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Abstract

This work proposes a Bayesian inference method for the reduced-order modeling of time-dependent systems.
Informed by the structure of the governing equations, the task of learning a reduced-order model from data is
posed as a Bayesian inverse problem with Gaussian prior and likelihood. The resulting posterior distribution
characterizes the operators defining the reduced-order model, hence the predictions subsequently issued by
the reduced-order model are endowed with uncertainty. The statistical moments of these predictions are es-
timated via a Monte Carlo sampling of the posterior distribution. Since the reduced models are fast to solve,
this sampling is computationally efficient. Furthermore, the proposed Bayesian framework provides a statis-
tical interpretation of the regularization term that is present in the deterministic operator inference problem,
and the empirical Bayes approach of maximum marginal likelihood suggests a selection algorithm for the
regularization hyperparameters. The proposed method is demonstrated on two examples: the compressible
Euler equations with noise-corrupted observations, and a single-injector combustion process.

Keywords: data-driven reduced-order modeling, uncertainty quantification, operator inference, Bayesian
inversion, Tikhonov regularization, single-injector combustion

1. Introduction

The objective of this work is to enable uncertainty quantification for data-driven reduced-order modeling.
A reduced-order model (ROM) is a low-dimensional surrogate for a high-dimensional physical system, such
as the many natural and engineering systems that are governed by partial differential equations. Ideally, the
computational cost of a ROM should be reduced compared to that of a high-fidelity model of the original
system, yet without compromising the solution accuracy. Model reduction strategies typically construct a
ROM by identifying a predominant, low-dimensional subspace that well approximates the solution manifold,
then representing the state dynamics in the subspace [4, 43]. Classical reduced-order models are constructed
by explicitly projecting high-fidelity operators onto the reduced subspace. Such models are called intrusive
because the high-fidelity operators must be extracted from a numerical solution code. In contrast, non-
intrusive data-driven ROMs learn low-dimensional representations of systems primarily from solution data,
and do not require intrusive access to a high-fidelity simulator. Non-intrusive ROMs are advantageous
for applications with well-established legacy codes that can be readily executed but not easily modified.
On the other hand, the extensive use of data introduces uncertainties beyond those originating from the
modeling decisions of low-dimensional approximation and makes it difficult to obtain classical a posteriori
error estimates as in [21]. In particular, measurement noise in the data and misspecification of the model
structure may impact the accuracy and robustness of non-intrusive ROMs. It is therefore crucial that
validation efforts for data-driven ROMs quantify the errors and uncertainties associated with non-intrusive
learning.
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There are several data-driven methods for constructing ROMs, including dynamic mode decomposition
[45], operator inference to learn a ROM with polynomial structure inspired by known governing equations
[15, 40], sparse regression to identify reduced-order latent dynamics [8, 44], manifold learning using deep auto-
encoders [30], data-driven approximation of time-integration schemes [56], and Gaussian process modeling
for parametric reduced basis methods [17]. This paper focuses on operator inference (OpInf), a non-intrusive,
projection-based model reduction technique introduced in [40]. OpInf learns a ROM by inferring reduced-
order operators through a deterministic linear regression. The regression requires solution data of the states
and their corresponding time derivatives; if needed, the time derivatives are typically estimated from the
states with finite differences. Importantly, numerical regularization is often required in the inference problem
to address ill-conditioning, over-fitting, and/or model inadequacy [31, 48], but the regularization selection
remains a subject of further investigation. Errors introduced by time derivative approximation, noise in
the solution data, and/or numerical regularization have not been directly addressed in the literature, with
the exception of [50], which considers an active sampling strategy for overcoming noise pollution in the
training data. Even without noise in the data, establishing error bounds or uncertainty guarantees in OpInf
is challenging because the learning is driven by data, although [49] establishes probabilistic error estimates
for linear OpInf ROMs in the case where the reduced-order operators can be ensured to be the same as
those determined by explicit projection as in [39].

The main contribution of this work is to establish a probabilistic formulation of OpInf, thereby facilitat-
ing uncertainty quantification for non-intrusive ROMs of time-dependent systems. Our strategy accounts
for approximation errors and data noise, endows the resulting ROM with uncertainty bounds, and provides
statistical insight into the numerical regularization. Specifically, the task of inferring reduced-order oper-
ators is posed as a Bayesian inversion problem [6], which incorporates prior knowledge and observational
information to update the probabilistic distribution of unknown system parameters. Bayesian approaches
are especially useful in data-driven modeling and analysis [9] and, in particular, have recently shown promise
in estimating the operators in differential equations, see, e.g., [22, 38, 55]. In our case, multivariate normal
distributions are adopted to define the prior and likelihood when Bayes’ rule is applied, yielding a Bayesian
linear regression to estimate the reduced-order operators. Different from the deterministic OpInf workflow
that gives point estimates only, the proposed Bayesian version derives posterior distributions of the learned
reduced-order operators, whose uncertainties are subsequently propagated to solutions through time integra-
tion. In other words, endowing the reduced-order operators with probabilistic descriptions results in ROM
predictions with quantifiable uncertainties. Additionally, our probabilistic treatment of the regression leads
to a selection algorithm for the regularization hyperparameters.

We present this work in honor of the lifetime academic achievements of Professor J. Tinsley Oden, espe-
cially his seminal work in highlighting the importance of verification & validation [1, 2, 37] and uncertainty
quantification [35, 36] to achieve predictive models in computational engineering and sciences [34]. He laid
the mathematical foundation of predictive computational science [35] using Bayesian methods and has uti-
lized the framework in a substantial range of scientific, medical and engineering applications [13, 20, 27, 41].
Professor Oden’s pioneering, groundbreaking research on predictive computational science sets the stage for
this work and inspires us to enable the uncertainty quantification and model validation of data-driven ROMs
through a Bayesian approach.

The paper is structured as follows. Section 2 introduces OpInf in its established deterministic framework.
Section 3 endows OpInf with a Bayesian perspective by establishing a posterior distribution for the operators
of a reduced-order system, and Section 4 discusses the implications for the numerical regularization that is
needed in the ROM learning formulation. Numerical results for two examples are presented in Section 5,
and Section 6 makes concluding remarks.
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2. Deterministic operator inference

We consider problems governed by partial differential equations, written after spatial discretization in
the form

d

dt
q(t) = F(q(t),u(t)) , q(t0) = q0 , t ∈ [t0, tf ] , (2.1)

in which q(t) ∈ Rn is the state vector collecting values of n degrees of freedom at time t, u(t) ∈ Rm
collects m input values at time t (e.g., encoding boundary conditions or time-dependent source terms),
F : Rn × Rm → Rn maps state/input pairs to the state evolution, t0 and tf are the initial and final
time, respectively, and q0 is the prescribed initial condition. A projection-based ROM approximates the
full-order system (2.1) in a subspace with reduced dimensionality r � n, spanned by a collection of r
basis vectors V = [v1 v2 · · · vr] ∈ Rn×r. One widely used approach to construct the basis V is the
proper orthogonal decomposition (POD) [5, 16, 46]. For a collection of known state snapshots qj := q(tj)
and inputs uj := u(tj), j = 0, 1, · · · , k − 1, at k time instances t0 < t1 < · · · < tk−1, organized as
Q = [ q0 q1 · · · qk−1 ] ∈ Rn×k and U = [ u0 u1 · · · uk−1 ] ∈ Rm×k, POD takes advantage of the singular
value decomposition Q = ΦΞΨT by using the first r columns of Φ as the r-dimensional reduced basis, i.e.,
V = Φ:,1:r. Projection-based methods, such as those based on POD, have the key advantage of producing
ROMs that inherit structure from the full-order system (2.1) [16]. This observation motivates us to consider,
for a wide class of problems, ROMs with the following polynomial structure:

d

dt
q̂(t) = Âq̂(t) + Ĥ[q̂(t)⊗ q̂(t)] + B̂u(t) + ĉ , q̂(t0) = VTq0 , t ∈ [t0, tf ] , (2.2)

where q̂(t) ∈ Rr is the reduced state, ⊗ denotes the Kronecker product [51], and Â ∈ Rr×r, Ĥ ∈ Rr×r2 ,

B̂ ∈ Rr×m, and ĉ ∈ Rr are reduced-order operators that together comprise a low-dimensional representation
of F. The full- and reduced-order states are related by a linear approximation q(t) ≈ Vq̂(t).

