivity indices of a system for a given quantity of inter-
est. We assume that we are using an emulator we have already
trained. The training of an emulator is a machine learning task
that is beyond the scope of this work. The algorithms do not
require an emulator be used if the simulator computational costs
are reasonable. The use of a simulator results in minor modifica-
tions to the algorithms.

Algorithm 1 provides a procedure for the complexity estima-
tion. Since an emulator is being used, we assume we can afford to
evaluate it a large number of times m, and that we can sample a
large number of emulators n, from the underlying Gaussian pro-
cess. Therefore, we do not consider any specific convergence cri-
teria in the algorithm.

Algorithm 1: Complexity Estimation
1: Generate m input samples {x!, ..., x"}
2:  Generate m model inadequacy samples {¢',
3:  Generate n emulator samples {G', ..., G"}
4: Fori=1ton
Forj=1tom
Evaluate g; = G'(x') + &/
End
End
5: Fori=1ton
Estimate fQ( ) using kernel density estimation and the
q values in {g;}]",
Estimate /4'(Q*) according to Eq. 16 with Io(a)
Estimate C'(Q) = exp{/'(Q*)}
End ~ .
6: Estimate C(Q) as the maximum C'(Q) from Step 5

e}

Algorithm 2 provides a procedure for estimating the
complexity-based sensitivity indices for inputs with either para-
metric uncertainty or variability. The complexity-based sensitivity
index for model inadequacy can be computed according to
Eq. (23) by using Algorithm 1 to compute C(Q) and Algorithm 1
without incorporating the model inadequacy samples to compute

C(Qle(x) = 0). The complexity-based sensitivity index for code
uncertainty can be computed according to Eq. (24) by using the
C(Q) calculated in Step 6 of Algorithm 1 and the average of the
Ci(Q) values computed in Step 5 of Algorithm 1.

Algorithm 2: Estimation of Sensmvny Index for Factor i

1:  Generate m samples of x;, {x Ly

2:  Generate N samples of X..;, {x i ...,xlxi , where
X~ = [xlv ceny Xie 1y Xig 1y oo ey Xk
3: Forp=1toN
Let xp, [ ~I I]
End
4: Generate p model inadequacy samples {¢!, ..., &"}
5:  Generate n emulator samples {G', ..., G"}

6: Forr=1ton
Forj=1tom

Forp=1toN
Evaluate ¢, = G"(x%) + &
End
End
End
7: Forr=1ton
Forj=1tom
Estimate f; (¢) using kernel density estimation
and the ¢ values in {qjp}py
Estimate h(Q") accordmg to Eq. (16) with £/ (q)
Estimate C(Q|X; = x]) = exp{h(Q")}
End . ]
Average over the C(Q|X; = x}) to estimate 7}/
End

8: Average over the 7]/ to estimate 7}; as in Eq. (22)
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4 Application of the Methodology

We demonstrate the use of the complexity metric and sensitiv-
ity analysis developed in Sec. 3 on a simulation-based design of
an infantry fighting vehicle. The quantity of interest for this
demonstration is the range of the vehicle. The simulation models
for the IFV, the sources of uncertainty considered, and the
emulation models for the IFV simulator are discussed in the
Secs. 4.1-4.6.

4.1 The IFV Bond Graph Model. An IFV is a complicated
system consisting of many different subsystems and thousands of
components. The simulation of such a vehicle requires several dif-
ferent disciplinary analyses, such as electrical, mechanical, and
hydrodynamical. A common strategy for modeling the dynamics
of such multidisciplinary systems is through bond graphs [47-49].
Bond graphs were first proposed in Ref. [50]. Bond graphs
are based on energy conservation in a system and provide a
discipline-independent means of describing the dynamics of a
physical system. Further details on bond graphs can be found in
Refs. [47-49].

The specific IFV we are considering here comes from a set of
IFV designs developed by the Vanderbilt University Institute
for Software Integrated Systems (ISIS). These designs were
developed as part of an attempt to redefine the systems engineer-
ing process as part of the defense advanced research projects
agency’s (DARPA) adaptive vehicle make plan to develop better
complex vehicles more quickly and at lower cost [51]. A goal of
our work is thus to demonstrate the use of the complexity metric
developed here on these important complex vehicles.

