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Abstract This work proposes an optimization formu-

lation to determine a set of empirical importance weights

to achieve a change of probability measure. The ob-

jective is to estimate statistics from a target distri-

bution using random samples generated from a (dif-

ferent) proposal distribution. This work considers the

specific case in which the proposal distribution from

which the random samples are generated is unknown;

that is, we have available the samples but no explicit

description of their underlying distribution. In this set-

ting, the Radon-Nikodym Theorem provides a valid but

indeterminable solution to the task, since the distribu-

tion from which the random samples are generated is

inaccessible. The proposed approach employs the well-

defined and determinable empirical distribution func-

tion associated with the available samples. The core
idea is to compute importance weights associated with

the random samples, such that the distance between the

weighted proposal empirical distribution function and

the desired target distribution function is minimized.

The distance metric selected for this work is the L2–

norm and the importance weights are constrained to

define a probability measure. The resulting optimiza-

tion problem is shown to be a single linear equality and

box-constrained quadratic program. This problem can

be solved efficiently using optimization algorithms that

scale well to high dimensions. Under some conditions
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restricting the class of distribution functions, the so-

lution of the optimization problem is shown to result

in a weighted proposal empirical distribution function

that converges to the target distribution function in

the L1–norm, as the number of samples tends to in-

finity. Results on a variety of test cases show that the

proposed approach performs well in comparison with

other well-known approaches.

Keywords change of measure · empirical measure ·
Radon-Nikodym Theorem · importance weight ·
density ratio · quadratic program

1 Introduction

Consider the task of estimating statistics from a dis-

tribution of interest, denoted as the target distribution

(Robert and Casella 2005). In many cases, one may ap-

ply standard Monte Carlo simulation to estimate these

statistics, using random samples that are generated from

the target distribution. However, in some circumstances

one may only have available random samples gener-

ated from a different distribution, denoted as the pro-

posal distribution. The challenge of evaluating statistics

from a target distribution given random samples gen-

erated from a proposal distribution is acknowledged as

the change of measure and arises in a host of domains

such as importance sampling, information divergence,

and particle filtering (see e.g., Sugiyama et al. (2012)

for a fuller discussion of applications). If both proposal

and target distributions are known and satisfy addi-

tional conditions, then the Radon-Nikodym Theorem

provides a solution (Billingsley 2008).

This work considers the case in which the proposal

distribution from which the random samples are gener-

ated is unknown; that is, we have available the samples
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but no explicit description of their underlying distri-

bution. Although the Radon-Nikodym Theorem is still

valid (if the underlying distribution satisfies the appro-

priate conditions), it is indeterminable because we can-

not compute the Radon-Nikodym derivative (i.e., the

ratio of the target probability density function to the

proposal probability density function), herein referred

to as the probability density ratio. To accomplish the

objective, a change of measure, an importance weight

proportional to the probability density ratio would be

associated with each random sample. However, the im-

portance weights cannot be computed directly in the

usual way, since the probability density ratio is inde-

terminable. This paper presents an approach that over-

comes this challenge by formulating and solving a scal-

able optimization problem to determine a set of empir-

ical importance weights. We first discuss several previ-

ously proposed solutions to this problem.

The previous approaches summarized here all as-

sume that the random samples are generated from an

unknown distribution (see e.g., Sugiyama et al. (2012)

for a detailed discussion of these approaches). As a re-

sult, these approaches seek to estimate the probability

density ratio using the random samples. A commonly

used approach estimates the unknown proposal proba-

bility density function from the random samples (Scott

1992). By estimating the probability density function

one can then estimate the probability density ratio. The

solution to the change of measure problem then follows

from the Radon-Nikodym Theorem along with the es-

timated probability density ratio. However, estimating

the unknown probability density function from the ran-

dom samples is difficult and is particularly challenging

in cases of high dimension (Hastie et al. 2009, Scott

1992, Vapnik 1998). In practice, this challenge can be

overcome if the random samples are known to be gen-

erated from a parametric distribution family, in which

case a parametric density estimation method can be

employed.

As a result, other approaches have avoided estimat-

ing the probability density function and instead esti-

mate directly the probability density ratio using the

random samples. The kernel mean matching approach

matches the moments using a universal reproducing

kernel Hilbert function (Gretton et al. 2009, Huang

et al. 2007). The probabilistic classification approach

computes the probability density ratio by applying Bayes’

Theorem (Qin 1998). The importance estimation fil-

tering approach minimizes the Kullback-Leibler diver-

gence metric between the estimated and actual prob-

ability density ratios (Sugiyama et al. 2012). The un-

constrained least squares importance filtering approach

minimizes the L2–norm between the estimated and ac-

tual probability density ratios (Kanamori et al. 2009).

The direct density ratio estimation with dimension re-

duction solves the previous approach on a lower-dimensional

space (Sugiyama et al. 2011). These approaches share

in common multiple attributes. They each present a

means of computing the probability density ratio using

the random samples. They each represent the probabil-

ity density ratio using a set of basis functions, thereby

constraining the solution to exist within a specified ba-

sis representation. Finally, these approaches require tun-

ing parameters, which one can choose using a variant

of cross-validation.

Our approach avoids estimating or working with the

unknown distribution function or its probability den-

sity function. Instead, we work with the well-defined

and determinable empirical distribution function asso-

ciated with the random samples. Specifically, our ap-

proach, illustrated in Figure 1, formulates and solves

an optimization problem to determine a set of empir-

ical importance weights that minimize the L2–norm

between the weighted proposal empirical distribution

function and the target distribution function. In the

example in Figure 1, the target is the uniform distribu-

tion function, U(0, 1), and the proposal random sam-

ples are generated from the beta distribution function,

B(0.5, 0.5). The core idea of our approach is to com-

pute importance weights associated with the proposal

random samples that transform the weighted proposal

empirical distribution function to the target distribu-

tion function. We also constrain the importance weights

to define a probability measure. This requires that these

importance weights are non-negative and that the em-

pirical probability measure assigns a unit value to the

entire probability space. Our work is differentiated from

current practices in that we do not estimate the Radon-

Nikodym derivative from the proposal random samples,

but rather we find the optimal importance weights for

the given set of proposal random samples, where opti-

mality is defined by the closeness of the weighted pro-

posal empirical distribution function to the target dis-

tribution function.

The approach proposed in this paper shares resem-

blance to the recent constructive setting of the density

ratio estimate (Vapnik et al. 2014). That work min-

imizes the regularized L2–norm between the weighted

proposal empirical distribution function and the empir-

ical target distribution function, where the importance

weights are defined on a set of basis functions. Those

importance weights are shown in Vapnik et al. (2014) to

converge in probability to the Radon-Nikodym deriva-

tive, as the number of proposal and target random sam-

ples tend to infinity. Our approach does not use a basis

function representation of the importance weights, since
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we are only interested in evaluating the importance

weights at the random sample locations (i.e., we asso-

ciate one weight with each random sample). We also do

not include regularization, since this modifies the solu-

tion and introduces smoothness that may not be desir-

able. Instead, we rely on the optimization solvers to ex-

ploit the structure of the problem. Avoiding regulariza-

tion allows us to avoid tuning parameters, yet our for-

mulation maintains that the weighted proposal empiri-

cal distribution function converges to the target distri-

bution function in the L1–norm, as the number of ran-

dom samples tends to infinity. Moreover, our optimiza-

tion approach can be implemented at large scale (both

high-dimensional distribution functions and a large num-

ber of random samples). Our approach has an analytic

closed-form solution in the case of a unidimensional dis-

tribution problem. We show that this closed-form solu-

tion for our empirical importance weights results in al-

most everywhere convergence of the weighted proposal

empirical distribution function to the target distribu-

tion function, as the number of random samples tends

to infinity. Additionally, we demonstrate a relationship

between our approach and the trapezoidal integration

rule as well as to discrepancy theory.

The organization of this paper is as follows. Sec-

tion 2 sets nomenclature, formalizes the objective of

this work, and presents the proposed optimization for-

mulation. In Section 3, we present the numerical for-

mulation and examine properties of the optimization

statement. In Section 4, we prove that the proposed

approach achieves convergence in the L1–norm for mul-

tidimensional distributions and weak convergence for

unidimensional distributions. In Section 5, we exam-

ine the analytic solution to the optimization statement

for the case of a unidimensional distribution problem.

Section 5 also presents a numerical solution to the op-

timization statement and discusses techniques that ex-

tend our approach to large-scale applications. In Sec-

tion 6, we demonstrate the properties of the proposed

approach on a unidimensional distribution problem. Sec-

tion 6 also compares our approach to previous approaches

on an importance sampling problem over a range of pa-

rameters, evaluates the performance of the optimization

algorithms, and examines the relationship between dis-

crepancy theory and the proposed approach when the

proposal and target are distributed according to the

uniform distribution. Finally, Section 7 concludes the

paper.