The data-driven operator inference (OpInf) method [40] employs the projection-based setting of (2.2),
but utilizes a regression problem to find the reduced-order operators that best match the snapshot data in
a minimum-residual sense. For non-polynomial problems, training data may be pre-processed with variable
transformations to induce an exact or approximate polynomial structure as needed [42]. Such a non-intrusive
approach avoids entailing intrusive queries and access to source code. The regression problem to infer the
reduced-order operators is written as

min
Â,Ĥ,B̂,ĉ


k−1∑
j=0

∥∥∥Âq̂j + Ĥ[q̂j ⊗ q̂j ] + B̂uj + ĉ− ˙̂qj

∥∥∥2
2

+ P
(

[ Â Ĥ B̂ ĉ ]
) , (2.3)

in which the first term is a loss function defined by the residual of (2.2) at the k time instances t0 < t1 <
· · · < tk−1, and the second term P represents a regularization. Here the reduced-state dataset {q̂j}k−1j=0 is

constructed by evaluating the projection of known snapshots onto the reduced basis V, i.e., q̂j = VTqj , and

the time-derivative data { ˙̂qj}k−1j=0 are then typically approximated using finite differences. The regularization
term P penalizes the entries of the learned quantities, which is often necessary to induce stability in the
resulting ROM [31]. The training time instances are contained in [t0, tk−1], a subset of the full time interval
of interest [t0, tf ], and the reduced-order solution over [tk, tf ] will be predictive through the inferred ROM.

Remark 1: The quadratic interaction q̂⊗ q̂ = vec(q̂q̂T) ∈ Rr2 has only r(r+ 1)/2 < r2 degrees of freedom
due to symmetry, i.e., the upper-triangular elements of q̂q̂T completely prescribe q̂⊗ q̂. Hence, in practice
we may learn an r × r(r + 1)/2 quadratic operator Ĥ as opposed to an r × r2 quadratic operator.

The least-squares problem (2.3) can be rewritten in a matrix form and decoupled into r least-squares
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problems, one for each ordinary differential equation in the reduced system (2.2), i.e.,

min
Ô

{∥∥∥DÔT −RT
∥∥∥2
F

+ P(Ô)

}
=

r∑
i=1

min
ôi

{
‖Dôi − ri‖22 + Pi(ôi)

}
, (2.4)

where

Ô := [ Â Ĥ B̂ ĉ ] := [ ô1 · · · ôr ]T ∈ Rr×d(r,m) ,

D := [ Q̂T (Q̂� Q̂)T UT 1k ] ∈ Rk×d(r,m) ,

Q̂ := [ q̂0 q̂1 · · · q̂k−1 ] ∈ Rr×k ,

R := [ ˙̂q0
˙̂q1 · · · ˙̂qk−1 ] := [ r1 · · · rr ]T ∈ Rr×k , and

U := [ u0 u1 · · · uk−1 ] ∈ Rm×k ,

(2.5)

in which d(r,m) = r + r(r + 1)/2 + m + 1, 1k ∈ Rk is a length-k vector with all entries set to 1, � is
the Khatri-Rao product (the column-wise Kronecker product [28, 29]), and ôi ∈ Rd(r,m) and ri ∈ Rk are

the i-th rows of Ô and R, respectively. Here an individual regularization Pi is defined for each ôi, i.e.,
P(Ô) =

∑r
i=1 Pi(ôi). Thus the OpInf comprises of r independent regressions with respect to the unknown

reduced-order operators ôi. Note that while (2.4) is a linear regression, the corresponding ROM (2.2) defined
by ôi is a nonlinear dynamical system.

We usually have k > d(r,m); in that case, and with Pi(ôi) = 0, the point estimate õi of ôi through the
least squares (2.4) can be yielded in an explicit form as

õi := D+ri = (DTD)−1DTri , (2.6)

D+ denoting the Moore–Penrose inverse of the matrix D. Here we assume that D has full column rank; the
cases with ill-conditioned DTD will be discussed in Section 4.

3. Bayesian operator inference

In this section, the regression for learning the reduced-order operators Ô = [ Â Ĥ B̂ ĉ ] is posed
as a Bayesian inference problem [6, 9]. We define a probabilistic ROM through the resulting posterior

distribution of Ô substituted into the form (2.2), which enables uncertainty estimates through Monte-Carlo
sampling. We abbreviate the proposed Bayesian operator inference method as BayesOpInf.

3.1. Bayesian inference of reduced-order operators

The quadratic structure of the ROM (2.2) introduces a model misspecification error whenever the full-
order system (2.1) includes non-quadratic dynamics. Additionally, the quality of the least-squares estima-
tion (2.4) may suffer from approximation error in the estimated time derivatives of the training snapshots
and/or noise in the snapshots themselves. To account for these uncertainties, we use Bayesian inference to
formulate the estimators of the reduced-order operators ôi as probabilistic distributions, i = 1, . . . , r.

For the definition of a likelihood distribution, we model the residual error in the data-driven scheme (2.4)
as independent Gaussian noise, i.e., we consider

ri = Dôi + εi, p(εi) = N (εi|0k, σ2
i Ik) , (3.1)

in which 0k is the k-dimensional zero vector and Ik denotes the k × k identity matrix. Here the noise
εi ∈ Rk is a random vector consisting of the error terms in the observations at k time instances. All these
noise measurements are assumed to follow independent normal distributions with zero mean and variance
σ2
i . Hence the likelihood distribution for the training data pair (D, ri) is written as

p(ri| D, ôi, σ2
i ) = N (ri| Dôi, σ

2
i Ik) . (3.2)
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The choice to model the entries of εi as independent random variables (i.e., assuming the noise is not
correlated across time) is convenient but not a requirement. An alternative, kernel-based model of the
residual error is provided in Appendix 1, which accounts for correlations over time and constructs a surrogate
model of the ROM closure.

We also define the prior distribution of ôi as a multivariate normal distribution,

p(ôi| σ2
i ,λi) = N (ôi| βi, σ2

i diag(λi)
−1) , (3.3)

where βi ∈ Rd(r,m) is a pre-defined mean vector and λi ∈ Rd(r,m) is a vector of positive numbers hyper-
parametrizing the prior variances of ôi. Note that the prior covariance is a diagonal matrix, implying that
the prior does not impose correlations between the components of ôi.