The IFV designs consist of many subsystems, such as the com-
plete powertrain of the vehicle, the vehicle hull and chassis, as
well as the integrated starter generator. Figure 2 shows the bond
graph representation of the driveline of the IFV designs. The
source of power in the system is the engine, which is represented
as a source of effort, which it produces as torque. Inductive
elements of the model consist of the inertia of the engine, the gear
box, the wheels, and the vehicle mass. The only capacitive
element of the model is the compliance of the drive shaft. The
resistive elements of the model are the clutch resistance, the wind
drag, and the road resistance on the wheels. Though this model is
simple in many respects, it is still capable of obtaining good

Engine torque source

C  Capacitive component

Engine inertia | Inductive component
MR  Modulated resistance
MR <—1 MTF Modulated transformer
Clutch resistance
R Resistive component
0 | Se  Source of effort
L Gear box inertia TF Transformer
1 0 Series junction
1 Parallel junction
-[ — Effort and power positive flow right
MTF > Flow and power positive flow right

Gear ratio C
‘[ Drive shaft compliance

0

Differential

Ilk—1k—0—A1—AI

Left wheels Right wheels
inertia -[ inertia

TF
Left wheels Right wheels
rotation to linear  rotation to linear

R<—0 00—
Left wheels \,/ \/ Right wheels

road resistance / /\ road resistance

Vehicle mass Wind drag

Fig. 2 Bond graph representation of the driveline of the IFV
candidate designs (adapted from Ref. [49])
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Fig. 3 First 60 s of the simulated terrain used in the estimate of
the range of the IFV

estimates of many aspects of vehicle behavior [49]. There are of
course many other subsystems of the IFV designs; however, for
the sake of brevity, we do not provide a complete description of
them here.

It is important to note that the bond graph representation of the
IFV configuration depicted in Fig. 2 is more than just an architec-
ture for the driveline of the vehicle. The diagram also fully encap-
sulates the dynamics of the vehicles driveline, which consists of a
set of differential equations derived from the bond graph. These
differential equations are solved numerically to provide estimates
of quantities of interest of the vehicle (e.g., the range of the vehi-
cle), which are then used in the estimation of the complexity of
the system with respect to our proposed definition of complexity.

4.2 TFV Range Calculation. The quantity of interest for this
demonstration of our methodology is the range of a candidate IFV
design. The range of the vehicle is estimated by simulating vehi-
cle on a typical terrain course. The terrain used for this demonstra-
tion is shown in Fig. 3. Here, the vertical axis represents the load
experienced by the vehicle as a result of an undulating terrain.
The terrain was generated from Gaussian noise.

4.3 IFV Simulation Emulators. A single simulation of an
IFV design for the range calculation takes approximately 1500s
on a standard laptop computer. The estimation of the complexity
metric and the subsequent sensitivity analysis involves the estima-
tion of several potentially high dimensional integrals, which
could require thousands of function evaluations if Monte Carlo
simulation is employed. Thus, for the IFV application, we wish to
generate Gaussian process models of the candidate IFV design to
emulate the simulation of the vehicle. The Gaussian process
model of the potential IFV design constructed here is shown in
Fig. 4. The Gaussian process was trained with 20 training points
from the bond graph simulation model.

4.4 1IFV Sources of Uncertainty. As noted previously, there
are many sources of uncertainty that affect estimates of quantities
of interest for a complex system. For the IFV range application,
we are considering parametric uncertainty, parametric variability,
code uncertainty, and model inadequacy. Thus, for the stages of
complex system design that involve computer simulation models,
we have included all sources of uncertainty.