2 Problem Statement

We begin by setting notation for the subsequent de-

velopments and establishing the objective of this work.
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Fig. 1: The proposed approach minimizes, with respect

to empirical importance weights associated with the

proposal random samples, the L2–norm between the

weighted proposal empirical distribution function and

the target distribution function. In this example, we

generated n = 100 random samples from the proposal

beta distribution function, B(0.5, 0.5). The results show

our weighted proposal empirical distribution function,

labeled “L2O Weighted Proposal”, accurately repre-

sents the target uniform distribution function, U(0, 1).

The section concludes with a description and formula-

tion of our solution to the objective.

Let (Ω,F ,P) be a probability space, where Ω is a

sample space, F is a σ-field, and P is a probability mea-

sure on (Ω,F). Then the random variable Y : Ω → Rd
is associated with the target measure ν on Rd, such

that ν(A) = P(Y −1(A)) for A ∈ Rd. Likewise, the

random variable X : Ω → Rd is associated with the

finite support proposal measure µ on Rd, such that

µ(A) = P(X−1(A)) for A ∈ Rd. In addition, we con-

fine the target measure ν to be absolutely continuous

with respect to proposal measure µ. Let t ∈ Rd be a

generic point and designate entries of t by subscript no-

tation as follows t = [t1, t2, . . . , td]
>. Define Fν(t) and

fν(t) to be the target distribution function and target

probability density function of Y evaluated at t, re-

spectively. Similarly, define Fµ(t) and fµ(t) to be the

proposal distribution function and proposal probability

density function of X evaluated at t, respectively.

In our problem setting, the proposal measure µ is ac-

cessible to us only through sampling; that is, we are pro-

vided with random samples of the random variable X

but we cannot evaluate Fµ or fµ explicitly. Let {x1,x2,

. . . ,xn} be random samples of X, where n is the num-
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ber of random samples. The objective of our work is

to estimate statistics from the target measure ν given

random samples {x1,x2, . . . ,xn} generated from the

proposal measure µ. The challenge with this objective,

recognized as a change of measure, is that the proposal

measure µ is accessible to us only through sampling.

The typical approach to overcome this challenge

is to apply density estimation to the random samples

{x1,x2, . . . ,xn}, yielding an estimate of the proposal

density fµ. However, density estimation in high dimen-

sions is notoriously difficult, and state-of-the-art ap-

proaches often perform poorly for high-dimensional prob-

lems. Therefore, we approach the change of measure

challenge in a different way—using instead the well-

defined proposal empirical distribution function,

Fnµ (t) =
1

n

n∑
i=1

I(xi ≤ t), (1)

where I(xi ≤ t) is the maximum convention Heavyside

step function defined as

I(x ≤ t) =

{
1, if xi ≤ ti, ∀ i ∈ {1, 2, . . . , d}
0, otherwise.

(2)

Here we have used the subscript and superscript nota-

tion for the empirical distribution function, Fnµ , to iden-

tify the measure of the random samples from which it

is built, µ, and the number of random samples, n. The

strong law of large numbers (SLLN) states that the es-

timator Fnµ converges to the proposal distribution func-

tion Fµ defined as

Fµ(t) = µ((−∞, t]), (3)

as n tends to infinity almost everywhere (a.e.) for all

continuity points t of Fµ(t) (Billingsley 2008).

To accomplish the change of measure objective, we

propose to compute a set of importance weights, de-

fined here as empirical importance weights, to trans-

form the proposal empirical distribution function into

the target distribution function. We introduce n em-

pirical importance weights, denoted by the vector w =

[w1, w2, . . . , wn]>. Each empirical importance weight wi
is associated with a random sample xi. We use the no-

tation

Fnµ;w(t) =
1

n

n∑
i=1

wiI(xi ≤ t) (4)

to represent a weighted empirical distribution function

that is composed of n random samples generated from

the measure µ and weighted by w. The empirical im-

portance weights are dependent on the random samples,

{x1,x2, . . . ,xn}; however, for simplicity we do not show

the dependency in the notation.

We now cast the change of measure objective as an

optimization statement. The objective is to minimize,

with respect to the empirical importance weights, the

distance between Fnµ;w, defined in Equation (4), and the

target distribution function, Fν . The criterion selected

is the L2–norm distance metric. Thus, the L2–norm ob-

jective function is defined as

ω2(w) =
1

2

∫ ∞
−∞

. . .

∫ ∞
−∞

(
Fnµ;w(t)− Fν(t)

)2
dt, (5)

conditioned on the scaled empirical importance weights

being a probability measure. That is, w satisfies the

non-negativity box-constraint, wi ≥ 0, ∀ i ∈ {1, 2, . . . , n},
and the single equality constraint, 1>nw = n, where

1n ∈ Rn is a vector with all entries equal to 1. The

optimization statement that determines the empirical

importance weights associated with the proposal ran-

dom samples for the change of measure is thus stated

as follows:

arg min
w

ω2(w)

s.t. wi ≥ 0, ∀ i ∈ {1, 2, . . . , n}
1>nw = n.

(6)

In the above optimization statement, we have as-

sumed that the target distribution Fν is known ex-

plicitly. However, our approach can be applied to the

case where the the target measure is represented only

through random samples of the random variable Y . In

that case, we replace Fν in Equation (5) with the tar-

get empirical distribution function Fmν , where m is the

number of random samples of the random variable Y .

In the following development, we work mostly with the
formulation defined in Equations (5) and (6); when ap-

plicable we introduce the target empirical distribution

function into the optimization statement.

3 Numerical Formulation

This section describes how the optimization statement

(6) can be formulated as a single linear equality and

box-constrained quadratic program (Section 3.1). Sec-

tion 3.2 examines the properties of the optimization

statement using the Karush Kuhn Tucker (KKT) con-

ditions.

3.1 Single Linear Equality and Box-Constrained

Quadratic Program

Upon substituting Equation (4) into Equation (5) and,

without loss of generality, confining the support of µ to
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the unit hypercube, we obtain

ω2(w) =

1

2

∫ 1

0

. . .

∫ 1

0

(
1

n

n∑
i=1

wiI(xi ≤ t)− Fν(t)

)2

dt.
(7)

This expression can be expanded as follows:

ω2(w) =
1

2

∫ 1

0

. . .

∫ 1

0

[(
1

n

n∑
i=1

wiI(xi ≤ t)

)2

−

2Fν(t)

n

n∑
i=1

wiI(xi ≤ t) + (Fν(t))2

]
dt.

(8)

The third term in the integrand of Equation (8) is in-

dependent of the optimization parameter and thus can

be discarded from the optimization statement without

affecting the optimal solution w. We now examine the

first term and second term individually and formulate

their respective numerical representations.

The first term of the integrand in Equation (8) can

be represented as∫ 1

0

. . .

∫ 1

0

(
1

n

n∑
i=1

wiI(xi ≤ t)

)2

dt

=
1

n2

n∑
i=1

n∑
j=1

wiwj

∫ 1

0

. . .

∫ 1

0

I(xi ≤ t)I(xj ≤ t) dt

=
1

n2

n∑
i=1

n∑
j=1

wiwj

d∏
k=1

∫ 1

0

I(xik ≤ t)I(x
j
k ≤ t) dtk

=
1

n2

n∑
i=1

n∑
j=1

wiwj

d∏
k=1

∫ 1

zi,jk

dtk,

= w>Hw,

(9)

where zi,jk = max(xik, x
j
k) and xik is the kth entry of

random sample xi. Note that H ∈ Rn×n is a repro-

ducing kernel and by definition a positive definite ma-

trix (see e.g., Novak and Wozniakowski (2009) for a re-

view of this analysis). Additionally, the H matrix is the

Hadamard product of d individual matrices. To obtain

the Hadamard construction of H, we define the matrix

corresponding to the single dimension k, Hk, where the

(i, j)th entry of Hk is

Hk
i,j =

∫ 1

zi,jk

dtk, (10)

and k ∈ {1, 2, . . . , d}. Then the (i, j)th entry of H can

be defined as

Hi,j =
1

n2

d∏
k=1

Hk
i,j , (11)

which allows us to construct matrix H as

H =
1

n2

(
H1 ◦H2 ◦ · · · ◦Hd

)
, (12)

where “◦” represents the Hadamard product.

The second term of the integrand in Equation (8)

can be represented as∫ 1

0

. . .

∫ 1

0

2Fν(t)

n

n∑
i=1

wiI(xi ≤ t) dt

=
1

n

n∑
i=1

wi

∫ 1

0

. . .

∫ 1

0

Fν(t)I(xi ≤ t) dt

=
1

n

n∑
i=1

wi

∫ 1

xi
1

. . .

∫ 1

xi
d

Fν(t) dt,

= w>b,

(13)

where the ith entry of b ∈ Rn is

bi =
1

n

∫ 1

xi
1

. . .

∫ 1

xi
d

Fν(t) dt. (14)

If the target distribution function, Fν , is unknown and

instead we have m random samples of the random vari-

able Y , {y1,y2, . . . ,ym}, then the ith entry of b is

bi =
1

n

∫ 1

xi
1

. . .