Conditioning on the training data, Bayes’ rule gives the posterior distribution p(ôi| D, ri, σ
2
i ,λi) as

follows:

p(ôi| D, ri, σ2
i ,λi) ∝ p(ri| D, ôi, σ2

i ) p(ôi| σ2
i ,λi)

= N (ri| Dôi, σ
2
i Ik) N (ôi| βi, σ2

i diag(λi)
−1)

= N (Dôi| ri, σ2
i Ik) N (ôi| βi, σ2

i diag(λi)
−1)

= N
(
ri| Dβi, σ2

iDdiag(λi)
−1DT + σ2

i Ik
)
N (ôi| µi,Σi) , i.e.,

p(ôi| D, ri, σ2
i ,λi) = N (ôi| µi,Σi) ,

(3.4)

in which

Σi = Σi(D, σ
2
i ,λi) = σ2

i

[
diag(λi) + DTD

]−1
,

µi = µi(ri,D,λi) =
[
diag(λi) + DTD

]−1 (
diag(λi)βi + DTri

)
= βi +

[
diag(λi) + DTD

]−1
DT(ri −Dβi)︸ ︷︷ ︸

δµi(ri,D,λi)

,
(3.5)

all consistent with the results of Bayesian linear regression [6].
To marginalize (σ2

i ,λi) in the distribution p(ôi| D, ri, σ
2
i ,λi) and obtain p(ôi| D, ri) as the inference

of ôi, we adopt an empirical Bayes method—maximum log marginal likelihood [54]—to estimate a set of
optimal values of (σ2

i ,λi). Mathematically, the maximization problem is written as

(σ∗2i ,λ
∗
i ) = arg max

σ2
i ,λi

log p(ri| D, σ2
i ,λi)

= arg max
σ2
i ,λi

log

∫
p(ri| D, ôi, σ2

i ) p(ôi| σ2
i ,λi) dôi

from (3.4)
= arg max

σ2
i ,λi

log N
(
ri| Dβi, σ2

i

(
Ddiag(λi)

−1DT + Ik
))

= arg max
σ2
i ,λi

− 1

2σ2
i

‖ri −Dµi(ri,D,λi)‖22 −
1

2σ2
i

∥∥∥diag (λi)
1/2

δµi(ri,D,λi)
∥∥∥2
2

− 1

2
log

∣∣diag(λi) + DTD
∣∣+

1

2
log(λi)

T
1d(r,m) −

k

2
log
(
σ2
i

)
− k

2
log(2π) ,

(3.6)

where |·| indicates the matrix determinant. Thus the final posterior distribution p(ôi|D, ri) is approximated
as

p(ôi| D, ri) = p(ôi| D, ri, σ∗2i ,λ∗i ) = N
(
ôi| µi(ri,D,λ∗i ),Σi(D, σ

∗2
i ,λ

∗
i )
)
. (3.7)

Furthermore, by taking partial derivative of the objective function in (3.6) with respect to σ2
i and setting it
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Figure 1: The BayesOpInf workflow. To derive the probabilistic ROM, infer the multivariate normal posterior distribution for
the operator matrix Ô from snapshot and time derivative data. This is a one-time, offline cost. To evaluate the probabilistic
ROM in the online stage, draw samples from the posterior distribution of Ô and solve the corresponding ROM realizations,
then calculate the statistics of these ROM solutions.

to zero, we see that the maximum is achieved at

σ∗2i =
‖ri −Dµi‖22 +

∥∥∥diag (λ∗i )
1/2

δµi

∥∥∥2
2

k
. (3.8)

Remark 2: A pragmatic choice is to set βi = 0 and thus δµi = µi. When we assume that the prior
variance values are very large (λi → 0), i.e., the prior of ôi is uninformative, we have µi = õi = D+ri,
Σi = σ∗2i (DTD)−1, and σ∗2i = ‖ri −Dõi‖22/k. In this case, the posterior mean vector of ôi coincides with
the original least squares estimate õi as in deterministic OpInf, and σ∗2i is the mean squared error of the
linear regression.

Remark 3: If the pre-defined prior mean vector of ôi is taken as its point estimate õi, i.e., βi = õi = D+ri,
then we have δµi = 0 and µi = õi, as well as σ∗2i = ‖ri − Dõi‖22/k. Moreover, by simplifying (3.6) the
estimate of λi is given by

λ∗i = arg max
λi

− 1

2
log |diag(λi) + DTD|+ 1

2
log |diag(λi)|

= arg max
λi

− 1

2
log

∣∣∣I + diag(λi)
− 1

2 DTDdiag(λi)
− 1

2

∣∣∣ . (3.9)

Since diag(λi)
− 1

2 DTDdiag(λi)
− 1

2 is semi-positive definite, infλi

∣∣∣I + diag(λi)
− 1

2 DTDdiag(λi)
− 1

2

∣∣∣ = 1, which

is achieved as diag(λi)
−1 → 0 (λi → ∞d(r,m)), i.e., when the prior of ôi is deterministic. In this case, the

Bayesian formulation reduces to deterministic OpInf, indicating that the deterministic version essentially
forms an optimal solution, provided that the Gram matrix DTD is well-conditioned.

3.2. A probabilistic reduced-order model

Because the OpInf regression naturally decouples along the rows of the reduced operator matrix Ô =
[ Â Ĥ B̂ ĉ ], we likewise treat the Bayesian inference of each row ôi independently, 1 ≤ i ≤ r. Hence Ô
is described by the posterior distribution

p(Ô| D,R) =

r∏
i=1

p(ôi| D, ri) . (3.10)

Given Ô, we solve for the reduced state q̂(t) through the corresponding reduced-order system (2.2) over
[t0, tf ]. The reduced state can therefore be viewed as a stochastic process because it depends on the random
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variable Ô, with distribution

p(q̂(t)| D,R) =

∫
p(q̂(t)| Ô)p(Ô| D,R) dÔ =

∫
p(q̂(t)| ô1, . . . , ôr)

r∏
i=1

p(ôi| D, ri) dôi , (3.11)

in which all the ôi’s are marginalized. Since (2.2) is computationally inexpensive to integrate in time,

we use Monte Carlo sampling over the operator posterior p(Ô| D,R) to estimate the mean function and

second-order moments of q̂(t) (see Figure 1). In fact, p(q̂(t)| Ô) represents a deterministic model given by

the reduced operators Ô, hence, one can write the reduced state solution q̂(t) determined by the reduced

operators Ô as a function of Ô, i.e., q̂(t; Ô). Note that the solution mean and the solution determined by

the posterior operator mean are not necessarily equal to each other, i.e., E[q̂(t; Ô| D,R)] 6= q̂(t;E[Ô| D,R]).
We will show, however, that in practice the discrepancy between these two quantities is often small, even in
complex scenarios.

Algorithm 1 details the BayesOpInf procedure with βi = 0, δµi = µi (see Remark 2), and a fixed
choice of the prior variance vectors λi, i = 1, . . . , r. The mean vectors µi and covariance matrices Σi are
determined via (3.5) and (3.8). We discuss the selection of λi in Section 4.

Algorithm 1 Bayesian Operator Inference (BayesOpInf).

1: procedure BayesOpInf( Data matrix D ∈ Rk×d(r,m), projected time derivatives R = [ r1 · · · rr ]T ∈
Rr×k, regularization parameters λ1, . . . ,λr ∈ Rd(r,m), projected initial condition q̂0 ∈ Rr, final time
tf > t0, number of Monte Carlo samples N ∈ N )

2: # Offline phase: construct operator posterior p(Ô|D,R).
3: for i = 1, . . . , r do
4: µi ← arg minµi

‖Dµi − ri‖22 + ‖diag(λi)
1/2µi‖22 # Mean of operator row ôi.

