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A Additional comparison between CLoVER and existing algorithms for
single information source

Here we compare the performance of CLoVER with a single information source to those of the
algorithms EGRA [15], Ranjan [16], TMSE [17], TIMSE [18], and SUR [18], similarly to case
discussed in Sect. 4.3. In this investigation, we solve the problem described in example 1 of Ref. [15]
(multimodal function). Consider the random variable x ∼ N (µx,Σx), where

µx =

{
1.5
2.5

}
, Σx =

[
1 0
0 1

]
,

in the domain D = [−4, 7] × [−3, 8]. The goal is to estimate the probability pf = P (g(x) > 0),
where

g(x) =
(x21 + 4)(x2 − 1)

20
− sin

(
5x1
2

)
− 2.

We estimate the probability pf by first locating the zero contour of g and then computing a Monte
Carlo integration based on the surrogate model:

pf ≈
1

N

N∑
i=1

If (xi), x ∼ N (µx,Σx).

where

If (xi) =

{
1, µ(0,xi) > 0,
0, otherwise,

µ(0,xi) denotes the mean of f(0,xi), and N = 106 is the number of Monte Carlo samples. We
assess the accuracy of the estimates by comparing them to a reference value computed by averaging
20 Monte Carlo estimates based on evaluations of g: pf = 0.03133.

The R package KigInv [19] provides implementations of the algorithms listed above. As in Sect. 4.3,
we execute KrigInv using the same GP prior and schemes for optimization and integration as the
ones used in CLoVER. Namely, the GP prior is based on a constant mean function and a squared
exponential covariance kernel, and the hyperparameters are computed using MLE. The integration
over D is performed with the trapezoidal rule on a 50× 50 uniform grid, and the optimization set
A is composed of a 30 × 30 uniform grid. All algorithms start with the same set of 10 random
evaluations of g, and stop when the acquisition function reaches a value of 10−8 or after 50 function
evaluations, whichever occurs first. We repeat the computations 100 times using different random
sets of evaluations for initialization.

Figure S.1 shows the relative error of the estimates of pf . We observe that on average CLoVER results
in a faster error decay, and converges to lower error level. The median number of function evaluations
are the following. CLoVER: 38, EGRA: 42, Ranjan: 42, TMSE: 41, TIMSE: 50, SUR: 33.

We also evaluate the algorithms by computing the area of the subdomain S = {x ∈ D | g(x) > 0}
(shaded area in Figure 3). We estimate the area using Monte Carlo integration with 106 samples in
the region [−4, 7]× [1.4, 8], and compare the results to a reference value computed by averaging 20
Monte Carlo estimates based on evaluations of g: area(S) = 36.5541. Figure S.2 shows the relative
error in the estimates of the area of the set S. CLoVER also presents a faster decay of the error of the
area estimate.
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Figure S.1: Relative error in the estimate of the probability pf (median, 25th, and 75th percentiles).
Left: comparison between CLoVER and greedy algorithms EGRA, Ranjan, and TMSE. Right:
comparison between CLoVER and one-step look ahead algorithms TIMSE and SUR.
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Figure S.2: Relative error in the estimate of the area of set S (median, 25th, and 75th percentiles).
Left: comparison between CLoVER and greedy algorithms EGRA, Ranjan, and TMSE. Right:
comparison between CLoVER and one-step look ahead algorithms TIMSE and SUR.

B Trade-off between exploration and exploitation

As disussed in Sect. 3, the concept of contour entropy uses the parameter ε as a tolerance in the
definition of the zero contour. This parameter also provides a control over the trade-off between
exploration (sampling in regions where uncertainty is large) and exploitation (sampling in regions of
relatively low uncertainty, but likely close to the zero contour). An algorithm that favors exploration
may be ineffecient because it evaluates many samples in regions far from the zero contour, whereas
an algorithm that favors exploitation may fail to identify disjoint parts of the contour because it
concentrates samples on a small region of the domain. In general, larger values of ε result in more
exploration than exploitation, and vice-versa.

We find that making ε proportional to the standard deviation of the surrogate model,

ε(x) = cεσ(x),

provides a good balance between exploration and exploitation. To determine the constant of pro-
portionality cε we repeat the experiment described in Sect. 4.3 with cε ∈ {1, 2, 3}. We measure
the accuracy in the prediction of the zero contour by computing the area of the excursion set
S = {x ∈ [−5, 10] × [0, 15] | g(x) > 80}, where g denotes the two-dimensional Branin-Hoo
function [26]. Figure S.3 shows the convergence in the relative error in the estimates of S computed
with different values of cε.

We observe that in all cases CLoVER identified the zero contour, although with varying levels of
accuracy. As expected, cε = 1 leads to a more exploitative algorithm that on average converges
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Figure S.3: Influence of ε in the convergence of CLoVER. The plot shows the relative error (median,
25th and 75th percentiles) in the area of the set S.

faster to the zero contour. Choosing cε = 2 does not affect the convergence rate significantly, but
leads to a slightly larger error in the area estimate. Finally, setting cε = 3 considerably degrades the
performance of the algorithm.

Although we do not observe adverse effects of choosing cε = 1 in this particular example, we also
do not observe significant improvements with respect to cε = 2. For this reason, we favor choosing
cε = 2 to avoid an excessively exploitative algorithm. We find this heuristic to work well in general
problems.

C Computational cost

The computational cost of CLoVER is comparable to that of other algorithms with one-step look
ahead acquisition functions (e.g., TIMSE and SUR [18]). Greedy acquisition functions are cheaper to
evaluate, but offer no natural form of selecting information sources when more than one is available.
In addition, Chevalier et al. [19] report that one-step look ahead strategies are more efficient in
selecting samples because they take into account global effects of new observations, resulting in
a lower number of function evaluations for comparable accuracy. Most importantly, the multi-
information source setting considered in this paper is relevant when the highest fidelity information
source is expensive. In this scenario, the cost of selecting new samples (∼ 4s for a two-dimensional
problem) is normally small in comparison to function evaluations.

The computational cost of CLoVER is dominated by evaluating the variance σ̄2 within the integral
of Eq. (10) (see Sect. 3.3). In general, the cost of evaluating the variance of a GP surrogate after n
observations is O(n3). (The cost can be reduced to O(n log2 n) for specific covariance functions,
and large values of n). Therefore, the total computations cost scales asO(nanin

3), where na denotes
the number of points in the optimization set A, and ni denotes the number of points used to evaluate
the integral of Eq. (10).
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