∫ 1

xi
d

1

m

m∑
j=1

I(yj ≤ t) dt. (15)

Our modified optimization statement is now

ŵ = arg min
w

ω̂2(w)

s.t. wi ≥ 0, ∀ i ∈ {1, . . . , n}
1>nw = n,

(16)

where

ω̂2(w) =
1

2

(
w>Hw − 2w>b

)
. (17)

Solving (16) yields the optimal empirical importance

weights ŵ that minimize our original L2–norm distance

metric while satisfying the requirement of ŵ/n forming

a probability measure.

3.2 Karush Kuhn Tucker Conditions

The Lagrangian of the optimization statement (16) is

L(w, δ,λ) =

1

2

(
w>Hw − 2w>b

)
+ δ(1>nw − n)− λ>w,

(18)
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where δ ∈ R and λ ∈ Rn are the equality and inequality

constraint Lagrange multipliers, respectively. The opti-

mal solution to (16) satisfies the following KKT condi-

tions:

∂L(ŵ, δ,λ)

∂w
= 0n = Hŵ − b + δ1n − λ

ŵi ≥ 0, ∀ i ∈ {1, 2, . . . , n}
λi ≥ 0, ∀ i ∈ {1, 2, . . . , n}

1>nw = n

δ is sign unrestricted

λiŵi = 0 ∀ i ∈ {1, 2, . . . , n}

(19)

where 1n ∈ Rn and 0n ∈ Rn are vectors with all entries

equal to 1 and 0 respectively.

Since the optimization statement is a strictly con-

vex quadratic program with linear constraints, one may

show that the solution ŵ of (19) is the global solution

to (16) (Boyd and Vandenberghe 2004). This implies

that for all n the following inequality holds,∫
A

(Fnµ,ŵ(t)− Fν(t))2 dt

≤
∫
A

(Fnµ,w̄(t) − Fν(t))2 dt,

(20)

where w̄ = [w̄1, w̄2, . . . , w̄n]> is any set of importance

weights that satisfies the constraints of the optimization

statement (16).

The active set method is one numerical method that

solves (16), and has been shown to converge and ter-

minate in a finite number of steps (Lawson and Han-

son 1974). This method employs an iterative approach

that splits the solution space into an active set, A =

{i : wi = 0}, and a passive set, P = {i : wi > 0}.
The active and passive sets are updated iteratively until

the KKT conditions are satisfied. At each iteration, the

method solves an optimization problem for the passive

set importance weights that has a closed-form solution.

We use this closed-form solution to derive an analytic

solution for the special case d = 1 (Section 5.1); how-

ever, our general numerical results employ optimization

methods that are more amenable to large-scale prob-

lems, as described in Section 5.2. Before discussing the

optimization solution strategies in detail, we first ana-

lyze the convergence properties of our approach.

4 Convergence

The following section demonstrates that our approach,

based on (16), converges to the target distribution func-

tion in the L1–norm, as the number of random samples

tends to infinity. To demonstrate convergence in the L1–

norm we require the Radon-Nikodym derivative, which

we recall in this section. The section concludes with the

convergence theorem and proof.

The Radon-Nikodym Theorem states that

ν(A) =

∫
A

h dµ (21)

for any measurable subset A ∈ F , where the measur-

able function h : Rd → R is called the Radon-Nikodym

derivative and is defined by the probability density ra-

tio, h = fν/fµ (Billingsley 2008). In our problem set-

ting, the Radon-Nikodym derivative exists but is un-

known. Let {h(x1), h(x2), . . . , h(xn)} be the Radon-

Nikodym derivatives corresponding to proposal random

samples {x1,x2, . . . ,xn}. To construct a probability

measure, define the Radon-Nikodym importance weights

as ĥ(xi) = h(xi)/h̄ where h̄ = 1
n

∑n
i=1 h(xi). If weighted

by ĥ = [ĥ(x1), ĥ(x2), . . . , ĥ(xn)]>, the Radon-Nikodym

importance weighted empirical distribution function,

Fn
µ;ĥ

(t) =
1

n

n∑
i=1

ĥ(xi)I(xi ≤ t), (22)

converges almost everywhere to the distribution func-

tion Fν by the SLLN as n tends to infinity for all con-

tinuity points t of Fν(t) (Tokdar et al. 2011).

We now present the convergence proof using our em-

pirical importance weight vector ŵ. We emphasize that

Theorem 1 given below does not imply that the em-

pirical importance weights converge pointwise to the

Radon-Nikodym importance weights as the number of

random samples tends to infinity. The proof establishes

that the sequence of functions {F 1
µ;ŵ, F

2
µ;ŵ, . . . }, de-

fined by Equation (4), converges to the target distribu-

tion function in the L1–norm, as the number of random

samples tends to infinity.

Theorem 1 Let Fν be the distribution function of ν

and {x1,x2, . . . ,xn} be random samples generated from

the finite support probability measure µ where ν is abso-

lutely continuous with respect to µ. Then there exists a

set of empirical importance weights ŵ = [ŵ1, ŵ2, · · · , ŵn]>

satisfying (16) such that

lim
n→∞

∫
A

∣∣Fnµ,ŵ(t)− Fν(t)
∣∣ dt = 0, (23)

where A = {t ∈ R | fµ(t) > 0} is a bounded set.

Proof We begin with the Radon-Nikodym importance

weights ĥ, which satisfy the constraints in the optimiza-

tion statement (16). As stated previously, by the SLLN

we have

lim
n→∞

Fn
µ,ĥ

(t)
a.e.
= Fν(t), (24)
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for every continuity point t of Fν(t). Since there exists

an integrable function dominating Fn
µ,ĥ

(t) ≤ 1 for all

t ∈ A and n, we can apply the dominated convergence

theorem to obtain convergence in the L1–norm:

lim
n→∞

∫
A

∣∣∣Fn
µ,ĥ

(t)− Fν(t)
∣∣∣ dt = 0. (25)

Using the inequality
∣∣∣Fn
µ,ĥ

(t)− Fν(t)
∣∣∣ ≤ 1, for all t ∈ A

and all n, we obtain a bound on the L2–norm,∫
A

(Fn
µ,ĥ

(t)− Fν(t))2 dt ≤∫
A

1 ·
∣∣∣Fn
µ,ĥ

(t)− Fν(t)
∣∣∣ dt.

(26)

Combining Equation (26) with Equation (25) we show

convergence in the L2–norm:

lim
n→∞

∫
A

(Fn
µ,ĥ

(t)− Fν(t))2 dt = 0. (27)

Since ĥ satisfies the constraints of the optimization

statement (16), we use Equation (20) to show that∫
A

(Fnµ,ŵ(t)− Fν(t))2 dt

≤
∫
A

(Fn
µ,ĥ

(t) − Fν(t))2 dt.

(28)

This result coupled with Equation (27) states that con-

vergence of Fn
µ,ĥ

to Fν in the L2–norm implies conver-

gence of Fnµ,ŵ to Fν in the L2–norm,

lim
n→∞

∫
A

(Fnµ,ŵ(t)− Fν(t))2 dt = 0. (29)

By the Cauchy-Schwarz inequality,∫
A

∣∣Fnµ,ŵ(t)− Fν(t)
∣∣ dt

≤
(∫

A

(Fnµ,ŵ(t)− Fν(t))2dt

)1/2

·
(∫

A

(1)2 dt

)1/2

≤M ·
(∫

A

(Fnµ,ŵ(t)− Fν(t))2 dt

)1/2

,

(30)

where M < ∞. Coupling this with (29), we show con-

vergence in the L1–norm,

lim
n→∞

∫
A

∣∣Fnµ,ŵ(t)− Fν(t)
∣∣ dt = 0. (31)

�

For the unidimensional case (i.e., d = 1), Equa-

tion 31, is the Kantorovich or L1-Wasserstein distance

metric (Gibbs 2002). Convergence in the L1-Wasserstein

distance metric under our stated assumption, that µ is

finitely supported, establishes weak convergence.

Corollary 1 Let {y1,y2, . . . ,ym} be m random sam-

ples generated from the probability measure ν and {x1,x2,

. . . ,xn} be n random samples generated from the fi-

nite support probability measure µ where ν is absolutely

continuous with respect to µ. Then there exists a set

of empirical importance weights ŵ = [ŵ1, ŵ2, · · · , ŵn]>

satisfying (16) with vector b defined by Equation (15)

such that

lim
minn,m→∞

∫
A

∣∣Fnµ,ŵ(t)− Fmν (t)
∣∣ dt = 0, (32)

where A = {t ∈ R | fµ(t) > 0} is a bounded set.

Proof By combining the SLLN and the dominated con-

vergence theorem we establish that the estimator Fmν
converges to the target distribution function Fν in the

L1–norm. That is, we have

lim
min(m)→∞

∫
A

|Fν(t)− Fmν (t)| dt = 0. (33)

By Theorem 1 in combination with Equation (33) and

the triangle inequality, we define a bound on the quan-

tity of interest and conclude the proof (Rudin 1987),

∫
A

∣∣Fnµ,ŵ(t)− Fmν (t)
∣∣ dt

≤
∫
A

∣∣Fnµ,ŵ(t)− Fν(t)
∣∣ dt +

∫
A

|Fν(t)− Fmν (t)| dt.