5: σ∗2i ← 1
k

(
‖Dµi − ri‖22 + ‖diag(λi)

1/2µi‖22
)

6: Σi ← σ∗2i
(
DTD + diag(λi)

)−1
# Covariance of operator row ôi.

7: # Online phase: sample from operator posterior p(Ô|D,R) and obtain ROM solutions.

8: for ` = 1, . . . , N do
9: for i = 1, . . . , r do

10: ô
(`)
i ← sample from N (µi,Σi)

11: Q̃(`) ← integrate (2.2) with Ô = [ Â Ĥ B̂ ĉ ] = [ ô
(`)
1 · · · ô

(`)
r ]T from q̂0 = Q̂:,0 over [t0, tf ]

12: return Q̃(1), . . . , Q̃(N) # ROM solutions corresponding to the operator samples.

Remark 4: As the posterior p(ôi| D, ri) follows a multivariate normal distribution, the noise-free posterior
prediction of d

dt q̂i(t) is a finite-rank Gaussian process, where q̂i(t) is the ith entry of q̂(t). Defined by the

ROM form (2.2), the posterior mean and covariance functions of d
dt q̂i(t) take the form of

E
[

d

dt
q̂i(t)

∣∣∣∣ D, ri

]
= d(q̂(t),u(t))Tµi , and

Cov
[

d

dt
q̂i(t),

d

dt
q̂i(t
′)

∣∣∣∣ D, ri

]
= d(q̂(t),u(t))TΣid(q̂(t′),u(t′)) ,

(3.12)

respectively, where d(q̂,u) := [ q̂T (q̂ ⊗ q̂)T uT 1 ]T ∈ Rd(r,m). The same result can be obtained using
Gaussian process regression [54] with the following noise-corrupted prior:

d

dt
q̂i(t) ∼ GP

(
d(q̂(t),u(t))Tβi, σ

2
i d(q̂(t),u(t))Tdiag(λi)

−1d(q̂(t′),u(t′)) + σ2
i δDirac(|t− t′|)

)
, (3.13)
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in which δDirac(·) denotes the Dirac-delta function. This prior Gaussian process is consistent with the
likelihood and prior definitions adopted in (3.2) and (3.3), respectively, for the Bayesian inference (3.4).

3.3. Equivalence to ridge regression

Recall the posterior mean vector of ôi given in (3.5). The correction term δµi = µi−βi can be expressed
alternatively as

δµi = arg min
η∈Rd(r,m)

{
‖ri −D(βi + η)‖22 + ‖diag(λi)

1
2η‖22

}
, (3.14)

implying that the posterior mean is the solution of a ridge regression problem, i.e., a linear least-squares
problem with a Tikhonov regularization (in this case ‖diag(λi)

1
2η‖22). The use of Tikhonov regularization

in OpInf has been reported in [31, 48]. Thus another source of modeling uncertainty is introduced to the
ROM by the Tikhonov regularization defined with OpInf. Based on the equivalence between the posterior
mean of the inferred operators and ridge regression, it can be claimed that the uncertainty introduced by
Tikhonov regularization is quantified through the proposed Bayesian framework as well.

On the other hand, the selection of the regularization parameters λ1, . . . ,λr has been shown to be
important in addressing ill-conditioning, over-fitting, or model inadequacy in OpInf [31, 48]. The proposed
Bayesian method in this work not only formulates a framework of uncertainty quantification, but also
provides a new perspective for understanding the regularization selection process for deterministic OpInf.
We address this further in Section 4.

4. Regularization selection

Without regularization, the OpInf point estimate (2.6) is represented with the Moore–Penrose inverse of
matrix D and requires that D has full column rank, i.e., the Gram matrix DTD is invertible. In practice,
however, the condition number of DTD may be large, which can lead to a poor estimate of the reduced
operators and compromise the stability of the corresponding ROM. In this case, making use of a proper
regularization can be critical for stabilizing the OpInf scheme and improving the robustness of the ROM
[31, 48].

As specified in Section 3.3, the posterior mean of inferred operators is equivalent to an estimator through
ridge regression. The penalty coefficients λi in the Tikhonov regularization correspond to the prior variances
of the operators ôi. As given in (3.6), the values of the hyperparameters λi can be determined by an empirical
Bayes method of maximizing marginal likelihood,

Li(σ2
i ,λi) = log N

(
ri| Dβi, σ2

i

(
Ddiag(λi)

−1DT + Ik
))

=− 1

2σ2
i

‖ri −Dµi‖22 −
1

2σ2
i

∥∥∥diag (λi)
1/2

δµi

∥∥∥2
2

− 1

2
log

∣∣diag(λi) + DTD
∣∣+

1

2
log(λi)

T
1d(r,m) −

k

2
log
(
σ2
i

)
− k

2
log(2π) .

(4.1)

In this sense, the empirical method provides guidance for determining the penalty parameters λi in regu-
larized OpInf.

Taking partial derivatives of Li with respect to σ2
i and all the entries of λi = [λi,1, . . . , λi,d(r,m)]

T, the
extremum conditions are

∂Li
∂σ2

i

= 0 =⇒ σ∗2i =
‖ri −Dµi‖22 +

∥∥∥diag (λ∗i )
1/2

δµi

∥∥∥2
2

k
,

which has already been given in (3.8), and

∂Li
∂λi,j

= 0 =⇒ λ∗i,j
(
δµ2

i,j + Σi,jj
)

= σ∗2i , 1 ≤ j ≤ d(r,m) , (4.2)
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in which δµi,j and Σi,jj are the j-th entry of δµi and the j-th diagonal entry of Σi, respectively.1 Note that
(4.2) is an implicit representation of λ∗i , the penalty coefficients of Tikhonov regularization.

For each reduced system mode i = 1, . . . , r, the problem of maximum marginal likelihood in (4.1) is non-
convex with 1 + d(r,m) unknowns. Solving such a problem using gradient-based methods is possible, but
inconvenient for moderately sized r and not guaranteed to find a global optimum. To alleviate complexity,
we impose the constraint λi,j = λi for all 1 ≤ j ≤ d(r,m), hence λi = [ λi λi · · · λi ]T ∈ Rd(r,m). In this
case, the regularization term in (2.4), as well as in steps 4 and 5 of Algorithm 1, is an L2-regularization with
penalty coefficient λi > 0, i.e.,

Pi(µi) = Pi(βi + δµi) =
∥∥∥diag(λi)

1/2δµi

∥∥∥2
2

= λi ‖δµi‖22 . (4.3)

This means that the operator entries corresponding to the reduced system mode q̂i, i.e., the ith rows of ĉ,
Â, Ĥ, and B̂, are regularized equally, while operator entries corresponding to different system modes are
regularized separately. Summing (4.2) over all 1 ≤ j ≤ d(r,m) yields

λ∗i (‖δµi‖22 + tr(Σi)) = d(r,m)σ∗2i , (4.4)

in which tr(Σi) can alternatively be written as follows [54]:

tr(Σi) = σ∗2i

d(r,m)∑
l=1

1

λ∗i + gl
, (4.5)

where g1, . . . , gd(r,m) ≥ 0 are the non-negative eigenvalues of the Gram matrix DTD. This representation
of tr(Σi) has the computational advantage of avoiding explicit matrix inversion in (3.5) to evaluate Σi. We
then have

λ∗i =
σ∗2i
‖δµi‖22

d(r,m)∑
l=1

gl
λ∗i + gl︸ ︷︷ ︸

:=γi

=
γiσ
∗2
i

‖δµi‖22
, (4.6)

in which 0 < γi < d(r,m). The following equality shows the connections among the noise σ∗2i and the two
terms in the loss function of the ridge regression (3.14):