The parametric uncertainty we consider here is the result of an
uncertain amount of trapped fuel that cannot be used by the IFV.
The uncertainty in the amount of trapped fuel is captured by con-
sidering the available fuel at the beginning of the mission to be
uniformly distributed from 360 to 4001. Thus, we are assuming
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Fig. 4 Gaussian process model of a candidate IFV design. The
lighter gray surfaces represent the =2 standard deviation surfa-
ces from the mean surface, which is shown as the darker mesh
between the top and bottom surfaces.

between 0% and 10% of the fuel will be unusable. In general,
such information should be obtained from expert opinion or
historical data [52]. Here, we have assigned the distribution for
demonstration purposes only. The parametric variability we con-
sider here is the result of different possible human operators of the
IFV driving at different speeds. We assume that each operator is
attempting to operate the tank at 50 kph; however, each operator
may be more or less skilled at achieving this objective. To account
for this, we allow the target velocity of the vehicle to be uniformly
distributed between 45 and 55 kph. If this uncertainty is found to
be a major contributor to complexity, an obvious next step in the
design process is to ensure adequate feedback information to the
operator to ensure the operator is capable of maintaining the vehi-
cle at the target velocity. The model inadequacy we consider here
is assumed to be normally distributed with mean O and a standard
deviation of 10 km. This uncertainty is added to the output of the
emulator. We have assumed that the model inadequacy is constant
throughout the input space. The code uncertainty we consider here
is captured by the variability between training points in the Gaus-
sian process model. There are of course many other parameters
that would be uncertain at an early stage of the design of a com-
plex vehicle such as the IFV considered here. However, our goal
is to demonstrate our methodology rather than perform a complete
complexity analysis of the IFV design.

4.5 IFV Complexity Estimation. Following the procedure
outlined in Sec. 3.2, we estimate the complexity of the IFV design
using Eq. (17). The result is C(Q) = 104 km, where QO denotes the
random variable associated with the range of the IFV. Distribu-
tions of the range of the IFV are shown in Fig. 5. Here, two distri-
butions are shown in solid black lines that were estimated using
two different samples of the Gaussian process emulator shown in
Fig. 4. The dashed gray lines are the output distributions from the
same two samples of the Gaussian process emulator; however, for
these distributions, model inadequacy has been included.

4.6 IFV Sensitivity Analysis. Following the procedure out-
lined in Sec. 3.4, we estimate the sensitivity indices of the average
velocity (AV), usable fuel (UF), model inadequacy (MI), and
code uncertainty with respect to the quantity of interest, IFV
range. The results of the sensitivity analysis are shown in Fig. 6.
As shown on the figure, the sensitivity indices are

flay = 0.46
fiyp = 0.44
v = 0.15
ficy = 0.16
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Fig. 6 Sensitivity indices of the four factors that impact the
complexity of the IFV design with respect to range. From left to
right the indices are for average velocity (AV), usable fuel (UF),
code uncertainty (CU), and model inadequacy (Ml).

where v, ur, v and 7jcy are the sensitivity indices for the
average velocity, usable fuel, model inadequacy, and code uncer-
tainty, respectively. Here we note that global sensitivity analyses,
such as the variance-based work of Refs. [44,53] typically con-
sider the percentage of output variance of which a particular factor
is responsible. Thus, sensitivity indices are typically reported to
two significant figures. We follow this convention here.

If the complexity, with respect to range, of the IFV design
is considered too large, resources should be allocated to the
various contributors of that complexity. There are many possible
situations where system complexity may be deemed too large.
Examples include comparisons among candidate designs with
overlapping distributions of quantities of interest, designs with
unacceptably high probability of not meeting a critical design con-
straint, and conceptual design processes where the goal is simply
to better understand the capabilities of a given system. For the
case of this IFV design, without consideration of cost and avail-
able resources, the most efficient means of reducing complexity
would be to allocate resources to learn more about the average
velocity or the usable fuel, which have the largest sensitivity
indices.

In general the resource allocation problem is made more com-
plicated by the fact that available and required resources may be
to some extent uncertain, and it is unlikely that any given activity
be able to identify the true value of a given parameter or fully
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Fig. 7 Sampled distributions and complexity estimates of the
range quantity of interest of the two different IFV design
options. Design A uses newer technology for the vehicle veloc-
ity control and fuel systems, whereas design B uses older tech-
nology for both systems.

reduce model inadequacy or code uncertainty. Nevertheless, the
complexity-based sensitivity indices provide essential information
regarding the key contributors to system complexity and will
greatly contribute to the ability of a system designer to reduce sys-
tem complexity. It is a topic of future work to consider the more
general resource allocation problem under uncertainty.