(34)

�

5 Solving the Optimization Statement

In this section we examine the solution to the opti-

mization statement (16). We begin by presenting the

analytical solution to the optimization statement for

d = 1 as this solution provides a better understanding

of the optimization statement. The section concludes

with the general solution to the optimization state-

ment by numerical methods. Here we introduce meth-

ods that extend our approach to large-scale applications

and demonstrate how to incorporate a target empirical

distribution function.
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5.1 Analytic Solution for R

For the case when d = 1, we present the analytic solu-

tion to (16) and demonstrate that this solution satisfies

the KKT conditions (19). Note that for this case the

random variable is unidimensional, but the dimension

of the optimization problem is still n, the number of

proposal random samples. Without loss of generality,

let the random samples of X : Ω → R, {x1, x2, . . . , xn},
be ordered such that xi < xi+1, ∀ i ∈ {1, 2, . . . , n− 1}.
Using Equation (12), the matrix H is

H =
1

n2



(1− x1) (1− x2) (1− x3) . . . (1− xn)

(1− x2) (1− x2) (1− x3) . . . (1− xn)

(1− x3) (1− x3) (1− x3) . . . (1− xn)

...
...

...
. . .

...

(1− xn) (1− xn) (1− xn) . . . (1− xn)


.

(35)

Similarly, using Equation (14), the vector b is

b =
1

n


∫ 1

x1 Fν(t) dt∫ 1

x2 Fν(t) dt

. . .∫ 1

xn Fν(t) dt

 . (36)

Then the solution to (16) is

λ = 0n, (37)

δ =
1

n

∫ 1

xn

Fν(t) dt+
xn − 1

n
, (38)

and

ŵ =



n
(x2−x1)

∫ x2

x1 Fν(t) dt

n
(x3−x2)

∫ x3

x2 Fν(t) dt −
∑1
i=1 wi

...

n
(xn−xn−1)

∫ xn

xn−1 Fν(t) dt −
∑n−2
i=1 wi

n −
∑n−1
i=1 wi


. (39)

This solution can be derived using the active set method

(Lawson and Hanson 1974); we omit the details of the

derivation here for brevity, but show that this solution

satisfies the KKT conditions (19).

First, it can be seen that the empirical importance

weights (39) are by construction non-negative, since Fν
is a monotonically non-decreasing function. Thus, in

this d = 1 case, the non-negativity constraints on the

importance weights do not play a role in constraining

the optimal solution and all the corresponding Lagrange

multipliers are zero, λi = 0, ∀ i ∈ {1, 2, . . . , n}. This

result means that the complementarity conditions are

satisfied. Second, summing the terms in (39), it is easy

to show that the equality constraint 1>n ŵ = n is satis-

fied. Lastly, we show that Hŵ = b−δ1n holds for each

row entry j ∈ {1, 2, . . . , n}. That is, we show

1− xj

n2

j∑
i=1

ŵi +
1

n2

n−1∑
i=j+1

ŵi(1− xi) +
ŵn(1− xn)

n2

=
1

n

∫ 1

xj

Fν(t) dt−
(

1

n

∫ 1

xn

Fν(t) dt+
xn − 1

n

)
.

(40)

By substituting the empirical importance weights (39)

into the left-hand side of Equation (40) and simplifying,

we obtain,

1− xj

n2

j∑
i=1

ŵi +
1

n2

n−1∑
i=j+1

ŵi(1− xi) +
ŵn(1− xn)

n2

=
1

n

∫ xn

xj

Fν(t) dt+
1− xn

n
.

(41)

We obtain Equation (40) upon adding and subtracting

bn in Equation (41),

1

n

∫ xn

xj

Fν(t) dt+
1

n
(1− xn) + bn − bn

=
1

n

∫ 1

xj

Fν(t) dt−
(

1

n

∫ 1

xn

Fν(t) dt+
xn − 1

n

)
.

(42)

Since the KKT conditions are satisfied, (37)–(39) rep-

resent the solution to the optimization problem (16) for

d = 1.

If instead we are given a target empirical distribu-

tion function represented by m random samples {y1, y2,

. . . , ym} generated from ν, then the optimal solution re-

mains the same, with Fν in (38)–(39) replaced by Fmν .

We conclude this subsection by demonstrating that

the empirical importance weights defined in (39) result

in weak convergence of the weighted proposal empirical

distribution function to the target distribution func-

tion. That is, we show that

lim
n→∞

Fnµ;ŵ(t)
a.e.
= Fν(t), (43)

for every continuity point t ∈ A of Fν(t) where A =

{t ∈ R | fµ(t) > 0} is a bounded set. Given ν is

absolutely continuous with respect to µ, let i = {j ∈
{1, 2, . . . , n− 1} | t̂ ∈ [xj , xj+1)} where t̂ is a continuity
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point of Fν(t̂). We expand Fnµ;ŵ(t̂) using the empirical

importance weights from (39):

Fnµ;ŵ(t̂) =
1

n

n∑
i=1

ŵiI(xi ≤ t̂)

=
1

xi+1 − xi

∫ xi+1

xi

Fν(t) dt.

(44)

Given that Fnν is monotonically non-decreasing and us-

ing Equation (44), we obtain the following inequality:

Fν(xi) ≤ Fν(t̂), Fnµ;ŵ(t̂) < Fν(xi+1). (45)

Since the target distribution is continuous at t̂, this en-

sures for every ε > 0 there exists a δ > 0 such that

|Fν(x) − Fν(t̂)| ≤ ε for all points x ∈ A for which

|x− t̂| ≤ δ. Now, since ν is absolutely continuous with

respect to µ, there exists a finite n which is sufficiently

large that we can find an i = {j ∈ {1, 2, . . . , n− 1} | t̂ ∈
[xj , xj+1]} that yields |xi−t̂| ≤ δ and |xi+1−t̂| ≤ δ. This

implies |Fν(xi)−Fν(t̂)| ≤ ε and |Fν(xi+1)−Fν(t̂)| ≤ ε.
Lastly, by Equation (45) and application of the triangle

inequality, we obtain

|Fnµ;ŵ(t̂)− Fν(t̂)|
< |Fν(xi)− Fν(xi+1)|
≤ |Fν(xi)− Fν(t̂)|+ |Fν(t̂)− Fν(xi+1)|
≤ 2ε,

(46)

which yields the desired result for every continuity point

t̂ ∈ A of Fν(t̂) as n tends to infinity.

5.2 Optimization Algorithm

Here we focus on the optimization statement for the

general case when d > 1 and examine algorithms that

extend our approach to large-scale applications (i.e., a

large number proposal random samples, n). The chal-

lenge with solving the optimization statement (16) when

d > 1 is that the matrix H is not analytically invertible

as was the case for d = 1. As a result, we rely on a

numerical optimization routine to solve (16).

The optimization statement in (16) is classified as

a single linear equality and box-constrained quadratic

program. A popular application which falls into this

class of problems is the dual form of the nonlinear sup-

port vector machine optimization statement (Vapnik

1998). That application resulted in algorithms to ex-

tend single linear equality and box-constrained quadratic

programs to large-scale applications (Dai and Fletcher

2006, Lin et al. 2009, Platt 1999, Zanni 2006). For this

work we have selected two large-scale optimization al-

gorithms that exploit our problem structure: the Frank-

Wolfe algorithm (Frank and Wolfe 1956) and the Dai-

Fletcher algorithm (Dai and Fletcher 2006).

The Frank-Wolfe algorithm is well-suited for solv-

ing (16) since the objective is a differentiable convex

function and the constraints are a bounded convex set.

The core idea behind the Frank-Wolfe algorithm is to

approximate the objective with a linear function and

then take a step in the descent direction. The Frank-

Wolfe algorithm is particularly attractive because it

has well established convergence rates, low computa-

tional complexity, and can generate sparse solutions.

The pseudo algorithm describing the Frank-Wolfe al-

gorithm tailored to the optimization statement (16) is

given in Algorithm 1. Note that the step length α can be

chosen to be the deterministic value 2/(2 + k), where k

is the iteration number, or alternatively α can be chosen

such that it minimizes the objective function of (16) at

that particular iteration. The computational complex-

ity of the Frank-Wolfe algorithm per iteration is low

since it requires only a rank-one update to the gradi-

ent vector at each iteration. With the structure of our

problem, this update can be computed very efficiently.

Algorithm 1: Frank-Wolfe Algorithm for solving (16).

Data: Random samples x, vector b, initial

feasible solution w0, and termination

criteria.

Result: Empirical importance weight vector ŵ.