λ∗i ‖δµi‖22
γi

=
‖ri −Dµi‖22

k − γi
= σ∗2i . (4.7)

Substituting (3.8) into (4.6), λ∗i is expressed by the posterior mean δµi and covariance matrix Σi, both
being dependent on λ∗i as well. Thus an implicit representation of λ∗i is given by λ∗i = F(λ∗i ), where F denotes
the right-hand side of (4.6). In this work, we suggest a fixed-point iterative strategy, (λ∗i )s+1 = F((λ∗i )s),
s = 0, 1, . . ., as a practical approach to simultaneously satisfy (3.8) and (4.6) and approximately maximize
(4.1). The initial values {(λ∗i )0}ri=1 can be set to a selection of regularization coefficients that result in a
stable ROM, but which are not necessarily optimal. This iterative regularization update procedure is given
by Algorithm 2, which considers a zero prior mean of reduced operators, i.e., βi = 0 and µi = δµi. We
note that while Algorithm 2 is computationally efficient, it does not include stability information for the
reduced-order ODE system (2.2) because of its completely non-intrusive nature.

1The evaluation of ∂Li
∂λi,j

uses the identity ∂θ(log detA(θ)) = tr
(
A(θ)−1∂θA(θ)

)
, in which A is an invertible matrix

parametrized by θ.
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Algorithm 2 Iterative regularization update for BayesOpInf with λi,j = λi.

1: procedure BayesOpInfRegularization( Data matrix D ∈ Rk×d(r,m), projected time derivatives
R = [ r1 · · · rr ]T ∈ Rr×k, initial regularization parameters λ1, . . . , λr ≥ 0, convergence tolerance ε > 0
)

2: g1, . . . , gd(r,m) ← eig(DTD) # Get eigenvalues of the data Gram matrix.

3: λ(0) ← [ λ1 · · · λr ]
4: for ` = 0, 1, . . . do
5: for i = 1, . . . , r do
6: µi ← arg minµi

‖Dµi − ri‖22 + λi ‖µi‖22 # Update operator mean.

7: σ∗2i ← 1
k

(
‖Dµi − ri‖22 + λi ‖µi‖22

)
# Update operator variance.

8: λ∗i ←
σ∗2i
‖µi‖22

d(r,m)∑
l=1

gl
λi + gl

# Update regularization.

9: λ(`+1) ← [ λ∗1 · · · λ∗r ]

10: if ‖λ(`+1) − λ(`)‖2
/
‖λ(`)‖2 < ε then # Check for convergence.

11: return λ∗1, . . . , λ
∗
r

12: λ1, . . . , λr ← λ∗1, . . . , λ
∗
r # Continue iterating if not converged.

5. Numerical examples

Section 5.1 demonstrates the proposed method on one-dimensional Euler equations where the state so-
lution data are polluted by Gaussian noise. In Section 5.2, we examine a combustion application in which
the regularizing terms play a crucial role for learning stable ROMs from data. The code for these ex-
periments can be found at https://github.com/Willcox-Research-Group/ROM-OpInf-Combustion-2D/

tree/cmame2022.

5.1. Noised Euler Equations

Consider the conservative one-dimensional compressible Euler equations for an ideal gas,

∂

∂t
[ρ] = − ∂

∂x
[ρu] ,

∂

∂t
[ρu] = − ∂

∂x

[
ρu2 + p

]
,

∂

∂t
[ρe] = − ∂

∂x
[(ρe+ p)u] , (5.1)

where u is velocity [m/s], ρ is density [kg/m3], p is pressure [Pa], ρu is specific momentum [kg/m2s], and
ρe is total energy [kgJ/m3]. The state variables are related via the ideal gas law ρe = p

γ−1 + 1
2ρu

2, where

γ = 1.4 is the heat capacity ratio. Our goal is to learn a reduced model of (5.1) from noisy observations of
the conservative variables (ρ, ρu, ρe) and to quantify the uncertainties induced by the noise. The ideal gas
law enables a change of variables τ : (ρ, ρu, ρe) 7→ (u, p, 1/ρ) that transforms (5.1) into the purely quadratic
system

∂u

∂t
= −u∂u

∂x
− ζ ∂p

∂x
,

∂p

∂t
= −γp∂u

∂x
− u∂p

∂x
,

∂ζ

∂t
= −u∂ζ

∂x
+ ζ

∂u

∂x
, (5.2)

where ζ = 1/ρ is the specific volume [m3/kg]. In the model (5.2), every term is the product of exactly two
state variables (u, p, ζ) or their spatial derivatives, hence for this problem we seek a reduced model with
quadratic terms only:

d

dt
q̂(t) = Ĥ[q̂(t)⊗ q̂(t)]. (5.3)

The OpInf operator matrix of (2.5) in this case is Ô = Ĥ ∈ Rr×d(r), with column dimension d(r) = r(r+1)/2.
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Figure 2: One of the sixty-four training trajectories at various spatial coordinates before noise corruption (left) and singular
value decay of the entire training set with various noise levels (right). Training data consists of noised snapshots for 0 ≤ t < 0.01.

We consider the spatial domain [0, 2) and the time domain [t0, tf ] = [0, 0.03], with periodic boundary
conditions imposed at the spatial boundaries. Training data is generated over the shorter time domain
[0, 0.01] for multiple initial conditions: the initial pressure is set to 105 Pa everywhere, and initial velocity
and density profiles are constructed via cubic spline interpolation by fixing values at the spatial points
x ∈ {0, 23 , 43} to either 95 or 105 m/s for velocity and either 20 or 24 kg/m3 for density. We therefore have
23×2 = 64 initial conditions (three interpolation nodes with two choices of values for two variables). For each
initial condition, we solve the conservative system (5.1) by discretizing the spatial domain via first-order
finite differences with spatial resolution δx = 0.01, then stepping forward in time via the first-order explicit
Euler iteration with time step δt = 10−5. The result is k = 64×1000 = 64,000 total training snapshots, each
of size n = 200× 3 = 600. See Figure 2 for an example trajectory in the training set. Before processing the
snapshot data for learning, each snapshot entry is polluted with Gaussian noise proportional to the range of
the associated variable to represent observation error. For example, to each snapshot entry corresponding to
density we add error drawn from N (0, ς2) where ς = ξ(maxi,j{ρi,j}−mini,j{ρi,j}), ξ = 5% is the noise level,
and ρi,j is the ith entry of the jth density training snapshot. The noisy snapshots are then transformed
from the conservative states of (5.1) to the states of the quadratic system (5.2) via the mapping τ and
non-dimensionalized, yielding training data q0, . . . ,qk−1 ∈ Rn to be used in OpInf. Note that the noise in
the lifted variables is not necessarily Gaussian since τ is a nonlinear mapping.

From the lifted, noisy snapshots we compute a POD basis V ∈ Rn×r and project the training data to
the corresponding low-dimensional linear subspace as q̂j = VTqj . The dimension r = 9 is selected based
on where the decay of the singular values flattens out due to the noise pollution as seen in Figure 2. It has
been widely observed that POD has a smoothing effect (see, e.g., [11, 12, 52]). The projected training data,
an example of which is shown in Figure 3, exhibits relatively little noise when compared to the observed
training data (see also Figure 4) up to r = 9 modes. However, the OpInf regression requires an estimate
of the time derivatives q̇j , which will be highly inaccurate if computed as finite differences of the noisy
projected data. We therefore apply the noise-resistant strategy of [10], which uses implicit local polynomial
regression to estimate derivatives with minimal variance, to estimate each q̇j . Therefore, uncertainty in the
OpInf regression stems from i) noise in the observed data, ii) the truncated POD representation (model
form error), and iii) error in the estimates of the time derivatives of the observed data.