5 Design Comparison Demonstration

To demonstrate the use of our methodology when multiple
design options are available, we consider here a notional example
where design A consists of new technologies for the vehicle
velocity control system and fuel system, and design B consists of
older technologies for those same systems. For this demonstration,
design A is the IFV considered in Sec. 4 and design B is the same
general IFV configuration only with different input distributions
for the average velocity and the usable fuel. Hence, the emulator
developed in Sec. 4.3 is used throughout this demonstration. Here,
again, the range of the vehicles are the quantities of interest and
the objective at this point in the design process is to select the
design concept that results in the longest range for the IFV.

5.1 Activity 1: Initial Complexity Estimation. The first
design activity is the estimation of the complexity of each design
with respect to the range of the vehicles. The probability distribu-
tion of the average velocity for design A, as noted in Sec. 4.4 is
given as ~ U[45,55] kph and that of the usable fuel is given as
~ U[360,400] 1. The probability distribution of the average veloc-
ity for design B is given as ~ U[50,51] kph, and the probability
distribution of the usable fuel is given as ~ U[376,384] 1. The
larger extent of the design A input distributions with respect to
extent of the design B input distributions reflects the fact that the
new technologies are less well-understood. For each design,
Algorithm 1 was used to estimate the complexity and output
distributions for the range of the vehicles. Sample output distribu-
tions, which represent output distributions computed using spe-
cific emulator samples that are representative of the ensemble of
output distributions computed by sampling over the emulators,
and complexity estimates are shown in Fig. 7. At this point in the
design process, it is not clear whether the range of design A will
be longer or shorter than that of design B. Also, the complexity of
design A is much larger than that of design B, which reflects the
fact that the extent of the potential values the range of design A
can take is larger than that of design B. The implication being that
we know much less about the impact of choosing design A on
vehicle range than the impact of choosing design B.
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When this situation occurs in the design process, a decision
must be made regarding whether to allocate resources towards
learning more about the impact of the new technology on range,
abandon the new technology in favor of the lower complexity
older technology, or move forward with the new technology with
the understanding that the incorporation of the new technology
leads to a more complex system at this time. Here, we assume
resources are available to consider the impact of the new technol-
ogy more carefully. To best allocate these resources, we use the
sensitivity analysis procedure developed in Sec. 3.3 to identify the
key contributors to the complexity of design A. The results of this
analysis were given previously in Sec. 4.6, where it was estab-
lished that the key contributors to the complexity of this design
are the average velocity and usable fuel.

5.2 Activity 2: Refine Average Velocity Estimate for
Design A. Since average velocity is the largest contributor to the
complexity of design A, resources are allocated to a notional
design activity that improves our understanding of the average
velocity that would result if design A were implemented. Exam-
ples of what this activity could be include gathering data from a
designed experiment of IFV operators using the new velocity con-
trol system in a simulator or even constructing a prototype of the
design A IFV and measuring the range of the vehicle. The activ-
ities that can be performed will depend on the level of resources
available. We assume here that the activity chosen to learn more
about the velocity control system produced a new estimate of the
distribution of the average velocity ~ U[46,46.5] kph. With this
new input information, Algorithm 1 was used to estimate the com-
plexity of design A. Figure 8 presents the results in terms of a rep-
resentative sample output distribution of design A after the
activity, which is labeled as design A, activity 2. The complexity
results for the initial design A and design B range estimates are
also shown on the figure along with representative distributions
for each estimate. As can be seen on the figure, the complexity of
design A following activity 2 has been reduced owing to the
improved understanding of the average velocity of the design.
However, it is also clear from the figure that there is still some
potential for design A to have a shorter range than design B as
evidenced by the left tail of the representative range distribution
for design A after activity 2 and the overlapping region of this
distribution with the design B representative distribution. Here,
another design decision must be made regarding whether to allo-
cate further resources to design A to reduce the complexity of the
design and learn whether or not design A is preferred to design B,
to proceed with the lower complexity design B, or to proceed with
the higher complexity design A. We assume here that resources
are still available to be allocated for complexity reduction of
design A.
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5.3 Activity 3: Refine Usable Fuel Estimate for Design
A. Since usable fuel is the next largest contributor to the com-
plexity of design A, resources are allocated to a notional design
activity that improves our understanding of the usable fuel that
would result if design A were implemented. We assume that the
result of the activity is a new estimate of the distribution of the
usable fuel that is now ~ U[386,390] 1. With this new input infor-
mation, Algorithm 1 was used to estimate the current complexity
of design A. Figure 9 presents the results in terms of a representa-
tive sample output distribution of design A after the activity,
which is labeled as design A, activity 3. The complexity results for
the initial design A, the design A after the second activity, and
design B range estimates are also shown on the figure along with
representative distributions for each estimate. Once again, the
complexity of design A has been reduced and is now slightly less
than that of design B. Thus, we now have essentially the same
knowledge regarding the range of both designs. Further, though
there is still potential for design A to produce a shorter range vehi-
cle than design B owing to the small overlapping regions of the
distributions, based on the current level of knowledge it is likely
that design A will produce the longer range vehicle.