Initialization: ŵ = w0

a = Hŵ,

g = a− b,

for k = 1, 2, . . . do
· Steepest descent direction:

` = arg mini∈{1,2,...,n}(gi),

· w̄i =

{
1, if i = `

0, otherwise

· Set ŵ = ŵ + α(w̄ − ŵ), where α ∈ [0, 1],

· a = (1− α)a + αH(·,`),

· g = a− b,

if (termination criteria satisfied) then
Exit

end

end

As a second option, we examine the Dai-Fletcher

optimization algorithm. The general idea of the Dai-

Fletcher algorithm is to construct the Lagrangian penalty

function

L(w; δ) =
1

2

(
w>Hw − 2w>b

)
− δ(1>n ŵ − n), (47)
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where δ is the equality constraint Lagrangian multi-

plier. Then for any fixed δ, the box-constrained quadratic

program (Dai and Fletcher 2005),

ŵ(δ) = arg min
w

L(w; δ)

s.t. wi ≥ 0, ∀ i ∈ {1, 2, . . . , n},
(48)

is solved. Next, δ is adjusted in an outer secant-like

method to solve the single nonlinear equation,

r(δ) = 1>n ŵ(δ)− n = 0. (49)

That is, Equation (49) enforces that the solution of (48)

satisfies the equality constraint (i.e., exists in the feasi-

ble region). In summary, for each iteration of the Dai-

Fletcher algorithm, a box-constrained projected gradient-

based algorithm is used to compute a new solution

for (48). This solution is projected into a feasible re-

gion using a secant projection approximation method,

thereby satisfying Equation (49). A summary of the

Dai-Fletcher algorithm is given in Algorithm 2.

Algorithm 2: Dai-Fletcher Algorithm for solving (16).

Data: Random samples x, vector b, initial

solution w0, and termination criteria.

Result: Empirical importance weight vector ŵ.

Initialization: ŵ = w0

for k = 1, 2, . . . do
· Compute gradient of (47),

· Take a steepest descent step,

· Project into feasible region by (49),

· Possibly carry out a line search,

· Calculate a Barzilai-Borwein step length,

· Update the line search control parameters,

if (termination criteria satisfied) then
Exit

end

end

The termination criteria in Algorithm 1 or Algo-

rithm 2 may incorporate a maximum number of iter-

ations and a minimum tolerance associated with the

gradient of the objective function in (16) or the La-

grangian penalty function, Equation (47), respectively.

Although Algorithm 1 and Algorithm 2 may in some

cases terminate prior to locating the global optimal so-

lution, by construction they generate a sequence of fea-

sible iterates. In Section 6, we evaluate the performance

of these two algorithms over a range of parameters. The

remainder of this section discusses numerical techniques

to extend our approach to large-scale applications and

to incorporate the target empirical distribution func-

tion.

The largest computational expense in Algorithm 2

is in the calculation the matrix-vector product, Hw.

The matrix-vector product, Hw, is also required in Al-

gorithm 1, but since it only needs to be evaluated once,

it has less impact on the computational performance of

Algorithm 1. In the circumstance where the matrix H

is small, the matrix can be assembled and stored for

computations; however, large-scale applications (many

samples) may prohibit assembly of the matrix H. In

these cases, one option is to use the Frank-Wolfe algo-

rithm and avoid repeated matrix-vector products al-

together. Since in some cases the Dai-Fletcher algo-

rithm may yield improved convergence rates, another

option is to exploit the structure in the problem to

reduce the numerical complexity of the matrix-vector

product calculations. In particular, we recognize that

since active set empirical importance weights are zero,

they do not contribute to the matrix-vector product.

As a result, only the columns of matrix H associated

with passive set empirical importance weights are re-

quired for the matrix-vector product calculation. Thus,

the numerical complexity of the gradient evaluation is

O(n|P|d2+n|P|), where the first term captures the con-

struction of matrix H, the second term captures the

matrix-vector product, and |P| denotes the cardinal-

ity of the passive set. In addition, efficient algorithms

which rely on the divide-and-conquer technique have

been developed and applied successfully to Equation (9)

(Bentley 1980, Heinrich 1996). Lastly, one may take ad-

vantage of parallel routines to divide and conquer the

matrix-vector product (Nickolls et al. 2008, Zanni et al.

2006).

Solving the optimization problem also requires eval-

uating the vector b. Here we will describe two special

circumstances for which the vector b can be directly

evaluated: an independently distributed target distribu-

tion function and a target empirical distribution func-

tion. For an independently distributed target distribu-

tion function we can define the target measure ν as

the product of d individual measures, ν = ν1⊗· · ·⊗νd,
where νi is the ith target measure on R. Then the result-

ing target distribution function can be expanded using

a product series as Fν(t) =
∏d
k=1 Fνk(tk). The vector

b, Equation (14), can then be evaluated as a Hadamard

product over each dimension:

b =


∫ 1

x1
1
Fν1(t) dt∫ 1

x2
1
Fν1(t) dt

. . .∫ 1

xn
1
Fν1(t) dt

 ◦ · · · ◦

∫ 1

x1
d
Fνd(t) dt∫ 1

x2
d
Fνd(t) dt

. . .∫ 1

xn
d
Fνd(t) dt

 . (50)

If the target distribution function is unknown and

is instead estimated by the target empirical distribu-
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tion function given m random samples {y1,y2, . . . ,ym}
generated from ν, then there also exists an approach to

directly construct the vector b. The approach requires

expanding Equation (15) as follows:

b =
1

nm

m∑
j=1

∫ 1

0

. . .

∫ 1

0

I(xi ≤ t)I(yj ≤ t) dt,

= Ĥv,

(51)

and noting the similarities with the matrix-vector prod-

uct Hw. Here we define v ∈ Rm as the importance

weights of the target random samples (i.e., vi = 1, ∀ i ∈
{1, 2, . . . ,m}). Additionally, we define an entry of ma-

trix Ĥ ∈ Rn×m as

Ĥi,j =
1

nm

d∏
k=1

∫ 1

ẑi,jk

dtk, (52)

where ẑi,jk = max(xik, y
j
k). The vector b is then com-

puted by the matrix-vector product (51).

6 Applications

In this section we apply the proposed approach to a

number of numerical experiments. In Section 6.1, we

demonstrate the properties of the proposed approach

on a unidimensional distribution problem. Section 6.2

compares the proposed approach to previous approaches

on an importance sampling problem over a range of pa-

rameters. Lastly, in Section 6.3, we examine the rela-

tionship between discrepancy theory and the proposed

approach when the proposal and target are distributed

according to the uniform distribution. We also use this

opportunity to evaluate the performance of the Frank-
Wolfe algorithm and Dai-Fletcher algorithm.

6.1 Unidimensional Numerical Example

This analysis revisits the problem presented in Figure 1.

However, instead of using the analytic empirical impor-

tance weights (39), as was done in Figure 1, this exam-

ple uses the Frank-Wolfe algorithm with a step length

α = 2/(2 + k) and premature termination to obtain

sparse solutions (recall that the Frank-Wolfe algorithm

updates only one weight at each iteration). To initial-

ize the Frank-Wolfe algorithm (i.e., w0), we choose an

empirical importance weight vector with entries equal

to

w0,i =

{
n, if i = `

0, otherwise
, (53)

where ` ∈ {1, 2, . . . , n} is selected uniformly at random.

The results of this numerical experiment using n = 100

proposal random samples are presented in Figure 2. The

top and center plots show the results after 25 and 100

iterations, respectively, of the Frank-Wolfe algorithm.

These results illustrate that the proposed approach

produces accurate representations of the target distri-

bution function. Since the support of the proposal dis-

tribution function is finite, we can guarantee weak con-

vergence by Theorem 1 (i.e., L1-Wasserstein distance

metric); permitting the Frank-Wolfe algorithm to run

for more iterations would recover the analytic empirical

importance weights (39). However, the sparse empirical

importance weights, shown on the top plot of Figure 2,

are already a good approximation and may be advan-

tageous if one wishes to evaluate computationally ex-

pensive statistics with respect to a complex or unknown

target distribution function. That is, with the proposed

approach, we have demonstrated one can approximate

a target distribution function using a small set of opti-

mally weighted proposal random samples. These results

also illustrate that the proposed approach naturally ac-

counts for clustering of the proposal random samples

and other deviations from the original proposal distri-

bution function. If we were to use the Radon-Nikodym

importance weights the clustering of the proposal ran-

dom samples would not have been accounted for as

demonstrated on the bottom plot of Figure 2. In the

next section we compare our approach to previous ap-

proaches over a range of multiple-dimensional distribu-

tions with the application of the target empirical dis-

tribution function.

6.2 Importance Sampling

Importance sampling is a commonly used technique

for estimating statistics of a target distribution given

random samples generated from a proposal distribu-

tion. As an example, we consider the setting where we

have a model g : Rd → R that maps a d-dimensional

input x to a scalar output g(x). g could, for exam-

ple, be a computational model that estimates a sys-

tem performance metric (output of interest) as a func-

tion of system geometric parameters (model inputs).

For many applications of interest, g embodies partial

differential equations and is expensive to evaluate. We

have available to us the proposal random samples of

the input {x1,x2, . . . ,xn}, drawn from the (unknown)

input proposal probability density function fµ. We also

have available the corresponding model evaluations for

each proposal sample (i.e., {g(x1), g(x2), . . . , g(xn)}).
We consider the case where the goal is to evalu-

ate statistics of g, but where the inputs x are now

distributed according to a target distribution function.