The noise in the training data necessitates some regularization in order to achieve stable reduced models,
though in this example among stable models the learned OpInf ROM is not highly sensitive to the choice of
regularization. We initially set λi,j = 50 for all i, j and use Algorithm 2 to iterate until the relative change
(as measured in step 10) drops below ε = 0.1%, which occurs after only nine iterations. We then draw

100 samples of Ô from the posterior operator distribution defined in (3.7) and integrate the corresponding
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Figure 3: The first several modes of the (noisy) projected training data, normalized to the range [−1, 1], for the training
trajectory shown in Figure 2. The POD projection successfully filters much, but not all, of the noise on the first r = 9 modes.
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Figure 4: Traces of full-order and ROM solutions to the Euler problem at three spatial locations, with the same initial condition
as in Figure 2. The noisy training data (noise level ξ = 5%) is also shown as individual points over the training interval. The
BayesOpInf ROM uses r = 9 modes, with the regularization chosen via Algorithm 2, and 100 draws are made from the posterior
distribution to sample the mean and standard deviations.

ROMs over the full time domain [t0, tf ] for each of the (noisy) initial conditions in the training set. Figure 4
shows the sample mean of these draws and three standard deviations from the sample mean at several
spatial locations for the trajectory shown in Figure 2; the results are representative for the set of all initial
conditions considered. Note that the width of three standard deviations, which slightly increases with time,
is relatively small compared to the observed data. This is because the uncertainty band shows a credible
interval, which quantifies the accuracy of model fits, i.e., the learned posterior distribution describes the
uncertainty relative to the true solution. Note that, over the training interval [0, 0.01], the credible interval
is by definition not taking into account the measurement noise in the snapshot data2.

The regularization selection strategy of Algorithm 2 only approximates the maximizers of the marginal
likelihood (4.1), however the cost of each iteration in Algorithm 2 is dominated only by the OpInf regres-

2The band that takes both the propagated uncertainty from the posterior model and the measurement errors (noise) into
account is often referred to as a prediction interval, see chapter 9 of [47].
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(OpInf).

sion (determining each µi and Σi). To compare this strategy to existing methods, Figure 5 repeats the
experiments described above with basis sizes r = 3, 4, . . . , 20 using Algorithm 2 to select the regularization,
and computes the average relative error of the ROM defined by the posterior operator mean µi over the
set of all initial conditions for both the training regime t ∈ [0, 0.01) (with the error computed with respect
to the true trajectories, not the noisy observations) and the prediction regime t ∈ [0.01, 0.03]. The same
results are shown for the more involved regularization selection strategy of [31] detailed in Algorithm 3 (see
Appendix 2). This strategy chooses a scalar regularization value (i.e., λi,j = λ for all i, j) by solving an
optimization problem based on two criteria: i) that the resulting ROM remains stable throughout the full
time horizon t ∈ [0, 0.03] with each of the considered initial conditions, and ii) that the reconstruction error
of the training data is minimized. Note that Algorithm 3 chooses the scalar regularization that minimizes
the difference between the integrated ROM state and the noisy training data. Figure 5 shows that the errors
for each selection method are highly similar, especially over the training regime, but that the BayesOpInf
approach is slightly more accurate in the prediction regime for r > 11. This is likley because Algorithm 2
treats the regularization of each dynamic mode q̂i separately, while Algorithm 3 uses a single global regular-
izer for all terms of the learned operators. The key takeaway is that when the stability of the learned model
is not highly sensitive to the regularization hyperparameters, Algorithm 2 provides a lightweight option for
selecting the regularization. The next section details an example where the choice of regularization is critical
for model stability, in which case Algorithm 2 is a less appropriate option for choosing the λi.

5.2. Single-injector Combustion Process

We now consider a combustion application on a two-dimensional domain in which model form error, and
hence the choice of regularization, plays a significant role in the OpInf procedure. This problem presents a
challenging application for model reduction and has been used as a test problem for both intrusive methods
[23–25] and non-intrusive OpInf [26, 31, 48]. The governing dynamics are the nonlinear conservation laws

∂~qc
∂t

+∇ · ( ~K − ~Kv) = ~S, (5.4)

where ~qc = (ρ, ρvx, ρvy, ρe, ρY1, ρY2, ρY3, ρY4) are the conservative variables, ~K is the inviscid flux, ~Kv is the

viscous flux, and ~S contains source terms. Here ρ is the density [ kg
m3 ], vx and vy are the x and y velocities

[ms ], e is the total energy [ J
m3 ], and Y1, Y2, Y3, Y4 are the mass fractions for the chemical species CH4, O2,

H2O, and CO2, respectively, which follow the global one-step reaction CH4 + 2O2 → CO2 + 2H2O [53]. The
top and bottom walls of the combustor are assigned no-slip boundary conditions, the upstream boundary is
constrained to have a constant mass flow at the inlets, and at the downstream end a non-reflecting boundary
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Figure 6: Two-dimensional domain of the single-injector combustor. The solution is monitored pointwise at sensor locations
1–4 and reported in Figures 8–11.

condition is imposed to maintain the chamber pressure via

pback(t) = pback,ref (1 + 0.1 sin(2πft)) , (5.5)

where pback,ref = 106 Pa and f = 5,000 Hz. See [19] for more details on the governing equations.
As observed in [48], the governing conservative equations (5.4) take on a nearly quadratic form when

written in a specific volume form with variables ~q = (p, vx, vy, T, ζ, c1, c2, c3, c4), where p is the pressure

[Pa], T is the temperature [K], ζ = 1/ρ is the specific volume [m
3

kg ], and c1, . . . , c4 are the species molar

concentrations [kmol
m3 ] given by c` = ρY`/M` with M` the molar mass of the `th species [ g

mol ]. In [31], it
was shown that including pressure, specific volume, and temperature led to improved ROM performance,
although only two of the three are needed to fully specify the high-fidelity model, with the equation of state
defining the third. Hence, we construct a fully quadratic ROM of the form (2.2), with the understanding
that this structure only approximates the structure of the governing equations.

In this experiment, we consider a single set of initial conditions and the corresponding trajectory. Our
objective is to predict in time beyond the available training data. We solve (5.4) via the finite-volume
based General Equation and Mesh Solver (GEMS), see [19] for details. The spatial domain is discretized
with nx = 38,523 cells (hence each snapshot has 8nx = 308,184 entries) and the solution is computed
for 50,000 time steps with step size δt = 10−7 s, from t0 = 0.015 s to tf = 0.020 s. We retain the first
k = 20,000 snapshots for training and reserve the remaining 30,000 for testing. The training snapshots are
lifted to the specific volume variables ~q, then scaled to [−1, 1] by first subtracting out the mean profile in the
temperature, pressure, and specific volume, then normalizing each variable by its maximum absolute entry.
These processed training snapshots q0, . . . ,qk−1 have dimension n = 9nx = 346,000. We compute the POD
basis V of the training snapshots using a randomized singular-value decomposition [18] and retain r = 38
modes based on the associated singular value decay. As the training data is smooth (i.e., not corrupted by
observational noise), we estimate time derivatives of the projected training data q̂j = VTqj with fourth-
order finite differences. This estimation introduces a further source of error, though the predominant error
is due to the model misspecification by assuming a quadratic ROM form.