5.4 Discussion. The demonstration presented here provides
an indication of the usefulness of the complexity metric and
sensitivity analysis methodology as enabling technologies for the
management and control of uncertainty in system design proc-
esses. In this particular example, an older set of technologies com-
prising design B was shown to initially be a lower complexity
design choice due to a lack of knowledge about the newer technol-
ogies of design A. Through the use of sensitivity analysis, key
contributors to the lack of knowledge surrounding the perform-
ance of design A were identified and notional activities were con-
ducted to learn about these contributors. The end result was a
reduction of the complexity of design A that revealed that the
design was superior to the older technology design. It is important
to note here that the end result could have been that the newer
technology was inferior to the older technology design and that
only through activities designed to learn more about the perform-
ance design A were we able to reduce the complexity of design A
and distinguish between the different options. Had these activities
not taken place, the complexity of design A would not have been
reduced, and though in this case the design was superior, this
would not have been discovered until the vehicle was fielded.

6 Conclusions

We have developed an demonstrated a methodology for esti-
mating system complexity with respect to quantities of interest, as
well as estimating sensitivity indices designed to indicate key
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contributors to system complexity. Our complexity metric can be
used to compare and rank different candidate designs of complex
systems with respect to quantities of interest. In situations where
designs are too complex, our sensitivity analysis methodology can
be used to identify key contributors to the complexity, which may
then be used to inform a resource allocation process. The incorpo-
ration of model inadequacy in our approach ensures that complex-
ity arising from the use of low fidelity models be accounted for,
and provides direction, in a resource sense, for a multifidelity
approach to complex system design. The incorporation of code
uncertainty ensures that uncertainty associated with the use of
inexpensive surrogate models be accounted for, and the sensitivity
index associated with code uncertainty can potentially be used in
the future as part of an adaptive approach to train the emulators.

The work described here assumed the existence of quantified
uncertainty in the form of parametric variability, parametric
uncertainty, model inadequacy, and code uncertainty. In general,
it is critical in the design of complex systems that these uncertain-
ties be rigorously quantified. Systematic methods for achieving
this goal are an important topic of future work. Once such meth-
ods exist, the use of metrics such as the complexity metric
described here, as well as the sensitivity analysis developed here,
can be used as part of a design verification strategy aimed at pro-
ducing probabilistic certificates of correctness for designs through
simulation.
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Nomenclature
C(-) = complexity
D = training set
E[-] = expectation
fx(x) = probability density function
GP(-,-) = Gaussian process model
H(-) = information entropy
h(-) = differential entropy
IFV = infantry fighting vehicle
M,(-) = generalized mean of order ¢
p(-) = probability mass function
QO = quantity of interest random variable
(Q = support of a random variable Q
R(-) = range of a random variable
S; = main effect sensitivity index of factor i
Var(-) = variance
A = bin size
n; = complexity-based sensitivity index of factor i
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