This situation occurs if we gain additional knowledge
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Fig. 2: Our empirical importance weights are de-

termined using the Frank-Wolfe algorithm with step

length α = 2/(2 + k) and premature termination. We

use n = 100 proposal random samples generated from a

beta distribution function (i.e., B(0.5, 0.5)) and the tar-

get is the uniform distribution function (i.e., U(0, 1)).

Terminating the Frank-Wolfe algorithm after 25 iter-

ations (top) results in a sparse empirical importance

weight vector. Terminating the Frank-Wolfe algorithm

after 100 iterations (center) results in a dense solu-

tion and a more accurate representation of the tar-

get distribution function. For comparison, the Radon-

Nikodym importance weighted empirical proposal dis-

tribution function is provided in the (bottom) plot.

of the input distribution (e.g., refined estimates from

experts or from upstream models), or if we want to

study the system under a variety of different input sce-

narios (e.g., during a design process). If the model g

is expensive to evaluate, as is the case for many ap-

plications in science and engineering, then it becomes

intractable to re-evaluate g over samples from many

different input target distributions; instead we use im-

portance sampling to reweight the available proposal

samples. The decomposition-based uncertainty analy-

sis approach proposed in Amaral et al. (2014) is one

concrete example of this setting.

In the numerical example presented here, the pro-

posal random samples are distributed according to X ∼
N (1/

√
d, I), where I ∈ Rd×d is the identity matrix,

and the target random samples are distributed accord-

ing to Y ∼ N (0, I). Since these measures have infi-

nite support, although our approach is still applicable,

we cannot guarantee convergence in the L1–norm. In

this illustration, we assume that we do not know fµ or

fν , but are provided with random samples from each:

{x1,x2, . . . ,xn} drawn from fµ and {y1,y2, . . . ,ym}
drawn from fν . We have the proposal model evaluations

{g(x1), g(x2), . . . , g(xn)}, but not the target model eval-

uations {g(y1), g(y2), . . . , g(ym)}. Instead of evaluating

the computational model over the target random sam-

ples, we use our proposal model evaluations and per-

form a change of measure to approximate the statistics

of interest with regards to g where the inputs to g are

distributed according to the target distribution func-

tion.

The statistic of interest for this numerical study is

E ≡ Eν [g(t)] =

∫
Ω

g(t)fν(t) dt. (54)

We will estimate E as defined in Equation (54) using

the following weighted Monte Carlo integration rule:

En =

n∑
i=1

ŵig(xi), (55)

where ŵ is obtained using one of the approaches de-

scribed below. For comparison purposes we perform an

exhaustive Monte Carlo simulation using the target dis-

tribution function to approximate Equation (54). The

result is used as the “truth value” for E when com-

paring to the approximate estimates computed using

Equation (55).

Our numerical experiment compares the following

approaches:

1. Radon-Nikodym Derivative (RND): The Radon-

Nikodym importance weights are obtained by com-

puting the ratio of the target and proposal proba-

bility density functions. These results are provided
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here for comparison purposes only, since this ap-

proach uses additional information that is not avail-

able to the other approaches.

2. L2–norm Optimal Weight (L2O): Our optimal

empirical importance weights are obtained by solv-

ing the optimization statement developed in this pa-

per (16). For d = 1, we use analytic empirical impor-

tance weights (39) where Fν is replaced by the target

empirical distribution function Fmν . For d > 1, we

use the Dai-Fletcher algorithm and terminate after

2 max(n,m) iterations where n and m are the num-

ber of proposal and target random samples, respec-

tively. For the implementation of the Dai-Fletcher

algorithm, we compute the matrix H once for each

case considered and store it for use at each opti-

mization iteration.

3. Kernel Density Estimation (KDE): The kernel

density estimation (Scott 1992) approach is applied

to approximate fν and fµ, denoted by f̃ν and f̃µ,

from their respective random samples. We compute

the Radon-Nikodym importance weights by approx-

imating the Radon-Nikodym derivative with f̃ν/f̃µ.

The KDE uses Gaussian kernels where the kernel

bandwidth is selected using the minimal mean squared

error.

4. Kernel Mean Matching (KMM): The kernel

mean matching method (Huang et al. 2007) aims to

match the moments between the proposal and tar-

get distribution using a Gaussian reproducing ker-

nel (i.e.,K(t, t′)). The KMM empirical optimization

statement using proposal samples xi, i = 1, . . . , n,

and target samples yj , j = 1, . . . ,m, is formulated

as

β̂ = arg min
β

1

2

n∑
i,j=1

βiβjK(xi,xj)−

n

m

n∑
i=1

βi

m∑
j=1

K(xi,yj)

s.t. 0 ≤ βi,≤ B, ∀ i ∈ {1, . . . , n}∣∣∣∣ 1n
n∑
i=1

βi − 1

∣∣∣∣ ≤ ε,
where the optimization variables β are the density

ratio estimates, B is an upper limit on the den-

sity ratio, and ε is a user specified tolerance, recom-

mended to be set as B√
m

. The optimization problem

solution directly provides the density ratio estimates

at their respective proposal samples,

h̃(xi) = βi, i = 1, . . . , n. (56)

The Gaussian kernel variance parameter is selected

based on a five-fold cross validation.

5. Ratio Fitting (uLS): The unconstrained least squares

importance fitting (Kanamori et al. 2009) approach

is applied to approximate h = fν/fµ. Here h is rep-

resented by the linear model,

h̃(t) =

b∑
i=1

β̂iφi(t), (57)

where b is the number of basis functions, {φi}bi=1 are

the basis functions, and β̂ = (β̂1, . . . , β̂b)
> are the

parameters to be learned. The parameters are ob-

tained by solving the following optimization state-

ment,

β̂ = arg min
β

1

2

∫ (
h̃(t)− h(t)

)2
fν(t) dt + γβ>1

s.t. βi ≥ 0, ∀ i ∈ {1, . . . , b},

where γ is the regularization parameter. The ba-

sis functions are Gaussian kernel models centered

at the target random samples. The Gaussian ker-

nel variance and regularization parameter are se-

lected based on a 5-fold cross validation. Note that

although the unknown Radon-Nikodym derivative

appears in the objective, it is not explicitly evalu-

ated.

6. Divergence Fitting (KLD): The Kullback-Liebler

(divergence) importance estimation (Sugiyama et al.

2012) approach applies the linear model in Equa-

tion (57). The parameters are obtained by solving

the following optimization statement,

β̂ = arg min
β

∫
fν(t)log

(
h(t)

h̃(t)

)
dt + λβ>1

s.t.

n∑
i=1

b∑
j=1

βjφ(xi) = n

s.t. βi ≥ 0, ∀ i ∈ {1, . . . , b},

where the equality constraint ensures that h̃ defines

a probability density function. The basis functions

are Gaussian kernel models centered at the target

random samples. The Gaussian kernel variance and

regularization parameter are selected based on a 5-

fold cross validation. Note that although the un-

known Radon-Nikodym derivative appears in the

objective, it is not explicitly evaluated.

The five approaches presented above are tested over the

following four scenarios:
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1. n = 210,m = 210 and d = {1, 2, 5, 10},
2. n = 210,m = 212 and d = {1, 2, 5, 10},
3. n = 212,m = 210 and d = {1, 2, 5, 10},
4. n = 212,m = 212 and d = {1, 2, 5, 10}.

For all scenarios, the results are the average over 100

independent trials and the quality of the results is quan-

tified by

rn =
|En − E|

E
. (58)

Table 1 presents the results for each scenario, where g

is Ackley’s function (Galletly 1998),

g(t) =− 20 exp

−0.2

√√√√1

d

d∑
i=1

t2i

−
exp

(
1

d

d∑
i=1

cos(2πti)

)
+ 20 + exp(1).

(59)

The results demonstrate that our approach accu-

rately estimates E using only the proposal and tar-

get random samples and the proposal model evalua-

tions. Our approach is also shown to result in estimates

that are comparable in accuracy to using the Radon-

Nikodym importance weights, although we did not re-

quire that our empirical importance weights converge

to the Radon-Nikodym importance weights. This out-

come can be attributed to the results presented in Fig-

ure 2; that is, we only required that the weighted pro-

posal empirical distribution function matches the tar-

get distribution function. By increasing the number of

proposal and target random samples we enrich the pro-

posal and target empirical distribution functions and

as a result improve the accuracy of our estimate. Over-

all, the results in Table 1 demonstrate that the pro-

posed approach evaluates the statistic of interest more

accurately than current practices for all scenarios con-

sidered. The normalized computational time required

to compute the importance weights for scenario 4 is

shown in Table 2. The computational time required by

our approach is comparable to the computational times

required by the other approaches.