Previous applications of OpInf to this problem have shown that regularization is essential to obtain
stable ROMs [31, 48]. We therefore utilize the regularization selection strategy of [31] (Algorithm 3) to
choose the regularization parameters λi,j . In this context, we select two scalars: one to penalize the terms

of the non-quadratic operators ĉ, Â, and B̂, and one for Ĥ alone (see Appendix 2 for details). Thus the
posterior mean µi of the operator ôi given in (3.7) is equivalent to the ROM inference studied in [31].
We additionally draw 100 operator samples from (3.7) and integrate the resulting ROMs to quantify the
uncertainties in the learned model. The computational cost of integrating 100 ROMs is trivial compared to
the high-dimensional code: computing the 50,000 unprocessed snapshots with GEMS costs approximately
1,000 CPU hours, while constructing and integrating a single ROM from the posterior takes ∼ 0.3 CPU
seconds. Even when the mean operators µi of the posterior distribution (3.7) define a stable ROM, there
is no guarantee that operators drawn from the distribution will result in stable ROMs. In this experiment,
96 of the 100 posterior draws yield stable ROMs. This is an indicator of the complexity of the problem at
hand and highlights the constraint-free nature of the posterior formulation.

Figure 7 plots the dominant modes of the reduced-order state as a function of time together with the
deviation defined by the posterior draws. Both the trajectory corresponding to the mean operators µi and
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Figure 7: Evaluations of the first six modes (i.e., the first six entries of q̂(t)) of 100 draws from the posterior distribution of the
Bayesian OpInf ROM. The dashed lines show the trajectory of the ROM with posterior mean operators (ôi = µi); the shaded
areas are the regions within three standard deviations of the sample mean. Training data is observed for t ∈ [0.015, 0.017).

the sample mean of the 96 stable draws are shown, but they differ very little. We emphasize that, while
the entries of the model operators are assumed to follow a Gaussian distribution, there is no reason for
the integrated trajectories of the corresponding quadratic model to be Gaussian in nature. Notably, the
uncertainty bands remain tight until the end of the training regime, and widen increasingly with time. The
band is thinnest in the second mode, which corresponds to the pressure signal imparted by (5.5).

Figures 8 and 9 show the pressure and x-velocity, respectively, of the reconstructed ROM trajectory at
the sensor locations, together with the data from the high-dimensional solver. We examine these variables in
particular because they exhibit low projection error in the prediction regime with respect to the underlying
POD basis V. The full-order trajectory computed by GEMS is also shown for comparison. As in Figure 7,
the uncertainty bands remain quite tight in the training regime but start to noticeably increase in width
shortly after the transition to the prediction regime. The bands are widest at the peaks and troughs of the
pressure signal, reflecting that the model more accurately captures the frequency than the amplitude. While
the sample mean is sometimes point-wise inaccurate, the true solution is generally well captured within three
standard deviations of the sample mean. Figures 10 and 11 show this more precisely for pressure and x-
velocity, respectively, by plotting the absolute error and three sample standard deviation (half the width
of the uncertainty bands in Figures 8 and 9) as a function of time at the sensor locations. Sharp drops in
the sample mean error indicate that the sample mean crosses the true values. The width of the uncertainty
band generally exceeds the absolute sample mean error in the prediction regime, especially for t > 0.018 s.
The sample mean error and the standard deviation are positively correlated in time, i.e., the uncertainty in
the prediction generally increases with the error in the model.

6. Concluding remarks

The proposed BayesOpInf method non-intrusively propagates uncertainties from training data noise and
model form error to learned low-dimensional operators of a ROM. Specifically, a linear Bayesian inference
driven by projected state data and Gaussian priors leads to Gaussian posterior distributions for the reduced
operators. Because constructing the posterior distributions for the reduced operators and integrating par-
ticular realizations of the ROM are relatively inexpensive operations, we can efficiently equip the resulting
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Figure 8: Full-order GEMS data and Bayesian OpInf ROM reconstructions of the pressure at the four sensor locations marked
in Figure 6. The shaded areas are the regions within three standard deviations of the sample mean, using the same 100 draws
as in Figure 7. Training data is observed for t ∈ [0.015, 0.017).
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Figure 9: Full-order GEMS data and Bayesian OpInf ROM reconstructions of the horizontal velocity at the four sensor locations
marked in Figure 6. The shaded areas are the regions within three standard deviations of the sample mean, using the same
100 draws as in Figure 7. Training data is observed for t ∈ [0.015, 0.017).
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Figure 10: Absolute error of the sample mean and three sample standard deviations for the pressure at the locations in Figure 6,
computed from 100 draws from the posterior distribution of the Bayesian OpInf ROM. Note the logarithmic scale of the y-axis.
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Figure 11: Absolute error of the sample mean and three sample standard deviations for the horizontal velocity at the locations
in Figure 6, computed from 100 draws from the posterior distribution of the Bayesian OpInf ROM. Note the logarithmic scale
of the y-axis.
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ROM solutions with uncertainty bands through Monte Carlo sampling.
BayesOpInf is a natural generalization of the deterministic OpInf framework. Since the inference problem

is generic and carried out only using the solution snapshots and their time-derivative data, BayesOpInf is a
promising tool for more specialized applications of OpInf, including localized methods [14], problems with
detailed structure [3], or parametric settings [32]. Furthermore, because the posterior mean of BayesOpInf is
equivalent to Tikhonov-regularized OpInf, the approach is applicable for any Tikhonov-type regularization
strategy. Hierarchical Bayes models may be a good candidate for formulating an implicit, non-Tikhonov
regularization in the future. For now, we observe that the choice of the Tikhonov regularization remains
an important issue for the stability of ROMs, but coupling the state-of-the-art error-based regularization
selection of [31] with BayesOpInf leads to strong performance. Even with carefully chosen regularization,
reduced models drawn from the posterior distribution may be unstable. Ensuring ROM stability—and,
more generally, embedding desired model structure such as symmetry or spectral properties—through the
posterior distribution remains an important topic for future work.

Our Bayesian approach has an inherent connection to Gaussian processes (GPs). A further discussion
on this fact is provided in Appendix 1, wherein a GP surrogate model is used for the likelihood definition
in the Bayesian inference. One open question is whether additional known information about the problem
structure can be used to more strongly inform the Bayesian inference, for example by imposing a non-
Gaussian distribution to model the reduced-order residual. Another potential extension of this work is
utilizing the uncertainty indicators in the ROM solutions to define acquisition functions for active learning,
for example adaptively selecting new training snapshots over time and parameter domains.

In summary, BayesOpInf quantifies the modeling uncertainties stemming from the data noise, the dis-
cretization errors of time derivatives, and the model misspecification error when the full-order model gener-
ating the snapshots does not match the assumed form of the ROM, as well as the uncertainties introduced
by the use of Tikhonov regularization. As demonstrated in the numerical examples, BayesOpInf is effective
in constructing accurate ROMs from noisy snapshot data and is capable of capturing complex physics while
simultaneously providing meaningful credible intervals.
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Appendix 1: Alternative definition of the likelihood

In (3.1), an independent Gaussian noise was considered for the modeling of residual errors. If one would
like to take into account the correlation over time and/or construct a surrogate model of the ROM closure,
a Gaussian process can be used to replace the noise term, i.e.,

d

dt
q̂i(t) = d(q̂(t),u(t))Tôi + εi(t), εi(t) ∼ GP(0, σ2

i κ(t, t′|`i)) , (A.1)

in which κ(t, t′|`i) is a given kernel function with hyperparameters `i. In this case the likelihood is alterna-
tively defined as

p(ri| D, ôi, σ2
i , `) = N (ri| Dôi, σ

2
iKi(`i)) , (A.2)

where the covariance matrix Ki(`i) ∈ Rk×k is defined to be Ki(`i) = κ(T , T |`i) and assumed to be positive
definite. Here T denotes the set of k time instances {t0, t1, · · · , tk−1} corresponding to the training data.
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Conditioning on the training data (D, ri), the posterior distribution p(ôi| D, ri, σ
2
i ,λi, `i) = N (ôi|µi,Σi)

thus has new formulations of mean vector and covariance matrix as follows:

Σi = σ2
i

[
diag(λi) + DTK−1i D

]−1
µi =

[
diag(λi) + DTK−1i D

]−1 (
diag(λi)βi + DTK−1i ri

)
= βi +

[
diag(λi) + DTK−1i D

]−1
DTK−1i (ri −Dβi)︸ ︷︷ ︸

:=δµi

.
(A.3)

Note that the correction term δµi = µi − βi is then the solution to the following generalized least squares
problem with a Tikhonov regularization

δµi = arg min
η∈Rd(r,m)

{
‖ri −D(βi + η)‖2

K−1
i

+ ‖diag(λi)
1
2η‖22

}
. (A.4)

Here the norm ‖ · ‖K−1
i

is defined as ‖r‖K−1
i

=
√

rTK−1i r, r ∈ Rk. In the meantime, the estimate of

hyperparameters (σ2
i ,λi, `i) by maximizing marginal likelihood is reformulated as

(σ∗2i ,λ
∗
i , `
∗
i ) = arg max

σ2
i ,λi,`i

log p(ri| D, σ2
i ,λi, `i)

= arg max
σ2
i ,λi,`i

log

∫
p(ri| D, ôi, σ2

i , `i) p(ôi| σ2
i ,λi) dôi

= arg max
σ2
i ,λi,`i

log N
(
ri| Dβi, σ2

i

(
Ddiag(λi)

−1DT + Ki(`i)
))
.

(A.5)

The model (A.1) is equivalent to a universal kriging with the following Gaussian process prior:

d

dt
q̂i(t) ∼ GP

(
d(q̂(t),u(t))Tβi, σ

2
i d(q̂(t),u(t))Tdiag(λi)

−1d(q̂(t′),u(t′)) + σ2
i κ(t, t′|`i)

)
. (A.6)

Accordingly, the posterior prediction of d
dt q̂i(t) is again a Gaussian process whose mean and covariance

functions take the form of

E
[

d

dt
q̂i(t)

∣∣∣∣ D, ri

]
= d(q̂(t),u(t))Tµi + κ(t, T |`i)K−1i (ri −Dµi) , and

Cov
[

d

dt
q̂i(t),

d

dt
q̂i(t
′)

∣∣∣∣ D, ri

]
= σ2

i κ(t, t′|`i)− σ2
i κ(t, T |`i)K−1i κ(T , t′|`i)

+
[
d(q̂(t),u(t))T − κ(t, T |`i)K−1i D

]
Σi

[
d(q̂(t′),u(t′))−DTK−1i κ(T , t′|`i)

]
,

(A.7)

respectively. Note that the second term in the mean function, i.e., κ(t, T |`i)K−1i (ri −Dµi), formulates a
surrogate of the closure in the linear model (2.2).

Appendix 2: Error-based regularization selection

Algorithm 3 details the OpInf procedure where the regularization parameters are selected with an op-
timization routine [31]. Regularization parameters candidates are assessed by solving the corresponding
deterministic OpInf problem (2.4), then using the resultant ROM to reconstruct the training data for L ≥ 1
initial conditions and make predictions in time beyond the training regime. The projected training snapshots
are organized by initial condition, i.e., Q̂(`) contains all projected snapshots for the `th initial condition.

In the results for Section 5.1 (Figure 5), Algorithm 3 is tailored to the purely quadratic ROM (5.3). In

this setting, there are no external inputs U, the data matrix of step 2 is given by D = (Q̂ � Q̂)T, and the
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Algorithm 3 Operator Inference with error-based regularization selection (Algorithm 1 of [31]).

1: procedure OpInf( Projected training snapshots Q̂ = [ Q̂(1) · · · Q̂(L) ] ∈ Rr×k, training inputs
U ∈ Rm×k, projected snapshot time derivatives R = [ r1 · · · rr ]T ∈ Rr×k, final time tf > t0, bound
margin τ ≥ 1 )

2: D← data matrix(Q̂,U) # Construct data matrix as in (2.5).

3: B ← τ maxi,j,` |Q̂(`)
i,j | # Set a bound for the ROM stability criterion.

4: # Subprocedure for assessing regularization parameters.

5: procedure OpInfError( regularizer λ ∈ Rd(r,m) )
6: for i = 1, . . . , r do # OpInf with current regularization.

7: ôi ← arg minµi
‖Dµi − ri‖22 +

∥∥diag(λ)1/2µi
∥∥2
2

8: for ` = 1, . . . , L do
9: Q̃← integrate (2.2) with Ô = [ ô1 · · · ôr ]T from q̂0 = Q̂:,0 over [t0, tf ]

10: if maxi,j,` |Q̃(`)
i,j | > B then # Ensure the ROM is stable on [t0, tf ] for all ICs.

11: return ∞
12: return

1

L

L∑
`=1

∥∥∥Q̂(`) − Q̃
(`)
:,:k

∥∥∥ # Compare ROM outputs to training data.

13: # Minimize the subprocedure to choose the regularization parameters.

14: return arg minλ OpInfError(λ)

operator matrix of step 9 is Ô = Ĥ. The regularization parameters λ are globally parameterized by a single
scalar hyperparameter λ ≥ 0, i.e., λ = [ λ · · · λ ]T. Hence, the minimization in step 14 can be carried out
with a one-dimensional optimization on λ via, e.g., Brent’s method [7].

For the combustion problem of Section 5.2, we have a single initial condition (L = 1) and the ROM is

(2.2) with data matrix D = [ Q̂T (Q̂� Q̂)T UT 1k ] and reduced-order operators Ô = [ Â Ĥ B̂ ĉ ]. The
regularization parameters are parameterized by two scalars λ1, λ2 ≥ 0:

λ = [ λ1, . . . , λ1︸ ︷︷ ︸
r times

, λ2, . . . , λ2︸ ︷︷ ︸
r(r+1)

2 times

, λ1, λ1 ]T. (B.1)

This choice of λ penalizes the entries of the quadratic operator Ĥ by λ2 and the entries of the remaining
operators Â, B̂, and ĉ by λ1. More precisely, the regularization term as written in (2.3) is given by

P
(

[ Â Ĥ B̂ ĉ ]
)

= λ1

(
‖Â‖2F + ‖B̂‖2F + ‖ĉ‖22

)
+ λ2‖Ĥ‖2F . (B.2)

The optimization in step 14 of Algorithm 3 is carried out with a coarse grid search in the principal quadrant
of R2, followed by the Nelder-Mead method [33].
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[35] J. T. Oden, I. Babuška, and D. Faghihi. Predictive computational science: Computer predictions in the presence of

uncertainty. Encyclopedia of Computational Mechanics Second Edition, pages 1–26, 2017.
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