Additionally, we repeat the scenario {n = 212,m =

212} and d = 5 using four different models for g:

1. G-Function (Saltelli 1995),

g1(t) =

d∏
i=1

|4ti − 2|+ (i− 2)/2

1 + (i− 2)/2

2. Morokoff & Caflisch (Morokoff 1995),

g2(t) = (1 + 1/d)d
d∏
i=1

(|ti|)1/d

Table 1: The error metric rn, Equation (58), measured

as a percentage, for the six methods and four scenar-

ios. Results are averaged over 100 independent trials

and the term in parentheses is the corresponding stan-

dard deviation. Bold text indicates the best estimate

for each scenario (not considering the Radon-Nikodym

derivative, which is shown only for illustration). The

“truth values” used in these computations are com-

puted using an exhaustive Monte Carlo simulation:

Eν [g(t)|d = 1] = 4.2830, Eν [g(t)|d = 2] = 4.7650,

Eν [g(t)|d = 5] = 5.1018, Eν [g(t)|d = 10] = 5.2212.

Low: n = 210, Low: m = 210

d = 1 d = 2 d = 5 d = 10

RND 2.79(2.07) 1.65(1.27) 0.78(0.59) 0.57(0.51)

L2O 1.32(0.95) 0.85(0.67) 0.52(0.39) 0.47(0.34)

KDE 2.65(1.80) 5.83(1.04) 12.4(1.02) 10.3(0.73)

KMM 2.03(1.46) 2.59(1.08) 2.84(0.75) 1.72(0.48)

uLS 4.07(2.65) 7.13(1.37) 5.36(5.85) 2.34(0.44)

KLD 11.1(2.15) 6.38(1.61) 7.31(0.79) 4.56(0.52)

Low: n = 210, High: m = 212

d = 1 d = 2 d = 5 d = 10

RND 2.79(2.07) 1.65(1.27) 0.78(0.59) 0.57(0.51)

L2O 0.69(0.57) 0.52(0.42) 0.32(0.24) 0.35(0.27)

KDE 2.54(0.96) 5.86(0.68) 12.8(0.87) 11.5(0.66)

KMM 1.68(0.92) 2.46(0.65) 2.98(0.59) 1.80(0.37)

uLS 3.59(1.72) 6.90(1.34) 1.19(2.39) 2.34(0.44)

KLD 11.0(1.89) 5.99(1.22) 7.95(0.76) 4.48(0.45)

High: n = 212, Low: m = 210

d = 1 d = 2 d = 5 d = 10

RND 1.48(1.05) 0.91(0.68) 0.48(0.35) 0.31(0.28)

L2O 1.24(0.85) 0.78(0.60) 0.54(0.39) 0.36(0.27)

KDE 1.68(1.25) 4.22(0.89) 11.8(0.68) 10.2(0.48)

KMM 1.46(1.08) 1.27(0.83) 1.25(0.66) 0.78(0.38)

uLS 2.94(2.02) 5.70(1.35) 9.98(0.62) 2.36(0.24)

KLD 11.4(1.42) 6.28(1.49) 7.33(0.69) 4.44(0.42)

High: n = 212, High: m = 212

d = 1 d = 2 d = 5 d = 10

RND 1.48(1.05) 0.91(0.68) 0.48(0.35) 0.31(0.28)

L2O 0.64(0.42) 0.47(0.36) 0.29(0.21) 0.26(0.16)

KDE 1.43(0.76) 4.28(0.53) 12.3(0.51) 11.4(0.39)

KMM 0.93(0.67) 1.06(0.56) 1.43(0.45) 0.81(0.26)

uLS 2.37(1.28) 5.34(0.95) 11.0(1.15) 2.36(0.24)

KLD 11.5(1.08) 5.86(0.96) 7.77(0.69) 4.35(0.28)
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Table 2: Normalized computational times required for

computing the last scenario in Table 1. The results are

normalized by the fastest method in each case and are

averaged over 100 independent trials.

High: n = 212, High: m = 212

d = 2 d = 5 d = 10

L2O 7.17 5.27 3.51

KDE 1 1 3.95

KMM 17.9 5.18 1.37

uLS 8.42 5.22 2.46

KLD 14.2 7.03 1

3. Oscillatory Integrand Family (Genz 1984),

g3(t) = cos(π +

d∑
i=1

ti)

4. Product Peak Integrand Family (Genz 1984),

g4(t) =

d∏
i=1

1

2−2 + (ti − 0.5)2
.

The results from this numerical study are provided in

Table 3 and show that our approach performs the change

of measure more accurately than previous approaches

on three of the four test functions. For the model g3

(the Oscillatory Integrand Family), the accuracy of our

approach is slightly worse on average but comparable

to the other approaches.

Lastly, we demonstrate the applicability of our ap-

proach for an example where g(t) is computationally

expensive. For this application problem, g(t) represents

a computational tool that evaluates an aircraft’s per-

formance using low-order physical models. The output

of g(t) is the fuel energy consumption per payload-

range (PFEI) of an aircraft. The proposal and target

input distributions to g(t) are provided in Table 4.

In this illustration, we assume that we do not know

fµ or fν , but are provided with random samples from

each (i.e., random samples may have been generated

from upstream models or experimentations). We thus

have {x1,x2, . . . ,xn} drawn from the unknown fµ and

{y1,y2, . . . ,ym} drawn from the unknown fν , where

n = m = 50, 000. We also have available the proposal

model evaluations {g(x1), g(x2), . . . , g(xn)}, which took

approximately 68 minutes to generate on a desktop

computer1, but we do not have available the target

model evaluations {g(y1), g(y2), . . . , g(ym)}.
1 All computations were performed on a six-core Intel Core

i7-5930K CPU desktop computer.

Table 3: The error metric rn, Equation (58), measured

as a percentage, for the six methods and all four func-

tions under the last scenario in Table 1. Results are

averaged over 100 independent trials and the term in

parentheses is the corresponding standard deviation.

Bold text indicates the best estimate for each scenario

not considering the Radon-Nikodym derivative. The

“truth values” used in these computations are com-

puted using an exhaustive Monte Carlo simulation:

Eν [g1(t)] = 21.7970, Eν [g2(t)] = 1.4733, Eν [g3(t)] =

−0.0820, Eν [g4(t)] = 3.5483× 10−4.

d = 5; High: n = 212, High: m = 212

g1(t) g2(t) g3(t) g4(t)

RND 5.41(4.55) 1.01(0.80) 20.9(14.7) 1.16(0.93)

L2O 2.42(1.53) 0.62(0.49) 58.3(41.0) 0.69(0.55)

KDE 37.8(1.78) 20.1(0.94) 76.0(21.7) 42.34(1.32)

KMM 6.96(1.99) 2.60(0.96) 11.7(8.91) 2.57(0.79)

uLS 23.9(3.61) 18.1(1.94) 119.9(20.3) 29.9(1.49)

KLD 34.6(2.72) 12.8(1.24) 59.7(29.7) 28.6(1.61)

Table 4: The proposal and target distributions for g(t)

with t = {t1, t2, t3, t4, t5}. The physical representation

of the inputs are; t1 =turbine metal temperature [K],

t2 = turbine inlet total temperature for cruise [K], t3 =

operating pressure ratio [-], t4 = max allowable wing

spar cap stress [psi], and t5 = start-of-cruise altitude

[ft]. We use T (a, b, c) to represent a triangular distri-

bution with lower limit a, mode b, and upper limit c.

We use U(a, b) to represent a uniform distribution with

lower limit a and upper limit b. In this study, the target
distributions are absolutely continuous with respect to

the proposal distributions.

Proposal Target

t1 T (1122, 1222, 1322) U(1172, 1272)
t2 U(1541, 1692) U(1541, 1641)
t3 T (22.2, 27.2, 28.6) U(24.2, 28.2)
t4 T (27500, 30000, 32500) U(28500, 31500)
t5 U(33000, 38000) U(34000, 36000)

The objective of this numerical study is to evaluate

statistics of interest with regards to the target distribu-

tion. This is beneficial if one has already performed all

the proposal evaluations in an “offline” phase and would

like to evaluate the target statistics of interest in an

“online” phase. The results from this numerical study

are provided in Figure 3. These results indicate that
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our approach accurately quantifies the output of inter-

est distribution function from the proposal model eval-

uations. The target distribution function, shown here

for comparison, required approximately 68 minutes to

compute on a desktop computer. In comparison, our

approach required 85 seconds to evaluate the empirical

importance weighted proposal distribution function.
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Fig. 3: The proposal distribution function for the out-

put of interest, PFEI, in an aircraft performance exam-

ple. Note that we show the target distribution function

here for comparison purposes. Our L2–norm optimal

empirical importance weights, denoted by the crosses,

are determined using the Frank-Wolfe algorithm with

step length α = 2/(2 + k).

6.3 Uniform Distribution and the L2–norm

Discrepancy

In this example we present the relationship between

our proposed approach and discrepancy theory (Dick

and Pillichshammer 2010). To illustrate this relation-

ship, the proposal and target distributions are the uni-

form distribution on the unit hypercube. We also take

this opportunity to evaluate the performance of the

Frank-Wolfe algorithm and Dai-Fletcher algorithm over

a range of parameters.

Substituting the uniform distribution function, Fν(t)

=
∏d
i=1 ti, for the target distribution function in Equa-

tion (8), we obtain

ω̃2(ŵ) =
1

2

(
1

n2

n∑
i=1

n∑
j=1

ŵiŵj

d∏
k=1

(
1−max(xik, x

j
k)
)

− 2

n

n∑
i=1

ŵi

d∏
k=1

1− (xik)2

2
+

1

3d

)
,

(60)

where we use ω̃ to denote our L2–norm distance metric

in the special case of a uniform target distribution. If

the proposal random samples are uniformly weighted

(i.e., ŵi = 1, ∀ i ∈ {1, 2, . . . , n}), then Equation (60)

relates directly to the L2–norm discrepancy. The L2–

norm discrepancy is defined as

D2 =
√

2ω̃(1n), (61)

and is sometimes referred to as Warnock’s formula (Ma-

toušek 1998, Warnock 1972).

In the following numerical study, we compare the

ratio between the weighted L2–norm discrepancy that

results from using (60) with our optimal empirical im-

portance weights and Warnock’s formula (61),

r =

√
2ω̃(ŵ)

D2
=

ω̃(ŵ)

ω̃(1n)
. (62)

We investigate two scenarios: proposal random samples

drawn from a pseudo-random (PR) sequence and from a

randomized Sobol’ low discrepancy (i.e., quasi-random,

QR) sequence (Niederreiter 1978). A pseudo-random

number generator combines randomness from various

low-entropy input streams to generate a sequence of

outputs that are in practice statistically indistinguish-

able from a truly random sequence, whereas a quasi-

random number generator constructs a sequence of out-

puts deterministically such that the output obtains a

small discrepancy (Caflisch 1998, Niederreiter 1978).

For the case d = 1, the analytic empirical impor-

tance weights (39) are

ŵ =
1

2



x2 + x1

x3 − x1

. . .

xn − xn−2

2− xn − xn−1


. (63)

Table 5 presents the results for the d = 1 case. Shown

are the ratios r (in percentages), averaged over 100 in-

dependent trials. The results illustrate that the opti-

mal empirical importance weights consistently reduce

the L2–norm discrepancy with respect to the uniformly

weighted proposal random samples (i.e., r < 1). The
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reduction is more pronounced for the pseudo-random

samples than the quasi-random samples. This is ex-

pected because quasi-random samples are constructed

to reduce the discrepancy among the samples.

Table 5: The ratio of discrepancy computed using our

optimal empirical importance weights and uniform im-

portance weights, Equation (62) measured as a percent-

age. Shown are results for the d = 1 case, averaged over

100 independent trials. The term in parentheses is the

corresponding standard deviation. n is the number of

proposal random samples.

n = 28 n = 210 n = 212

PR 12.2(4.80) 6.96(2.45) 3.38(1.17)

QR 86.4(6.48) 86.7(6.10) 85.9(6.86)

Since we have available the analytic representation

of the empirical importance weights (63), we can also

see that the resulting weighted Monte Carlo integration

rule for an integrable function g is∫ 1

0

g(t) dt = lim
n→∞

1

n

n∑
i=1

ŵig(xi) =

lim
n→∞

1

2

(
(x2 + x1)g(x1) +

n∑
i=1

(xi+1 − xi−1)g(xi)

+ (2− xn − xn−1)g(xn)

)
,

(64)

which was previously shown to be the trapezoidal inte-

gration rule (Yakowitz et al. 1978).

For the general case d > 1, the empirical impor-

tance weights are computed using the Frank-Wolfe al-

gorithm with an optimal step length α, and the Dai-

Fletcher algorithm. For all simulations presented the

Dai-Fletcher algorithm computes the matrix H once

and stores it. The Frank-Wolfe algorithm using a deter-

ministic step length α halves the computational time

compared to using an optimal step length, but leads

to poor results early in the optimization process. We

selected a maximum number of iterations as the ter-

mination criterion for both algorithms. The maximum

number of iterations were selected such that both al-

gorithms have similar computational run times.2 The

purpose of this study is to evaluate our proposed ap-

proach and to compare the computational performance

of the Frank-Wolfe algorithm to the Dai-Fletcher al-

gorithm over a range of parameters. These parameters

include the number of proposal random samples n, the

2 All computations were performed on a dual Intel Core
Xeon E5410 CPU desktop computer.

initial solution w0, and dimension d. The initial solu-

tion for all simulations is uniform importance weights

(i.e., w0 = 1n). Figures 4, 5, and 6 show the results

averaged over 100 independent trials for d = 2, d = 5,

and d = 10, respectively.
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Fig. 4: Discrepancy reduction for d = 2. Both algo-

rithms reduce the L2–norm discrepancy (i.e., r < 1) in

both scenarios. The Frank-Wolfe algorithm converges

more quickly than the Dai-Fletcher algorithm.

As was the case for d = 1, these results illustrate

that the optimal empirical importance weights consis-

tently reduce the L2–norm discrepancy with respect to

uniformly weighted proposal random samples. Again,

the reduction is more pronounced for the pseudo-random

samples than the quasi-random samples. In general, if

the proposal random samples are drawn from a pseudo-

random sequence, then increasing n leads to further

decrease in the discrepancy (r decreases further); how-

ever, if the proposal random samples are drawn from a

quasi-random sequence, then increasing n leads to less

discrepancy reduction (r shows less decrease). This can

be explained since the pseudo-random proposal samples

have poor (high) initial discrepancy and including more
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Fig. 5: Discrepancy reduction for d = 5. Both algo-

rithms reduce the L2–norm discrepancy (i.e., r < 1) in

both scenarios. The Frank-Wolfe algorithm converges

more quickly than the Dai-Fletcher algorithm, although

the final results are similar.

proposal samples gives our approach more degrees of

freedom over which to optimize. Conversely, the quasi-

random proposal samples already have low discrepancy;

including more samples in this case makes it more dif-

ficult for the optimization to find a lower-discrepancy

solution.

The results generally show that the Frank-Wolfe al-

gorithm converges more quickly for cases using pseudo-

random samples, while the Dai-Fletcher exhibits better

performance for quasi-random samples. This suggests

that the Frank-Wolfe algorithm may be preferred when

the initial proposal empirical distribution function is far

from the target distribution function, while the Dai-

Fletcher algorithm is a better choice when the initial

empirical importance weights are already close to opti-

mal. Examining the results with increasing dimension d

(i.e., increasing condition number of matrix H (Visick

2000)), illustrates that both algorithms require more

computational time to converge. This is expected since

both algorithms implement gradient descent techniques
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Fig. 6: Discrepancy reduction for d = 10. Both algo-

rithms reduce the L2–norm discrepancy (i.e., r < 1) in

both scenarios. The Dai-Fletcher algorithm converges

more quickly the Frank-Wolfe algorithm, although the

final results are similar.

whose convergence rates are expected to depend on the

condition number of H.

The results presented in Figure 7 demonstrate our

approach on a large-scale application problem. In this

example we extended the results presented in Figure

5 using the Frank-Wolfe algorithm to proposal sam-

ple sizes n = [8192, 32768, 131072]. The computational

times presented do not include the time required to

evaluate the initial gradient (i.e., initial matrix-vector

product; a = Hŵ). The results suggest our approach

scales well with large number of samples. Numerical

strategies such as divide-and-conquering methods and

parallelization can be implemented to further improve

the computational run times.

From these results, we recommend using the Frank-

Wolfe algorithm when the dimension d is small or when

the initial proposal empirical distribution function is

far from the target distribution function. Otherwise, we

recommend the Dai-Fletcher algorithm if the dimension

d is large or if the initial proposal empirical distribution
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Fig. 7: Discrepancy reduction for d = 5 and a large

number of samples. The Frank-Wolfe algorithm reduces

the L2–norm discrepancy (i.e., r < 1) in both scenarios

for a large-scale application problem (i.e., large n). The

results presented are the average over 100 simulations.

function is close to the target distribution function. If

the number of proposal samples n is so large such that

the matrix H cannot be stored, then we recommend

using the Frank-Wolfe algorithm since the Dai-Fletcher

algorithm will require constructing the matrix H on

the fly at each iteration, which will drastically increase

computational time.

7 Conclusion

This paper presents a new approach that defines and

computes empirical importance weights, and shows its

connections to other discrepancy metrics and studies.

A key attribute of the approach is its scalability: it

lends itself well to handling a large number of sam-

ples through a scalable optimization algorithm. The ap-

proach also scales to problems with high-dimensional

distributions, although numerical challenges will arise

due to ill-conditioning of the matrix H. These chal-

lenges can be addressed, as they have in other fields

such as optimization of systems governed by partial dif-

ferential equations (Biros and Ghattas 2005), through

a combination of preconditioning techniques and use of

optimization solvers that are tolerant to ill-conditioned

matrices. Future efforts are required to extend the con-

vergence results in the L1–norm presented here, to demon-

strate almost everywhere convergence. Other future di-

rections of interest include exploitation of the optimiza-

tion solution process to generate sparse solutions, which

may yield a way to derive efficient Monte Carlo inte-

gration rules that rely on a condensed set of samples

(Girolami and He 2003), and exploring different objec-

tive function metrics (in particular replacing the L2–

norm metric with an L1–norm metric).
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